

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 742–749 | 742

Analyzing the Effect of Different Activation Functions in Deep Learning

on Accuracy and Execution time

Dr. Mahesh D. Titiya*1, Arjun V. Bala2, Dr. Sheshang Degadwala3

Submitted:11/03/2024 Revised: 26/04/2024 Accepted: 04/05/2024

Abstract: Activation functions is critical in specifying the active node within neural networks. Choosing the most suitable activation

function is crucial because to its impact on the overall output of the network. Prior to choosing an activation function, it is essential to

check the characteristics of each activation function based on our specific needs. The monotonicity, derivatives and range of the

activation function are important characteristics. In our review study, we examined 13 different activation functions, such as ReLU,

Linear, Exponential Linear Unit, Gaussian Error Linear Unit, Sigmoid, SoftPlus, among others.

Keywords: activation functions, neural network, deep learning, sigmoid, types of ReLU, softsign, tanh

1. Introduction

Deep learning neural networks are applicable in various fields

such as voice detection, speech recognition, pattern identification,

and object detection. The initial deep learning model required for

detection had a limited number of layers, such as the LeNet5

model which consisted of only five layers. Various types of

neural networks have been developed in the past decade,

including as ANN, CNN, and RNN. [24].

Due to advancements in computational power and input data,

researchers were able to improve the network's depth, resulting in

more accurate results. VGGNet has nine-teen or sixteen layers

depending on the version. AlexNet has twelve levels. [6], Goog-

\\leNet has twenty-two layers, ResNet architecture has 152 layers,

and Stochastic Depth networks have approximately 1,200 layers.

As a result, studying neural net-works in more depth will provide

better findings. The activation function calculates a neural cell's

output. The activation function's derivative is used in the

backpropagation algorithm. Therefore, the activation function for

analysis needs to be selected. This prevents the oscillatory pattern

observed in the sigmoid function during back-propagation weight

updates. Alom et al.[9] suggest that creating an activation

function with minimal computational complexity is crucial for

large neural networks including millions of nodes. The activation

function is a crucial aspect for mapping parameters in artificial

neural networks to handle non-linear complex functions

effectively. The main role of the activation function is to specify

the state of the node in Artificial Neural Network (ANN).

Multiple hidden layers in a neural network increase the

complexity and difficulty of training. Challenges in neural

networks can arise from issues such as the vanishing gradient

problem, oscillating weight values, complex formulas, or

activation function saturation. This leads to a continuous learning

process that may be time-consuming [11], [12].

We have primarily concentrated on performing exploratory data

analysis on various Activation Functions such as ReLU, Linear,

ELU, GeLU, SeLU, Sigmoid, Hard Sigmoid, Tanh, SoftPlus,

SoftMax, SoftSign, Swish, and Exponential in this review paper.

2. Dataset

For this analysis we have generated isotropic Gaussian blobs for

clustering using sklearn library of the python with the below

parameters,

• n_samples, to be 1000

• n_features, to be 2

• centers, to be 4

• random_state, to be 0

Generated data is visualized using Matplotlib library, here is how

it looks,

Fig. 1. Generated sample data used for comparison.

3. Activation Functions

3.1. Linear Activation

It's an easy activation function in which the input is precisely

proportional to our activation function. Linear activation

functions gives a wider range of activations, and a sloped line

may enhance the firing rate as the input rate increases.

1Assistant Professor, Computer Engineering Department, Government

Engineering College, Rajkot, Gujara,India

ORCID ID : 0000-0001-6181-6562,Email: mdtitiya@gmail.com
2 Research Scholar, Gujarat Technological University, Ahmedabad,

Gujarat, India,

ORCID ID : 0009-0005-9661-0149Email: er.arjunbala@gmail.com
3 Professor & Head Department of Computer Engineering, Sigma

University, Vadodara, Gujarat, India

ORCID ID : 0000-0002-2385-7790 Email:sheshang13@gmail.com

* Corresponding Author Email: mdtitiya@gmail.com

* Corresponding Author Email: mdtitiya@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 742–749 | 743

Fig. 2. Linear Activation Function Graph

Function :
Derivative :
Range : -∞ to ∞

Consider the function's derivative, which in our case is 1 because

our function is linear with a slope of 1. Because the derivative of

the linear activation function is constant, training the model is

challenging.

3.2. Rectified Linear Unit (ReLU) Activation

Rectified linear unit (ReLU), is the highly applied activation

function today, it has a range of 0 to infinity and replacing all

negative values with zero.

Fig. 3. Rectified Linear Unit (ReLU) Graph

Function :

Derivative :

Range : 0 to ∞

Consider the function's derivative: we have 0 for values less than

0 and 1 for values larger than 0, but the derivative for zero is

undefined.

The problem with the ReLU is that the conversion rate is so quick

that it can't map or fit into data effectively. To solve this, the

Leaky ReLU was created.

3.3. Exponential Linear Unit (ELU) Activation

The Exponential Linear Unit (ELU) has negative values, which

lets them bring mean-unit closer to 0 and achieve lower

computing complexity, similar to batch normalization [23].

Because of the lower bias shift impact, mean shifts near 0 aid to

boost learning speed by bringing the normal gradient closer to the

0 gradient [23].

Fig. 4. Exponential Linear Unit (ELU) Graph

Function :

Derivative :

In ELU, we must choose a parameter called alpha, which has a

common value in the range of 0.1 to 0.3. In the example above,

we have chosen alpha value to be 0.3.

3.4. Gaussian Error Linear Unit (GeLU) Activation

NLP models such as ALBERT, ROBERTa, and BERT frequently

use the GELU activation function. This function combines ReLU,

dropout, and zoneout features.

GELU can be considered as a smoother ReLU.

This distribution can be useful with Batch Normalization as

neuron inputs have a normal distribution.

Fig. 5. Gaussian Error Linear Unit (GeLU) Function Graph

Function :

3.5. Sigmoid Activation

A sigmoid function is a mathematical function having a "S"-

shaped or sigmoid curve. The logistic function is a fundamental

example of a sigmoid function; it includes nonlinear features.

This is a historical function which is one of the earliest activation

function used in neural network.

A sigmoid function is a bounded, differentiable real function

defined for all real input values. It has a non-negative derivative

at every point and exactly one inflection point. Typically, a

sigmoid function is monotonic, with a first derivative that forms a

bell-shaped curve. Conversely, integrating any continuous, non-

negative, bell-shaped function (having one local maximum and

no local minima, unless degenerate) produces a sigmoidal

function.

.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 742–749 | 744

Fig. 6. Sigmoid Activation Function Graph

Function :

Derivative :

Range : 0 to 1

From the provided graph, we can observe that the Y-axis values

change far more rapidly than the X-axis values inside a narrow

range.

In contrast to other activation functions, which have a range

between -∞ and +∞, this function's range is bounded between 0

and 1.

This activation function is commonly used in Deep Learning

because of its limited range.

3.6. Hard Sigmoid

The hard sigmoid is an approximation of the logistic sigmoid

function that is piecewise linear. Depending on which

characteristics of the original sigmoid you wish to preserve, you

can employ a unique approximation.

We have kept f(0) to be 0.5 and f’(0) to be -0.25.

Fig. 7. Hard Sigmoid Activation Function Graph

Function :

Range : 0 to 1

3.7. Hyperbolic Tangent (tanh) Activation

When using simply sigmoid activation functions to learn deep

networks, edge values become stuck; to avoid this, we must use

hyperbolic functions, often known as the tanh function.

Fig. 8. Hyperbolic Tangent (tanh) Activation Function Graph

Function :

Derivative :

Range : -1 to 1

3.8. SoftPlus Activation

As a better alternative to hyperbolic or tanhavtivation function we

can use SoftPlus activation, which has range from 0 to ∞.

Fig. 9. SoftPlus Activation Function Graph

Function :

Derivative :

Range : 0 to ∞

3.9. SoftMax Activation

The relative probabilities are computed by the Softmax activation

function. Soft-max is a type of logistic function that normalizes

an input value into a vector of values that follows a probability

distribution whose sum equals 1.

Function :

Range : 0 to 1

The output values are in the range [0,1], this helps us to get rid of

binary classification and can have many classes or dimensions

within our neural network model. Softmax is also known as

multinomial logistic regression for this reason.

3.10. SoftSign Activation

Softsign is an activation function that, like a sigmoid function,

rescales values be-tween -1 and 1 by applying a threshold. The

benefit is that a Softsign's value is zero-centered, which aids the

following neuron in propagation.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 742–749 | 745

Fig. 10. SoftSign Function Graph

Function :

Range : -1 to 1

4. Neural Network Model

 We have created a simple model in which we have used two

hidden and one output layer with all combination of the given

activation functions.

Fig. 11. Neural Network Model used for the experiment.

Here hidAct and outAct is the different combination of below

listed activation functions.

• Linear Activation

• Rectified Linear Unit Activation

• SoftPlus Activation

• SoftMax Activation

• SoftSign Activation

• Exponential Linear Unit Activation

• Gaussian Error Linear Unit Activation

• Swish Activation

• Exponential Activation

• Scaled Exponential Linear Unit Activation

• Sigmoid Activation

• Hard Sigmoid Activation

• Hyperbolic Tangent Activation

5. Results

We have done performance analysis using accuracy and

execution time parameters.

5.1. Accuracy

Here are the accuracy results we have achieved with the

combination of different Activation Functions.

Table 1. Raw Result Data for accuracy

Hidden Layer

linear relu elu gelu selu sigmoid

O
u

tp
u

t
L

a
y

er

linear 0.441 0.671 0.559 0.321 0.471 0.269

relu 0.309 0.432 0.433 0.408 0.320 0.269

elu 0.504 0.389 0.601 0.268 0.387 0.220

gelu 0.386 0.218 0.302 0.181 0.217 0.248

selu 0.314 0.480 0.419 0.302 0.263 0.269

sigmoid 0.930 0.930 0.933 0.933 0.925 0.928

hard

sigmoid
0.510 0.291 0.439 0.912 0.840 0.348

tanh 0.410 0.302 0.448 0.577 0.314 0.248

softplus 0.915 0.934 0.930 0.930 0.928 0.925

softmax 0.924 0.924 0.931 0.928 0.930 0.927

softsign 0.356 0.480 0.567 0.555 0.523 0.430

swish 0.223 0.263 0.523 0.185 0.191 0.263

exp 0.925 0.931 0.924 0.927 0.921 0.263

Hidden Layer

Hard

sigmoid
tanh softplus softmax softsign swish

O
u

tp
u

t
L

a
y

er

linear 0.263 0.383 0.399 0.220 0.510 0.451

relu 0.269 0.350 0.269 0.269 0.408 0.416

elu 0.220 0.641 0.460 0.220 0.435 0.323

gelu 0.317 0.308 0.269 0.269 0.330 0.438

selu 0.372 0.502 0.438 0.269 0.294 0.556

sigmoid 0.933 0.933 0.925 0.897 0.925 0.928

hard

sigmoid
0.520 0.531 0.269 0.704 0.804 0.342

tanh 0.593 0.540 0.096 0.220 0.562 0.516

softplus 0.604 0.921 0.925 0.703 0.927 0.933

softmax 0.933 0.931 0.928 0.918 0.933 0.925

softsign 0.263 0.410 0.220 0.220 0.459 0.596

swish 0.248 0.389 0.018 0.248 0.173 0.408

exp 0.643 0.934 0.921 0.676 0.931 0.918

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 742–749 | 746

Fig. 12. Accuracy heat map of the result

Fig. 13. Accuracy line chart of the result

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 742–749 | 747

5.2. Execution Time

Here are the Execution Time (in Seconds) results we have

achieved with the combination of different Activation Functions.

Table 2. Raw Result Data for execution time

Hidden Layer

linear relu elu gelu selu sigmoid

O
u

tp
u

t
L

a
y

er

linear 5.87 5.83 5.85 6.32 5.93 5.86

relu 5.89 5.90 5.82 6.43 5.96 5.91

elu 5.85 5.93 5.93 6.31 6.49 5.89

gelu 6.08 5.97 6.14 6.44 6.49 6.06

selu 5.82 5.85 5.97 6.36 5.92 5.88

sigmoid 5.53 5.54 5.66 6.16 5.70 5.74

hard

sigmoid 5.97 5.91 6.02 6.40 6.06 5.98

tanh 5.84 5.89 6.76 6.36 6.14 5.93

softplus 5.78 5.78 6.14 6.29 6.03 5.95

softmax 5.39 5.49 5.72 6.24 5.86 5.78

softsign 5.93 5.89 5.90 6.38 5.88 5.97

swish 5.88 5.96 5.96 6.41 5.98 6.00

exp 5.79 5.88 5.96 6.32 5.93 5.86

 Hard

sigmoid
tanh softplus softmax softsign swish

O
u

tp
u

t
L

a
y

er

linear 6.20 5.77 6.10 6.11 5.98 6.07

relu 6.25 5.91 6.12 6.09 5.93 6.05

elu 6.26 6.10 6.13 6.22 6.10 6.05

gelu 6.42 6.23 6.28 6.30 6.36 6.22

selu 6.18 5.89 6.08 6.18 5.90 6.05

sigmoid 6.19 5.66 6.26 5.94 5.64 5.76

hard

sigmoid 6.27 6.02 6.55 6.21 6.01 6.26

tanh 6.25 5.85 6.16 6.19 5.96 6.06

softplus 6.20 5.98 6.31 6.12 5.97 6.09

softmax 6.10 5.53 6.15 5.93 5.63 5.90

softsign 6.24 6.07 6.24 6.10 5.89 6.57

swish 6.30 6.66 6.26 6.27 5.94 6.24

Fig. 14. Execution time heat map of the result

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 742–749 | 748

Fig. 15. Execution time line chart of the result

6. Conclusion

In this study, we examined the impact of various activation

functions on the performance of deep learning models in terms of

both accuracy and execution time. Our experiments included a

comprehensive evaluation of popular activation functions such as

Sigmoid, Tanh, ReLU, Leaky ReLU, and Swish.

The results indicate that the choice of activation function

significantly influences the model's accuracy and computational

efficiency. Specifically, ReLU and its variants (Leaky ReLU and

Swish) consistently outperformed traditional activation functions

like Sigmoid and Tanh in achieving higher accuracy and faster

convergence. This can be attributed to their ability to mitigate the

vanishing gradient problem, thus facilitating more effective

training of deeper networks.

ReLU, due to its simplicity and computational efficiency,

emerged as the most effective activation function in most

scenarios. However, it was observed that Leaky ReLU and Swish

provided marginally better performance in certain cases,

particularly in deeper networks where maintaining a non-zero

gradient is crucial. The Swish activation function, in particular,

demonstrated superior accuracy on complex datasets, suggesting

its potential for more advanced applications despite its slightly

higher computational cost.

The execution time analysis revealed that activation functions

with non-linear characteristics, such as Sigmoid and Tanh,

incurred higher computational costs, leading to longer training

times. In contrast, ReLU and its variants significantly reduced

training time due to their simpler mathematical operations and

sparse activation.

In conclusion, while ReLU remains a robust choice for most

applications due to its balance of accuracy and efficiency,

exploring variants like Leaky ReLU and Swish can provide

incremental benefits in specific contexts. Future research could

further explore adaptive activation functions and their integration

into evolving neural network architectures to enhance model

performance. This study underscores the importance of selecting

appropriate activation functions tailored to the specific

requirements of the task and dataset to optimize both accuracy

and execution time.

Author contributions

Conceptualization: Arjun Bala; Methodology: Dr. Mahesh

Titiya; Formal analysis and investigation: Arjun Bala, Maulik

Trivedi; Writing - original draft preparation: Arjun Bala;

Writing - review and editing: Dr. Mahesh Titiya; Supervision:

Dr. Mahesh Titiya

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] J. A. Hertz, Introduction to the theory of neural

computation . CRC Press, 2018.

[2] L. Deng, “A tutorial survey of architectures,

algorithms, and applications for deep learning,” APSIPA

Transactions on Signal and Information Processing , vol. 3, p. e2,

2014.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 742–749 | 749

[3] 1989K. He, X. Zhang, S. Ren, and J. Sun, “Deep

residual learning for image recognition,” Computer Vision and

Pattern Recognition (CVPR) , vol. 7, Dec. 2015.

[4] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel, “Backpropagation

applied to handwritten zip code recognition,” Neural

Computation , vol. 1, no. 4, pp. 541–551, Dec..

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going

deeper with convolutions,” in Computer vision and pattern

recognition (cvpr) , 2015, pp. 1–17.

[6] K. Simonyan and A. Zisserman, “Very deep

convolutional networks for large-scale image recognition,” CoRR

, vol. abs/1409.1556, 2014.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet classification with deep convolutional neural

networks,” in Proceedings of the 25th international conference on

neural information processing systems - volume 1 , 2012, pp.

1097–1105.

[8] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q.

Weinberger, “Deep networks with stochastic depth.” in ECCV (4)

, 2016, vol. 9908, pp. 646–661.

[9] C. Y. M. Z. Alom T. M. Taha and V. K. Asari, “The

history began from alexnet: A comprehensive survey on deep

learning approaches,” arXiV , Dec. 2018.

[10] K. J. Piczak, “Recognizing bird species in audio

recordings using deep convolutional neural networks.” in CLEF

(working notes) , 2016, pp. 534–543.

[11] M. A. Nielsen, Neural networks and deep learning .

Determination Press, 2015.

[12] H. Robbins and S. Monro, “A stochastic approximation

method,” Ann. Math. Statist. , vol. 22, no. 3, pp. 400–407, Sep.

1951.

[13] A. Banerjee, A. Dubey, A. Menon, S. Nanda, and G. C.

Nandi, “Speaker recognition using deep belief networks,” arXiv

preprint arXiv:1805.08865 , 2018.

[14] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer,

“A stochastic quasi-newton method for large-scale optimization,”

S IAM Journal on Optimization , vol. 26, no. 2, pp. 1008–1031,

2016.

[15] 93Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller,

“Efficient backprop,” in Neural networks: Tricks of the trade ,

Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 9–50.

[16] R. Hecht-Nielsen, “Theory of the backpropagation

neural network,” in Neural networks for perception , H.

Wechsler, Ed. Academic Press, 1992, pp. 65–.

[17] K. Hara, H. Kataoka, and Y. Satoh, “Learning spatio-

temporal features with 3D residual networks for action

recognition,” in Proceedings of the ieee international conference

on computer vision , 2017, pp. 3154–3160.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep

into rectifiers: Surpassing human-level performance on imagenet

classification,” in Proceedings of the ieee international

conference on computer vision , 2015, pp. 1026–1034.

[19] R. M. Neal, “Connectionist learning of belief

networks,” Artif. Intell. , vol. 56, no. 1, pp. 71–113, Jul. 1992.

[20] L. B. Godfrey and M. S. Gashler, “A continuum among

logarithmic, linear, and exponential functions, and its potential to

improve generalization in neural networks,” in 7th international

conference on knowledge discovery and information retrieval ,

2015, pp. 481–486.

[21] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E.

Alsaadi, “A survey of deep neural network architectures and their

applications,” Neurocomputing , vol. 234, pp. 11–26, 2017.

[22] A. Karpathy, “Yes you should understand backprop.”

https://medium.com/@karpathy/yes-you-should-understand-

backprop-e2f06eab496b, 2016.

[23] Zihan Ding, Hao Dong. "Chapter 13 Learning to Run" ,

Springer Science and Business Media LLC, 2020.

[24] Szandała, Tomasz. "Review and comparison of

commonly used activation functions for deep neural networks."

Bio-inspired neurocomputing. Springer, Singapore, 2021. 203-

224.

