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Abstract: Activation functions is critical in specifying the active node within neural networks. Choosing the most suitable activation 

function is crucial because to its impact on the overall output of the network. Prior to choosing an activation function, it is essential to 

check the characteristics of each activation function based on our specific needs. The monotonicity, derivatives and range of the 

activation function are important characteristics. In our review study, we examined 13 different activation functions, such as ReLU, 

Linear, Exponential Linear Unit, Gaussian Error Linear Unit, Sigmoid, SoftPlus, among others. 
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1. Introduction 

Deep learning neural networks are applicable in various fields 

such as voice detection, speech recognition, pattern identification, 

and object detection. The initial deep learning model required for 

detection had a limited number of layers, such as the LeNet5 

model which consisted of only five layers. Various types of 

neural networks have been developed in the past decade, 

including as ANN, CNN, and RNN. [24]. 

Due to advancements in computational power and input data, 

researchers were able to improve the network's depth, resulting in 

more accurate results. VGGNet has nine-teen or sixteen layers 

depending on the version. AlexNet has twelve levels. [6], Goog-

\\leNet has twenty-two layers, ResNet architecture has 152 layers, 

and Stochastic Depth networks have approximately 1,200 layers. 

As a result, studying neural net-works in more depth will provide 

better findings. The activation function calculates a neural cell's 

output. The activation function's derivative is used in the 

backpropagation algorithm. Therefore, the activation function for 

analysis needs to be selected. This prevents the oscillatory pattern 

observed in the sigmoid function during back-propagation weight 

updates. Alom et al.[9] suggest that creating an activation 

function with minimal computational complexity is crucial for 

large neural networks including millions of nodes. The activation 

function is a crucial aspect for mapping parameters in artificial 

neural networks to handle non-linear complex functions 

effectively. The main role of the activation function is to specify 

the state of the node in Artificial Neural Network (ANN). 

Multiple hidden layers in a neural network increase the 

complexity and difficulty of training. Challenges in neural 

networks can arise from issues such as the vanishing gradient 

problem, oscillating weight values, complex formulas, or 

activation function saturation. This leads to a continuous learning 

process that may be time-consuming [11], [12]. 

We have primarily concentrated on performing exploratory data 

analysis on various Activation Functions such as ReLU, Linear, 

ELU, GeLU, SeLU, Sigmoid, Hard Sigmoid, Tanh, SoftPlus, 

SoftMax, SoftSign, Swish, and Exponential in this review paper. 

2. Dataset 

For this analysis we have generated isotropic Gaussian blobs for 

clustering using sklearn library of the python with the below 

parameters, 

• n_samples, to be 1000 

• n_features, to be 2 

• centers, to be 4 

• random_state, to be 0 

Generated data is visualized using Matplotlib library, here is how 

it looks, 

 

Fig. 1.  Generated sample data used for comparison. 

3. Activation Functions 

3.1. Linear Activation 

It's an easy activation function in which the input is precisely 

proportional to our activation function. Linear activation 

functions gives a wider range of activations, and a sloped line 

may enhance the firing rate as the input rate increases. 
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Fig. 2.  Linear Activation Function Graph 

Function :  
Derivative :  
Range : -∞ to ∞ 

 

Consider the function's derivative, which in our case is 1 because 

our function is linear with a slope of 1. Because the derivative of 

the linear activation function is constant, training the model is 

challenging. 

3.2. Rectified Linear Unit (ReLU) Activation 

Rectified linear unit (ReLU), is the highly applied activation 

function today, it has a range of 0 to infinity and replacing all 

negative values with zero. 

 
Fig. 3.  Rectified Linear Unit (ReLU) Graph 

Function : 
 

Derivative : 
 

Range : 0 to ∞ 

 

Consider the function's derivative: we have 0 for values less than 

0 and 1 for values larger than 0, but the derivative for zero is 

undefined. 

The problem with the ReLU is that the conversion rate is so quick 

that it can't map or fit into data effectively. To solve this, the 

Leaky ReLU was created. 

3.3. Exponential Linear Unit (ELU) Activation 

The Exponential Linear Unit (ELU) has negative values, which 

lets them bring mean-unit closer to 0 and achieve lower 

computing complexity, similar to batch normalization [23]. 

Because of the lower bias shift impact, mean shifts near 0 aid to 

boost learning speed by bringing the normal gradient closer to the 

0 gradient [23]. 

 
Fig. 4.  Exponential Linear Unit (ELU) Graph 

Function : 
 

Derivative : 
 

 

In ELU, we must choose a parameter called alpha, which has a 

common value in the range of 0.1 to 0.3. In the example above, 

we have chosen alpha value to be 0.3. 

3.4. Gaussian Error Linear Unit (GeLU) Activation 

NLP models such as ALBERT, ROBERTa, and BERT frequently 

use the GELU activation function. This function combines ReLU, 

dropout, and zoneout features. 

GELU can be considered as a smoother ReLU. 

This distribution can be useful with Batch Normalization as 

neuron inputs have a normal distribution. 

 
Fig. 5.  Gaussian Error Linear Unit (GeLU) Function Graph 

Function : 

 
 

3.5. Sigmoid Activation 

A sigmoid function is a mathematical function having a "S"-

shaped or sigmoid curve. The logistic function is a fundamental 

example of a sigmoid function; it includes nonlinear features. 

This is a historical function which is one of the earliest activation 

function used in neural network. 

A sigmoid function is a bounded, differentiable real function 

defined for all real input values. It has a non-negative derivative 

at every point and exactly one inflection point. Typically, a 

sigmoid function is monotonic, with a first derivative that forms a 

bell-shaped curve. Conversely, integrating any continuous, non-

negative, bell-shaped function (having one local maximum and 

no local minima, unless degenerate) produces a sigmoidal 

function.  

. 
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Fig. 6.  Sigmoid Activation Function Graph 

Function : 
 

Derivative : 
 

Range : 0 to 1 

 

From the provided graph, we can observe that the Y-axis values 

change far more rapidly than the X-axis values inside a narrow 

range. 

In contrast to other activation functions, which have a range 

between -∞ and +∞, this function's range is bounded between 0 

and 1. 

This activation function is commonly used in Deep Learning 

because of its limited range. 

3.6. Hard Sigmoid 

The hard sigmoid is an approximation of the logistic sigmoid 

function that is piecewise linear. Depending on which 

characteristics of the original sigmoid you wish to preserve, you 

can employ a unique approximation. 

We have kept f(0) to be 0.5 and f’(0) to be -0.25. 

 
Fig. 7.  Hard Sigmoid Activation Function Graph 

Function : 
 

Range : 0 to 1 

 

3.7. Hyperbolic Tangent (tanh) Activation 

When using simply sigmoid activation functions to learn deep 

networks, edge values become stuck; to avoid this, we must use 

hyperbolic functions, often known as the tanh function. 

 
Fig. 8.  Hyperbolic Tangent (tanh) Activation Function Graph 

Function : 

 
Derivative : 

 

Range : -1 to 1 

 

3.8. SoftPlus Activation 

As a better alternative to hyperbolic or tanhavtivation function we 

can use SoftPlus activation, which has range from 0 to ∞. 

 

Fig. 9.  SoftPlus Activation Function Graph 

Function :  

Derivative : 

 

Range : 0 to ∞ 

 

3.9. SoftMax Activation 

The relative probabilities are computed by the Softmax activation 

function. Soft-max is a type of logistic function that normalizes 

an input value into a vector of values that follows a probability 

distribution whose sum equals 1. 

 

Function : 

 
Range : 0 to 1 

 

The output values are in the range [0,1], this helps us to get rid of 

binary classification and can have many classes or dimensions 

within our neural network model. Softmax is also known as 

multinomial logistic regression for this reason. 

3.10. SoftSign Activation 

Softsign is an activation function that, like a sigmoid function, 

rescales values be-tween -1 and 1 by applying a threshold. The 

benefit is that a Softsign's value is zero-centered, which aids the 

following neuron in propagation. 
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Fig. 10.  SoftSign Function Graph 

Function : 
 

Range : -1 to 1 

4. Neural Network Model 

 We have created a simple model in which we have used two 

hidden and one output layer with all combination of the given 

activation functions. 

  

Fig. 11.  Neural Network Model used for the experiment. 

Here hidAct and outAct is the different combination of below 

listed activation functions. 

• Linear Activation  

• Rectified Linear Unit Activation 

• SoftPlus Activation 

• SoftMax Activation 

• SoftSign Activation 

• Exponential Linear Unit Activation 

• Gaussian Error Linear Unit Activation 

• Swish Activation 

• Exponential Activation 

• Scaled Exponential Linear Unit Activation 

• Sigmoid Activation 

• Hard Sigmoid Activation 

• Hyperbolic Tangent Activation 

5. Results 

We have done performance analysis using accuracy and 

execution time parameters. 

5.1. Accuracy 

Here are the accuracy results we have achieved with the 

combination of different Activation Functions. 

 

 

 

 

 

 

Table 1. Raw Result Data for accuracy 

 
Hidden Layer 

linear relu elu gelu selu sigmoid 

O
u

tp
u

t 
L

a
y

er
 

linear 0.441 0.671 0.559 0.321 0.471 0.269 

relu 0.309 0.432 0.433 0.408 0.320 0.269 

elu 0.504 0.389 0.601 0.268 0.387 0.220 

gelu 0.386 0.218 0.302 0.181 0.217 0.248 

selu 0.314 0.480 0.419 0.302 0.263 0.269 

sigmoid 0.930 0.930 0.933 0.933 0.925 0.928 

hard 

sigmoid 
0.510 0.291 0.439 0.912 0.840 0.348 

tanh 0.410 0.302 0.448 0.577 0.314 0.248 

softplus 0.915 0.934 0.930 0.930 0.928 0.925 

softmax 0.924 0.924 0.931 0.928 0.930 0.927 

softsign 0.356 0.480 0.567 0.555 0.523 0.430 

swish 0.223 0.263 0.523 0.185 0.191 0.263 

exp 0.925 0.931 0.924 0.927 0.921 0.263 

 

Hidden Layer 

Hard 

sigmoid 
tanh softplus softmax softsign swish 

O
u

tp
u

t 
L

a
y

er
 

linear 0.263 0.383 0.399 0.220 0.510 0.451 

relu 0.269 0.350 0.269 0.269 0.408 0.416 

elu 0.220 0.641 0.460 0.220 0.435 0.323 

gelu 0.317 0.308 0.269 0.269 0.330 0.438 

selu 0.372 0.502 0.438 0.269 0.294 0.556 

sigmoid 0.933 0.933 0.925 0.897 0.925 0.928 

hard 

sigmoid 
0.520 0.531 0.269 0.704 0.804 0.342 

tanh 0.593 0.540 0.096 0.220 0.562 0.516 

softplus 0.604 0.921 0.925 0.703 0.927 0.933 

softmax 0.933 0.931 0.928 0.918 0.933 0.925 

softsign 0.263 0.410 0.220 0.220 0.459 0.596 

swish 0.248 0.389 0.018 0.248 0.173 0.408 

exp 0.643 0.934 0.921 0.676 0.931 0.918 
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Fig. 12. Accuracy heat map of the result 

 

 

 

 

Fig. 13. Accuracy line chart of the result 
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5.2. Execution Time 

Here are the Execution Time (in Seconds) results we have 

achieved with the combination of different Activation Functions. 

 

Table 2. Raw Result Data for execution time 

 
Hidden Layer 

linear relu elu gelu selu sigmoid 

O
u

tp
u

t 
L

a
y

er
 

linear 5.87 5.83 5.85 6.32 5.93 5.86 

relu 5.89 5.90 5.82 6.43 5.96 5.91 

elu 5.85 5.93 5.93 6.31 6.49 5.89 

gelu 6.08 5.97 6.14 6.44 6.49 6.06 

selu 5.82 5.85 5.97 6.36 5.92 5.88 

sigmoid 5.53 5.54 5.66 6.16 5.70 5.74 

hard 

sigmoid 5.97 5.91 6.02 6.40 6.06 5.98 

tanh 5.84 5.89 6.76 6.36 6.14 5.93 

softplus 5.78 5.78 6.14 6.29 6.03 5.95 

softmax 5.39 5.49 5.72 6.24 5.86 5.78 

softsign 5.93 5.89 5.90 6.38 5.88 5.97 

swish 5.88 5.96 5.96 6.41 5.98 6.00 

exp 5.79 5.88 5.96 6.32 5.93 5.86 

 Hard 

sigmoid 
tanh softplus softmax softsign swish 

O
u

tp
u

t 
L

a
y

er
 

linear 6.20 5.77 6.10 6.11 5.98 6.07 

relu 6.25 5.91 6.12 6.09 5.93 6.05 

elu 6.26 6.10 6.13 6.22 6.10 6.05 

gelu 6.42 6.23 6.28 6.30 6.36 6.22 

selu 6.18 5.89 6.08 6.18 5.90 6.05 

sigmoid 6.19 5.66 6.26 5.94 5.64 5.76 

hard 

sigmoid 6.27 6.02 6.55 6.21 6.01 6.26 

tanh 6.25 5.85 6.16 6.19 5.96 6.06 

softplus 6.20 5.98 6.31 6.12 5.97 6.09 

softmax 6.10 5.53 6.15 5.93 5.63 5.90 

softsign 6.24 6.07 6.24 6.10 5.89 6.57 

swish 6.30 6.66 6.26 6.27 5.94 6.24 

 

 

 
Fig. 14. Execution time heat map of the result 
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Fig. 15. Execution time line chart of the result 

 

 

6. Conclusion 

In this study, we examined the impact of various activation 

functions on the performance of deep learning models in terms of 

both accuracy and execution time. Our experiments included a 

comprehensive evaluation of popular activation functions such as 

Sigmoid, Tanh, ReLU, Leaky ReLU, and Swish. 

 

The results indicate that the choice of activation function 

significantly influences the model's accuracy and computational 

efficiency. Specifically, ReLU and its variants (Leaky ReLU and 

Swish) consistently outperformed traditional activation functions 

like Sigmoid and Tanh in achieving higher accuracy and faster 

convergence. This can be attributed to their ability to mitigate the 

vanishing gradient problem, thus facilitating more effective 

training of deeper networks. 

 

ReLU, due to its simplicity and computational efficiency, 

emerged as the most effective activation function in most 

scenarios. However, it was observed that Leaky ReLU and Swish 

provided marginally better performance in certain cases, 

particularly in deeper networks where maintaining a non-zero 

gradient is crucial. The Swish activation function, in particular, 

demonstrated superior accuracy on complex datasets, suggesting 

its potential for more advanced applications despite its slightly 

higher computational cost. 

 

The execution time analysis revealed that activation functions 

with non-linear characteristics, such as Sigmoid and Tanh, 

incurred higher computational costs, leading to longer training 

times. In contrast, ReLU and its variants significantly reduced 

training time due to their simpler mathematical operations and 

sparse activation. 

 

In conclusion, while ReLU remains a robust choice for most 

applications due to its balance of accuracy and efficiency, 

exploring variants like Leaky ReLU and Swish can provide 

incremental benefits in specific contexts. Future research could 

further explore adaptive activation functions and their integration 

into evolving neural network architectures to enhance model 

performance. This study underscores the importance of selecting 

appropriate activation functions tailored to the specific 

requirements of the task and dataset to optimize both accuracy 

and execution time.  
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