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Abstract: The testing phases are generally resource-intensive, which initially includes the development of test cases followed by their 

generation. Such phases significantly impact the entire testing process in terms of their effectiveness and efficiency. The identification of 

an efficient method for the further generation of test cases that could ensure the achievement of maximum path coverage with the limited 

available testing resources is the primary objective of this paper. To accomplish the above-mentioned task, the key component is the 

selection of the appropriate fitness function, which will play a vigorous role in the process of optimization. The proposed study in the paper 

introduces an enhanced combined fitness function that would influence the optimization of performance. The enhanced fitness function is 

also proposed to incorporate the weights for the critical paths, which would further allow the optimizer to prioritize the coverage of these 

paths while reducing the overall time essential for the generation of test cases. The criteria selected to assign weights to critical paths further 

collaborate with normalized branch distance (NBD) functions and approach level (AL). A gradient-based optimizer (GBO) is also em-

ployed for the generation of test cases, which is expected to result in impressive outcomes. To generate the test cases systematically, it is 

also combined with the refined fitness function. The experiments further reveal that the approach being proposed in this paper surpasses 

current state-of-the-art approaches in various aspects, such as the execution time required, the number of iterations required, and the average 

number of test instances generated. 

Keywords: Normalized branch distance; Gradient-based method; Test case generation; Optimization; Approach level; Software test case; 

Combined fitness function 

1. INTRODUCTION  

Software is employed in a variety of contexts, making soft-

ware quality more crucial than ever.  As the primary method 

of ensuring program standard, program testing is both time-

consuming as well as expensive, accounting for roughly half 

of the proceeded rhythm and in addition half of the entire 

fetch of software evolution [2]. We can reduce the amount of 

time spent on testing if we can automate software testing. 

Another more recent technique for creating test cases auto-

matically is called search-based testing (SBT) [8]. It falls un-

der the category of "Search-Based Software Engineering" 

(SBSE) [3]. Search-based testing is a term used to describe 

software testing that uses searching and metaheuristics. In 

SBSE optimization algorithms are used to accomplish auto-

mated testing employing fewer options and superior tech-

niques to other emerging techniques [4]. The potency and 

regulation of the software testing procedure are significantly 

impacted by test case generation as testing needs a lot more 

resources than the earlier phases. The method for developing 

test cases entails the most challenging problem among the 

wide range of sub-processes and activities that fall under 

software testing. Additionally, the trial-test approach can find 

nearly 65% of the fallacy in the software being tested [5].  

Even though trail-oriented test particulars creation is an un-

solvable issue [6], analysts continue to create different pro-

cedures and have achieved a bit of success. 

Critical path-based automated test generation is a technique 

for creating test cases automatically in software testing rely-

ing on the critical paths of the system being evaluated.  The 

critical route is the order of phases that must be executed to 

achieve a specific goal, such as completing a transaction or 

processing data. It is the longest path in terms of time, cost, 

or resources, and any delay or error on this path can signifi-

cantly impact the performance or quality of the system.  In 

critical path-based automated test generation, the testing tool 

analyses the system identifies the critical path(s), and then 

generates test cases that cover these paths [7]. These test 

cases are designed to simulate the most critical scenarios that 

the system might encounter and are intended to detect any 

errors or issues that may arise along the critical path.  This 

technique is particularly useful for complex systems with 

many possible paths and scenarios, where manually develop-

ing test cases would be a failure and slow. By automatically 

generating test cases based on the critical path, this method 

can help ensure that the most important scenarios are thor-

oughly tested and any critical defects are detected early in the 

development cycle. Critical path-based automated testing 

can help improve software quality, reduce risk, and increase 

efficiency, making it a valuable technique for software de-

velopment teams.  
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Optimization-based approaches [9] can be used to enhance 

critical path-based testing by optimizing the test suite to 

achieve better coverage and more efficient testing. By lever-

aging optimization-based approaches, critical path-based 

testing can be made more efficient and effective, resulting in 

better testing outcomes and more reliable software. Several 

optimization-based techniques have been used for critical 

path-based automated testing in the literature, and some of 

such techniques have been reviewed in the literature review 

section. While Optimization critical path-based automated 

test generation can be an effective technique for testing com-

plex systems, there are some potential challenges such as 

limited coverage, false positives or negatives, maintenance 

and upkeep, expertise required, and time-consuming. 

To solve some of the issues of the critical path-based auto-

mated test generation using optimization in SBSE. This work 

focuses on a novel fitness function that can be used to assign 

weights to the critical paths such that the optimization algo-

rithm can generate test data covering the most important 

paths during testing. This work makes two significant contri-

butions: initially, the proposal of a new fitness function fo-

cusing on the critical path for test case generation [25]. Using 

a GBO optimizer is the next suggestion [9] for test case cre-

ation that covers many important routes in a single run. The 

contributions of the work can be summarized as: 

• Current literature is largely concerned with awning 

a particular pin-pointed way in a single go, whichever is a 

lengthy procedure. The technique we present seeks to pro-

duce test cases for several pathways at the same time. 

• Also, most of the algorithms do not consider critical 

paths or have any means to prioritize the path critical for test 

case generation. This work solves this problem by incorpo-

rating critical path weight in the fitness function. 

• A new combined fitness function is developed using 

approximate level, improved normalized branch distance, 

and the critical path weight. 

• GBO, a novel metaheuristic algorithm, is utilized to 

lessen the method's implementation rhythm and it also en-

hances exploration during test case generation.  

The remaining section of this research paper is structured as 

follows: Segment 2 introduces connected exertion. Segment 

3 describes the gaps in existing studies. Segment 4 holds an 

explanation for the proposed work. In addition, the methods 

and materials employed are displayed. Segment 5 discusses 

the exploratory consequence and their comparison with pre-

vious work. Segment 6 indicates the closure and forthcoming 

work.  

2. RELATED WORK 

In recent times, fascination has raised the interest in software 

engineering for empirical escalation techniques.   

Altaie, M. A. et al. [10] in their study emphasized automati-

cally constructing test suites to maximize path coverage by 

utilizing these algorithms: grey wolf optimizer (GWO) and 

particle swarm optimization (PSO). It was concluded that 

concerning test case values and repetitions, the PSO ap-

proach was demonstrated to be superior to the GWO strategy 

after applying the recommended model in at least three case 

studies. Sahoo, K. R. et al. [11] suggested a replica-driven 

test instance generation and development of test cases utiliz-

ing ACSA as represented via a UML diagram and compared 

the result with a cuckoo search. It was concluded that ACSA 

is a better approach and gives an optimized result efficiently 

and effectively. It has proven to be useful for resolving on-

going and multiple-objective issues. Goli, A. et al. [12] pre-

sented a combined method predicting the need for dairy prod-

ucts in Iran using artificial intelligence technologies like 

multi-layer perceptron (MLP), adaptive neuro-fuzzy infer-

ence system (ANFIS), and support vector regression (SVR) 

in conjunction with novel meta-heuristic algorithms includ-

ing grey wolf optimization (GWO), invasive weed optimiza-

tion (IWO), cultural algorithm (CA), and particle swarm op-

timization (PSO). It was concluded that artificial tools were 

improved by utilizing the most recent meta-heuristic tech-

niques and provided a comprehensive framework to predict 

defect detection percentage (DDP). In addition to that, fore-

cast errors decreased substantially which was found higher in 

ANFIS. Jatana, N. et al. [14] in their study proposed an im-

proved crow search algorithm (ICSA). To enhance test 

suites, ICSA uses crow intelligence and the cauchy distribu-

tion. Mutation Sensitivity Testing established the fitness 

function for search-based approaches. The fitness program is 

used to help locate the adequate test suite for the software 

under Test that can achieve a high detection score. It was 

concluded that, in comparison to other common algorithms, 

the proposed approach produces better outcomes, according 

to the empirical evaluation.  

Khari, M. et al. [15] in their research used six important meta-

heuristic methodologies for test suite development and opti-

mization and compared the results. The mean rhythm, appro-

priate hour, defeated rhythm (process metrics), way distinc-

tion, and impartial feature conclusions were utilized to assess 

the relative performances of each algorithm, which were de-

ployed across five Java software programs. It was determined 

that the recommended algorithm, the artificial bee colony al-

gorithm (ABC) was introduced as the finest optimizer since 

it manufactured the most optimal examination suites in the 

least available time. The quickest method was determined to 

be the bat algorithm (BA), however, it, provided less-than-

ideal outcomes. The Firefly algorithm (FA) has been shown 

to be the unhurried breakthrough. However, the cuckoo 

search algorithm (CS), particle swarm optimization (PSO), 

and hill-climbing algorithm (HCA) were placed in between. 

Sahoo, R. R. et al. [16] inaugurated PSO-based exam suite 

creation to attain the most way scope along the provocation 

of awning a censorious track, along with the obtainable test 
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expedients. It was concluded that the combination of im-

proved combined fitness (ICF) along with PSO and acceler-

ated particle swarm optimization (APSO) gives better results. 

This function helped them to reach their target within a few 

iterations and it can be used to develop test suites to track the 

sweep standards. They suggested covering multiple ways at 

identical rhythms to enhance the ability of the automated test 

suite developer. Faramarzi, A. et al. [17] presented a novel, 

escalation software known as equilibrium optimizer (EO). In 

their research, they compared the results of EO with particle 

swarm optimization (PSO), grey wolf optimization (GWO), 

genetic algorithm (GA), gravitational search algorithm 

(GSA), salp swarm algorithm (SSA), and CMA-ES by exam-

ining the complete 58 numerical standardized concomitants 

additionally with three engineering difficulties moreover 

checking their efficiency along with effectiveness. It was 

concluded that when compared with other algorithms, EO 

showed a higher efficiency and was capable of gaining opti-

mum and near-optimum solutions for many problems inves-

tigated. Mishra, B. D. et al. [18] proposed an approach for 

tracking tests by automatically creating the test particulars 

and concluding its usage as a real-coded genetic algorithm 

(RCGA). They mapped the test particulars with the com-

municable tracks using a real-coded genetic algorithm for 

path coverage (RCGAPC) and covered the highest censori-

ous tracks of a specific software under test. It was concluded 

that the real-coded genetic algorithm for path coverage 

(RCGAPC) develops test particulars for the mass abbrevi-

ated tracks and provides a test case that can offset various 

pinpointed tracks at the identical click of rhythm along with 

a few integral test suites for the creations for the unusually 

better show.  

Huang, H. et al. [19] introduced a supervised meta-heuristic 

algorithm for mechanized test case development for track 

gamut. In their study, they have merged an adjustable fitness 

program along with an emerged differential advancement al-

gorithm. They have conducted follow-up experiments on 

eight classical benchmark problems. It was concluded before 

that the inaugurated approach surpasses every additional 

software in contrast.  Khari, M. et al. [20] created an auto-

matic try-out implementation that consists of two chief auto-

matic software tried-out constituents: test suite causation and 

test suite escalation. The researchers converted the resulting 

test suite to a target fitness level by evaluating the simulated 

bee colony algorithm with the cuckoo foraging algorithm. 

When compared to existing techniques, the suggested 

method can give a deposition of the least test suites along 

with the greatest track coverage. It was concluded that the 

proposed tool gives a good track compass as compared to ex-

isting ones, and thus it is better to be a dependable alternative 

for test case development, according to the outcomes of the 

trials. Solanki, K. et al. [21] proposed the modified ant col-

ony optimization (m-ACO) techniques as regression testing. 

They went through the m-ACO technique experimentally 

and comparatively for test suite sequence contrasting with 

other harmonizing meta-heuristic techniques utilizing two 

popular algorithm testing difficulties and used for communal 

problems. Test case prioritization strategies based on GA, 

bee colony optimization (BCO) and ACO were used to eval-

uate performance. The average percentage of faults detected 

(APFD) and problem tracking reports (PTR) metrics were 

used to evaluate the tests. It was concluded that the intro-

duced method m-ACO proved its capability on the two 

benchmarks (APFD and PTR). It achieves an increased lia-

bility observation scarlet with the least test cases compara-

tively. Shujuan Jiang et al. [22] planned a novel advance-

ment-rooted technique for creating the test particulars for 

several defined–used contents. There was a gap in the study 

which can further be done using hybrid algorithms and eval-

uating the ability of new algorithms.  

 An essential component of optimization is a fitness function 

that is particular to problems. The fitness function strives to 

produce relevant results from a small search space. A fitness 

task that differentiates between the superior and poorer es-

capes is used to direct these solutions [3].  The fitness func-

tion serves as the foundation for a solution-finding strategy, 

utilizing software metrics already used by many engineers, 

and requiring an optimization technique. Software metrics 

are closely related to many issues in software engineering 

[31]. These metrics are suitable for the fitness justification. A 

trouble-specific fitness justification can be assimilated to 

provide this direction for meta-heuristic searches. Depending 

on how appropriate they are for resolving the current issue, 

they receive varying ratings in the exploration expanse. Ah-

madianfar. I. et al. [23] introduced GBO, a novel metaheuris-

tic optimization method. It is a metaheuristic optimization al-

gorithm stimulated by Newton's technique. GBO utilizes two 

primary machinists to seek both exploration and exploitation. 

The production of GBO was tested by making use of 28 col-

lieries and optimizing six engineer problems demonstrating 

that the GBO was capable of optimizing real-world issues 

with difficult and unexplored search areas. The GBO was 

compared against the GWO, ISA, grey wolf optimizer 

(WOA), CS, and ABC metaheuristic algorithms, which are 

all well-known and current metaheuristic algorithms [32]. 

Table 1 below illustrates the major contributions of various 

authors based on algorithms used and their application do-

mains. 

TABLE 1 Major contributions of various authors based on 

algorithms used and their application domains. 

Authors 

 

Algorithm 

Used 

Applicatio

n Domain 

Major 

Contribution

s 

[10] A. M. 

Altaie et al. 

 

 

GWO 

Algorithm 

 

 

Automated 

Test Suite 

Generation 

Development 

of an 

automated test 

suite 

generation tool 
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[11] R. K. 

Sahoo et al. 

Cuckoo 

Search 

Algorithm 

Model-

driven test 

case 

generation 

and 

optimization 

Model-driven 

approach, 

optimization 

using cuckoo 

search 

[12] A. Goli 

et al. 

Artificial 

Intelligence, 

Meta-

heuristic 

algorithms 

Demand 

prediction 

for dairy 

products 

Integrated 

approach using 

AI and meta-

heuristic 

algorithms 

[14] N. 

Jatana, B. 

Suri 

Crow Search 

Algorithm 

Test data 

generation 

using 

mutation 

testing 

Improvement 

of Crow search 

algorithm for 

test data 

generation 

[15] M. 

Khari et al. 

Various 

Meta-

heuristic 

Algorithms 

Automated 

test suite 

generation 

for path 

coverage-

based 

optimization 

Comparative 

performance 

analysis of 

meta-heuristic 

algorithms 

[16] R. R. 

Sahoo, M. 

Ray 

PSO 

(Particle 

Swarm 

Optimizatio

n) 

Critical path 

test case 

generation 

PSO-based 

approach for 

critical path test 

case generation 

[17] A. 

Faramarzi 

et al. 

Equilibrium 

Optimizer 

Optimizatio

n algorithm 

Introduction of 

Equilibrium 

Optimizer as a 

novel 

optimization 

algorithm 

[18] D. B. 

Mishra et al. 

Genetic 

Algorithm 

Test case 

generation 

for critical 

path testing 

Genetic 

algorithm-

based approach 

for critical path 

testing 

[19] H. 

Huang et al. 

Differential 

Evolution 

Automated 

test case 

generation 

Differential 

evolution with 

self-adaptive 

fitness function 

[20] M. 

Khari et al. 

Various 

Optimizatio

n 

Techniques 

Automated 

testing 

Optimization 

of test suites 

using different 

techniques 

[21] K. 

Solanki et 

al. 

m-ACO 

(Modified 

Ant Colony 

Regression 

testing 

Experimental 

analysis of the 

m-ACO 

Optimizatio

n) 

technique for 

regression 

testing 

[22] S. 

Jiang et al. 

Evolutionary 

Algorithm 

Test data 

generation 

for data flow 

test 

Evolutionary 

approach for 

test data 

generation in 

data flow 

testing 

[23] I. 

Ahmadianfa

r et al. 

Gradient-

based 

Optimizer 

Metaheuristi

c 

optimization 

algorithm 

Introduction of 

Gradient-based 

optimizer 

3. RESEARCH GAPS IN EXISTING METHODS 

 A broad summary of possible gaps is provided below: 

• Many studies don't extend their conclusions to larger con-

texts, instead concentrating on particular techniques or 

applications. Their conclusions might not be as applica-

ble in other domains due to this lack of generalization. 

• Certain articles might not have thorough assessment met-

rics or might not have compared their suggested tech-

niques to the most advanced ones currently in use. This 

can lead to an insufficient comprehension of the efficacy 

of the suggested methodologies. 

• Many publications might not have real-world validation, 

even though theoretical frameworks and algorithmic ad-

vances are crucial. The efficiency and robustness of the 

suggested strategies are still unknown in the absence of 

practical validation. 

• Software testing requires scalability, particularly for 

large-scale systems. As the complexity of the software 

system rises, papers might not sufficiently address scala-

bility difficulties or offer insights into how their ideas 

work.  

• To evaluate the relative performance of various ap-

proaches, benchmarking against standard datasets or 

benchmarks is essential. Evaluation of the relative merits 

of the suggested alternatives may be difficult in some ar-

ticles due to improper benchmarking. 

• Using a variety of methods or strategies from various 

fields could result in more reliable and efficient solutions. 

Nevertheless, other articles might not investigate the op-

portunities for cross-domain integration, which could re-

sult in the loss of important insights and synergies. 

• Although articles might offer novel approaches, they 

might not sufficiently address unresolved issues or rec-

ommend encouraging directions for further study. The 

field must advance by addressing unresolved issues and 

offering precise guidelines for future investigations. 
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4. PROPOSED WORK 

Critical path analysis is a crucial process in software testing 

that identifies the order of critical test cases to achieve the 

desired quality. This process can be done manually or with 

automated tools, allowing testers to optimize their testing ef-

forts by thoroughly testing critical functionalities and scenar-

ios while managing non-critical ones with more flexibility. 

In the proposed work, the triangle classification problem 

(TCP) [24], the remainder calculation problem (RCP) [29], 

and single source shortest path problems (SSPP) [37] are 

used to examine the critical route and the measure of critical-

ity. Test cases are created for each path to be run at least once 

during path coverage testing to detect any flaws therein. In 

this study, the linearly independent path's number is obtained 

through the cyclomatic complexity (CC) metric [26]. The 

control flow graph (CFG) [27] of the source code is con-

structed to create CC, an intermediary graph. CC is ascer-

tained using the CFG in the source code by putting on the 

Thomas J. McCabe Cyclomatic Complexity formula (1) [28]. 

Vertex (Graph)  = Edge − Node + 2       (1) 

Here, N represents the number of nodes and, E denotes the 

number of edges in the CFG: 

A. Triangle Classifier Problem (TCP) 

A triangle can be scalene, isosceles, equilateral, or not based 

on the input of three sides. Scalene triangles have different 

sides and unique interior angles. Isosceles triangles have 

equal sides and angles, while equilateral triangles have equal 

sides and 60-degree internal angles. TCP's source code is 

shown in Figure 1 (a) and its matching CFG to create a line-

arly independent path is shown in Figure 1 (b) below: 

  From the triangle classification’s CFG, the resulting five 

linearly independent routes are discovered. Route 5 in Figure 

1(b) is significant since it leads to an equilateral triangle. 

 

 

Figure 1 (a). Code of Triangle Classifier Problem in 

MATLAB 

 

 

Fig 1 (b). Control Flow Graph of Fig 1 (a). 

B. Remainder Calculation Program (RCP) 

The remainder program divides A by B, subtracting A until 

a negative integer is produced. Iterations are performed to 

consider all possible positive and negative values, similar to 

branches, performing iterations never, once, twice, and more. 

Figure 2 (a) depicts the source code of RCP and its associated 

CFG is shown in Figure 2 (b). 

From the remainder calculation program’s CFG, the four lin-

early independent are obtained. 

We take both selection and repetition (loop) structure into 

consideration when utilizing the remainder calculation (with-

out the use of the division and modulo division operators) 

program. 

 

 

Fig 2 (a). Code of Remainder Calculation Problem in 

MATLAB 
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Fig 2 (b). Control Flow Graph of Figure 2 (a) 

C. Single Source Shortest Path (SSSP) 

    To resolve the single-source shortest path (SSSP) issue, 

the shortest paths must be determined between a particular 

vertex (v) and each additional vertex in the graph. This issue 

is resolved by algorithms like breadth-firs t-search (BFS) for 

unweighted graphs or Dijkstra. Figure 3 depicts the output of 

SSSP. 

From the single source shortest path’s CFG, the resulting 

four routes are linearly independent. 

D. Fitness Function 

      To assess test cases, a fitness function f is developed be-

fore using search algorithms for branch coverage. Fitness 

 

Fig 3. Output of SSSP 

functions are used in genetic programming and algorithms to 

direct simulations towards optimal design solutions [29]. The 

coverage criterion evaluates the efficacy of test cases, includ-

ing decision, statement, branch, and path coverage. In this 

situation, we have to minimize f. After a test case t is com-

pleted, and if the desired branch is concealed, the search is 

complete, and f(t)=0. Imagine a test case t comprises only the 

set of inputs X so that f(t) = f(X). A test case might generally 

become more difficult since it could include a series of func-

tion calls to set the SUT's internal state properly. If not, then 

it ought to decide on a value heuristically that illustrates how 

much of the branch is still exposed. The search algorithm 

would use this information to award superior solutions. The 

fitness function is based on approach level A and branch dis-

tance β, which are used to determine the distance of a predi-

cate from its opposite value heuristically, based on the data 

flow graph. The fitness function fb is defined for a target 

branch b in equation (2).     

fb(X) = Ab(X) +  ω (βpred(y)(X))     (2) 

     The branch distance β is determined at the node of diver-

sion, where a crucial choice is made, making execution im-

possible. A predicate in node y is represented by pred(y). The 

fitness function uses approach level, normalized branch dis-

tance, and critical path value to assign higher values to criti-

cal paths for code coverage test cases [2]. Approach level 

(AL) and normalized branch distance (NBD) are common 

distances used in test generation. AL distance measures the 

execution of the target's component, while NBD calculates 

branch distance using conditional node test results. The goal 

is to minimize approximation levels by counting branches so 

that the test case doesn't traverse. 

E. Critical Path Weight (CPW) 

Nondeterministic polynomial (NP)-complete difficulty arises 

in all-path coverage of software testing. Automated test cases 

generate critical paths with low coverage chances. Metrics 

like statement, branch, decision, and path coverage are used. 

Test cases are examined based on fitness values, with more 

critical paths being viewed favorably. Building test cases co-

vers all routes, especially critical ones. As shown in Figure 4 

as mentioned below, Weight W= 2 is assigned to the Path 

X→D while all other paths are assigned lower weights. 

 

Fig 4. Illustration of Critical Path Weight and Approximate 

Level Distance 

F.  Combined Fitness Function (CFF) 

It is a strategy that integrates the two strategies mentioned 

above. A modest fixed value is added to the branch distance 

fitness of a test case in the combined fitness function [13].
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Fitness function (t) =  NBD + AL + CPW                    (3) 

Fitness function (t) = (1 −  d−x) + AL + CPW          (4)           

Where NBD is the normalized branch distance as explained 

above AL is the approximation level function CPW is the 

combined path weight.  

G.  Gradient-Based Optimizer (GBO) 

Only the fitness function and representation of solutions are 

problem-specific elements in the overall architecture of test 

case creation. It is advised to segregate these problem-spe-

cific components from the search method itself. The separa-

tion facilitates not just the reuse of problem-independent 

search methods, but also the testing and debugging of the en-

tire strategy.  

Nature-inspired metaheuristics are extensively studied for 

optimization in NP-complete problems [1]. Recent research 

has discovered innovative methods, such as the gradient-

based optimizer (GBO) algorithm, which directly influences 

the search's course and outcome. Iman Ahmadianfar intro-

duced the gradient-based optimizer (GBO) in 2020 as a 

unique gradient-based Newton's method [23] optimization 

algorithm. The gradient search rule (GSR), the local escape 

operator (LEO), and a set of vectors are the main operators 

used by the population-based metaheuristic GBO to investi-

gate the possibilities for resolving ongoing issues. Newton's 

approach determines the direction of the search to explore the 

search domain. This could be very useful for search-based 

software engineering (SBSE) problems such as test case gen-

eration. In optimization problems, the objective function's 

minimization is considered. When compared to other recog-

nized metaheuristics, the GBO produces better optimization 

results. In terms of exploration and exploitation, the GBO 

outperforms all other competing algorithms. 

H.  Local Escaping Operator (LEO) 

The proposed GBO algorithm solves complex issues quickly 

with the aid of the LEO. This operator has the potential to 

significantly affect the location of the solution. To increase 

the effectiveness of the suggested GBO method for resolving 

complicated situations, the LEO is developed. This operator 

can dramatically alter the place of the solution  𝑋𝑛
𝑚+1. The 

LEO provides a method with enhanced quality ( 𝑋𝐿𝐸𝑂
𝑚 ) by 

combining many techniques, taking into account the most ef-

fective position ( 𝑋𝑏𝑒𝑠𝑡  ), the solutions and, two random the 

solutions 𝑥𝑟1
𝑚  𝑎𝑛𝑑𝑥𝑟2

𝑚  , and a new randomly generated solu-

tion ( 𝑥𝑘
𝑚 ). The algorithm used to produce the solution 𝑋𝐿𝐸𝑂

𝑚  

, is as follows: 

Algorithm 1:  Local Escaping Operation 

1:  𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑝𝑟 and  𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5 

2:  𝑋𝑡𝑒𝑚𝑝
𝑚 = 𝑋𝑛

𝑚+1 + 𝑓1 × (𝑢1 × 𝑥𝑏𝑒𝑠𝑡 − 𝑢2 × 𝑥𝑘
𝑚) 

3:  𝑋𝐿𝐸𝑂
𝑚 =  𝑋𝑡𝑚𝑝

𝑚 +  𝑓2 × 𝜌1 × (𝑢3 × (𝑋2𝑛
𝑚 − 𝑋1𝑛

𝑚) +

𝑢2 × (𝑥𝑟1
𝑚 − 𝑥𝑟2

𝑚 ))/2 

4:  𝑋𝑛
𝑚+1 = 𝑋𝐿𝐸𝑂

𝑚  

5:  else 

6:  𝑋𝑡𝑚𝑝
𝑚 = 𝑋𝑏𝑒𝑠𝑡 + 𝑓1 × (𝑢1 × 𝑥𝑏𝑒𝑠𝑡 − 𝑢2 × 𝑥𝑘

𝑚) 

7:  𝑋𝐿𝐸𝑂
𝑚 = 𝑋𝑡𝑚𝑝

𝑚 +  𝑓2 × 𝜌1 × (𝑢3 × (𝑋2𝑛
𝑚 − 𝑋1𝑛

𝑚) + 𝑢2 ×

(𝑥𝑟1
𝑚 − 𝑥𝑟2

𝑚 ))/2 

8:  𝑋𝑛
𝑚+1 = 𝑋𝐿𝐸𝑂

𝑚  

9:  End 

10: End 

Algorithm 2:  Gradient-Based Optimizer with CPW for 

Test Generation 

Step 1. Initialize the SUT and the GBO optimizer, allocate 

values for the GBO parameters, pr, ɛ, A  

Assign Critical Path weights to the SUT 

Generate an initial test population 𝑋0 = [𝑥0  , 1, 𝑥0, 2, …, 𝑥0, 

D] 

Estimate the population using the combined objective func-

tion  

𝑓(𝑥) =  (1 − 𝑑−𝑥) + AL + CPW 

Select 𝑥𝑏𝑒𝑠𝑡
𝑚  and 𝑥𝑤𝑜𝑟𝑠𝑡

𝑚  from the population 

Step 2. Test Case Generation loop 

Do while j < A  

      for k = 1 up to N 

            for k = 1 up to D  

                  select random no between [1, 𝑁] such that each 

random no 𝑟𝑙 ≠ 𝑘 

                Evaluate the solution 𝑥𝑛,𝑖
𝑚+1 with   

    

            end for 

            if  pr > r then 

                Compute the solution 𝑥𝐿𝐸𝑂
𝑚  with   

     

                𝑥𝑛
𝑚+1  =  𝑥𝐿𝐸𝑂

𝑚  

            end if 

            Evaluate the solution with the critical path function 

and upgrade the positions 𝑥𝑏𝑒𝑠𝑡
𝑚   and  𝑥𝑤𝑜𝑟𝑠𝑡

𝑚  

      end for 

      j = j + 1 

end while 
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Step 3.  Generate test data using 𝑥𝑏𝑒𝑠𝑡
𝑚   

The GBO aims to generate test cases for critical paths, chal-

lenging autonomous development due to scarce test data, and 

requiring a strongly guided search process for solutions. The 

method integrates critical path weight with AL and branch 

distance, generating a Control Flow Graph from SUTs like 

TCP, RCP, or SSSP. It assigns specific paths based on their 

criticality, ensuring they are given higher or lower priority. 

Using the combined fitness function, the work of GBO as de-

picted above in Figure 5, is to generate best-suited test data 

which covers most of the branches and with a focus on the 

critical path. The GBO method generates a population of po-

tential solutions, refines it iteratively, and assesses each so-

lution using the combined fitness function, testing the fitness 

function throughout each optimization iteration. The answer 

that received the highest fitness scores 𝑥𝑏𝑒𝑠𝑡
𝑚  are selected to 

generate new solutions, while the answer with the lowest fit-

ness scores 𝑥𝑤𝑜𝑟𝑠𝑡
𝑚  are eliminated from the population. The 

optimization algorithm generates new solutions based on se-

lected options, evaluates their fitness scores, and generates 

test data using the best population of solutions with the high-

est scores. 

 

 

Fig 5. Working on the proposed GBO-based test genera-

tion 

5. EXPERIMENTAL SETUP AND RESULT 

ANALYSIS 

This section contains an analysis of the experimental results. 

The experiment has been done on Triangle classification, Re-

mainder classification problem, and the Single source short-

est path problem. Implementation has been done in 

MATLAB. Software under test is taken as input to evaluate 

fitness function. The GBO algorithm has been implemented 

with the proposed Critical path-weighted CPW function 

combined with AL and NBD. For comparison three state-of-

the-art algorithms are selected including APSO + CFF [5], 

PSO + ICF [5], and APSO + ICF [16]. Table 2 shows the 

parameter settings used for the GBO algorithm specific to the 

software under test. 

       Several runs of the GBO algorithm were performed to 

evaluate its convergence, Figure 6 depicted below shows the 

GBO algorithm's convergence curve. A convergence curve is 

a graphical representation of how the performance of a learn-

ing algorithm changes over time. The effectiveness of the al-

gorithm is presented on the y-axis of the curve, while the 

number of iterations or training steps appears on the x-axis. 

As the algorithm trains, the convergence curve 

TABLE 2 Parameter Settings for GBO Algorithm for test 

generation 

Parameters  TCP  RCP  SPP 

Population 

Size  1000 400000 1000 

Probability 

Parameter 0.5 0.5 0.5 

Alpha 
𝛼 =  |𝛽 × sin (

3𝜋

2
+ sin (𝛽 ×

3𝜋

2
))|  

Beta 

𝛽 = 𝛽𝑚𝑖𝑛 + (𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛) × (1 −

(
𝑚

𝑀
)

3

)
2

  

Lower Bound 1 -20000 1 

Upper Bound 20 20000 1000 

Maximum 

Iteration 100 100 100 

shows how the performance improves with each iteration. 

The goal of most learning algorithms is to determine the best 

solution to an issue, and the convergence curve can be used 

to monitor the progress of the algorithm toward that goal. 

Once the curve flattens out and stops improving, it is said to 

have converged, indicating that the algorithm has found the 

best possible solution. It is evident from the results presented 

in Figure 6, that the GBO converges very quickly.  
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The SSSP problem is quite challenging as compared to the 

TCP problem however the GBO converges quickly in the sit-

uation of the SSSP problem, as seen in Figure 7 mentioned 

below. 

Figure 6. Convergence curve to overcome the TCP problem 

using the GBO method 

As shown in Table 3, GBO + CPW generated fewer tests for 

TCP problems as opposed to the state-of-the-art methods. For 

the Not a Triangle test the GBO + CPW was 3.47% better 

than APSO + ICF, 5.65% better than PSO + ICF, and 9.18% 

better than APSO + CFF. For the Scalene test the GBO + 

CPW was 3.40% better than APSO + ICF, and 2.40% better 

than PSO + ICF however it was only 0.16% better than 

APSO + CFF. Similarly, for the Isosceles test problem, GBO 

+ CPW is 14.79% better than APSO + ICF, 9.72% better than 

PSO + ICF, and 4.32% better than  

 

Fig 7. Convergence curve of the GBO optimizer for the test 

case SSSP 

APSO + CFF in generating lower no-tests. The number of 

iterations required for TCP is shown in Figure 8 below. 

TABLE 3 The average quantity of test cases generated for 

different algorithms 

Algorithm Not a Trian-

gle 

 Sca-

lene  

Isosce-

les 

APSO + 

CFF 

490 408 100 

PSO + ICF 472 417 106 

APSO + ICF 461 421 113 

GBO + 

CPW 

445 407 96 

 

 

Fig 8. No. of iterations required for TCP 

In summary, experiments conducted show us that: 

• GBO with the combined fitness functions can con-

verge for all SUTs.  

• GBO can cover all test cases in their entirety when 

all fitness functions are merged. 

• GBO with CPW gives better results than existing 

methods about no tests generated, run time, and iterations re-

quired  

• In comparison to other existing fitness functions, 

GBO with CPW fitness function creates the optimal amount 

of test cases that cover the intended path with the fewest iter-

ations. 

6. CONCLUSION AND FUTURE SCOPE 

Test case generation is a critical challenge in software testing, 

leading to the development of various techniques [4]. Critical 

path-based automated test generation analyzes systems to 

generate test cases. Previous research has primarily focused 

on creating test cases that ensure maximum path coverage. 

However, achieving high path coverage alone may not be 

sufficient to ensure the quality of a software system. The cov-

erage of the critical path is considered more important than 

the percentage of code coverage in achieving the highest 

level of software quality. To address some of the issues asso-

ciated with critical path-based automated test generation, this 

work proposes the use of optimization in search-based soft-

ware engineering (SBSE). Specifically, a novel fitness func-

tion is introduced to assign weights to the critical paths, ena-

bling the optimization algorithm to generate test data that co-

vers the most important paths during testing. This work also 

employs the GBO optimizer to create test cases that span 

multiple important routes in a single run. The improved fit-

ness function incorporates and assigns weights to the critical 

paths, allowing the optimizer to focus on covering these crit-

ical paths for better coverage while reducing the test genera-

tion time. The introduction of critical path weight criteria, 

along with approach level (AL) and normalized branch dis-

tance (NBD) functions, enhances the performance of the fit-

ness function. Additionally, the use of a gradient-based opti-

mizer (GBO) yields promising results by improving 

445 461 472 490

407 421 417 408

96 113 106 100

GBO + CPW APSO +  ICF PSO + ICF APSO + CFF

Not a Triangle  Scalene Isosceles
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exploration, exploitation, and convergence and avoiding lo-

cal optima. Experimental results demonstrate that the GBO, 

with its improved fitness function, outperforms existing 

state-of-the-art approaches. In the future, we plan to incorpo-

rate this combined fitness function with critical path weight 

into other test problems, such as test case prioritization and 

minimization. Furthermore, we aim to explore other efficient 

optimization algorithms to further enhance the effectiveness 

of test generation. 

LIST OF ABBREVIATIONS 

AL =      Approach level 

NBD =      Normalized branch distance 

GBO =      Gradient-based optimizer  

APSO=     Accelerated Particle Swarm Optimization 

CFF  =      Combined Fitness Function 

CPW =      Critical Path Weight 
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