

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4403–4413 | 4403

Application of Gradient-Based Optimizer for Development of Enhanced

Fitness Function with Critical Path Weights for Generating Test Data

Vinita Tomar1, Mamta Bansal 2, and Pooja Singh3

Submitted: 05/02/2024 Revised: 13/03/2024 Accepted: 20/03/2024

Abstract: The testing phases are generally resource-intensive, which initially includes the development of test cases followed by their

generation. Such phases significantly impact the entire testing process in terms of their effectiveness and efficiency. The identification of

an efficient method for the further generation of test cases that could ensure the achievement of maximum path coverage with the limited

available testing resources is the primary objective of this paper. To accomplish the above-mentioned task, the key component is the

selection of the appropriate fitness function, which will play a vigorous role in the process of optimization. The proposed study in the paper

introduces an enhanced combined fitness function that would influence the optimization of performance. The enhanced fitness function is

also proposed to incorporate the weights for the critical paths, which would further allow the optimizer to prioritize the coverage of these

paths while reducing the overall time essential for the generation of test cases. The criteria selected to assign weights to critical paths further

collaborate with normalized branch distance (NBD) functions and approach level (AL). A gradient-based optimizer (GBO) is also em-

ployed for the generation of test cases, which is expected to result in impressive outcomes. To generate the test cases systematically, it is

also combined with the refined fitness function. The experiments further reveal that the approach being proposed in this paper surpasses

current state-of-the-art approaches in various aspects, such as the execution time required, the number of iterations required, and the average

number of test instances generated.

Keywords: Normalized branch distance; Gradient-based method; Test case generation; Optimization; Approach level; Software test case;

Combined fitness function

1. INTRODUCTION

Software is employed in a variety of contexts, making soft-

ware quality more crucial than ever. As the primary method

of ensuring program standard, program testing is both time-

consuming as well as expensive, accounting for roughly half

of the proceeded rhythm and in addition half of the entire

fetch of software evolution [2]. We can reduce the amount of

time spent on testing if we can automate software testing.

Another more recent technique for creating test cases auto-

matically is called search-based testing (SBT) [8]. It falls un-

der the category of "Search-Based Software Engineering"

(SBSE) [3]. Search-based testing is a term used to describe

software testing that uses searching and metaheuristics. In

SBSE optimization algorithms are used to accomplish auto-

mated testing employing fewer options and superior tech-

niques to other emerging techniques [4]. The potency and

regulation of the software testing procedure are significantly

impacted by test case generation as testing needs a lot more

resources than the earlier phases. The method for developing

test cases entails the most challenging problem among the

wide range of sub-processes and activities that fall under

software testing. Additionally, the trial-test approach can find

nearly 65% of the fallacy in the software being tested [5].

Even though trail-oriented test particulars creation is an un-

solvable issue [6], analysts continue to create different pro-

cedures and have achieved a bit of success.

Critical path-based automated test generation is a technique

for creating test cases automatically in software testing rely-

ing on the critical paths of the system being evaluated. The

critical route is the order of phases that must be executed to

achieve a specific goal, such as completing a transaction or

processing data. It is the longest path in terms of time, cost,

or resources, and any delay or error on this path can signifi-

cantly impact the performance or quality of the system. In

critical path-based automated test generation, the testing tool

analyses the system identifies the critical path(s), and then

generates test cases that cover these paths [7]. These test

cases are designed to simulate the most critical scenarios that

the system might encounter and are intended to detect any

errors or issues that may arise along the critical path. This

technique is particularly useful for complex systems with

many possible paths and scenarios, where manually develop-

ing test cases would be a failure and slow. By automatically

generating test cases based on the critical path, this method

can help ensure that the most important scenarios are thor-

oughly tested and any critical defects are detected early in the

development cycle. Critical path-based automated testing

can help improve software quality, reduce risk, and increase

efficiency, making it a valuable technique for software de-

velopment teams.

1,2Department of Computer Science, Shobhit Institute of Engineering &

Technology (Deemed-to-be University), Meerut, U.P. 250110, India
3Department of Computer Science, Maharaja Surajmal Institute, Janakpuri,

New Delhi 110058, India

E-mail address: 1tomar.vinita@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4403–4413 | 4404

Optimization-based approaches [9] can be used to enhance

critical path-based testing by optimizing the test suite to

achieve better coverage and more efficient testing. By lever-

aging optimization-based approaches, critical path-based

testing can be made more efficient and effective, resulting in

better testing outcomes and more reliable software. Several

optimization-based techniques have been used for critical

path-based automated testing in the literature, and some of

such techniques have been reviewed in the literature review

section. While Optimization critical path-based automated

test generation can be an effective technique for testing com-

plex systems, there are some potential challenges such as

limited coverage, false positives or negatives, maintenance

and upkeep, expertise required, and time-consuming.

To solve some of the issues of the critical path-based auto-

mated test generation using optimization in SBSE. This work

focuses on a novel fitness function that can be used to assign

weights to the critical paths such that the optimization algo-

rithm can generate test data covering the most important

paths during testing. This work makes two significant contri-

butions: initially, the proposal of a new fitness function fo-

cusing on the critical path for test case generation [25]. Using

a GBO optimizer is the next suggestion [9] for test case cre-

ation that covers many important routes in a single run. The

contributions of the work can be summarized as:

• Current literature is largely concerned with awning

a particular pin-pointed way in a single go, whichever is a

lengthy procedure. The technique we present seeks to pro-

duce test cases for several pathways at the same time.

• Also, most of the algorithms do not consider critical

paths or have any means to prioritize the path critical for test

case generation. This work solves this problem by incorpo-

rating critical path weight in the fitness function.

• A new combined fitness function is developed using

approximate level, improved normalized branch distance,

and the critical path weight.

• GBO, a novel metaheuristic algorithm, is utilized to

lessen the method's implementation rhythm and it also en-

hances exploration during test case generation.

The remaining section of this research paper is structured as

follows: Segment 2 introduces connected exertion. Segment

3 describes the gaps in existing studies. Segment 4 holds an

explanation for the proposed work. In addition, the methods

and materials employed are displayed. Segment 5 discusses

the exploratory consequence and their comparison with pre-

vious work. Segment 6 indicates the closure and forthcoming

work.

2. RELATED WORK

In recent times, fascination has raised the interest in software

engineering for empirical escalation techniques.

Altaie, M. A. et al. [10] in their study emphasized automati-

cally constructing test suites to maximize path coverage by

utilizing these algorithms: grey wolf optimizer (GWO) and

particle swarm optimization (PSO). It was concluded that

concerning test case values and repetitions, the PSO ap-

proach was demonstrated to be superior to the GWO strategy

after applying the recommended model in at least three case

studies. Sahoo, K. R. et al. [11] suggested a replica-driven

test instance generation and development of test cases utiliz-

ing ACSA as represented via a UML diagram and compared

the result with a cuckoo search. It was concluded that ACSA

is a better approach and gives an optimized result efficiently

and effectively. It has proven to be useful for resolving on-

going and multiple-objective issues. Goli, A. et al. [12] pre-

sented a combined method predicting the need for dairy prod-

ucts in Iran using artificial intelligence technologies like

multi-layer perceptron (MLP), adaptive neuro-fuzzy infer-

ence system (ANFIS), and support vector regression (SVR)

in conjunction with novel meta-heuristic algorithms includ-

ing grey wolf optimization (GWO), invasive weed optimiza-

tion (IWO), cultural algorithm (CA), and particle swarm op-

timization (PSO). It was concluded that artificial tools were

improved by utilizing the most recent meta-heuristic tech-

niques and provided a comprehensive framework to predict

defect detection percentage (DDP). In addition to that, fore-

cast errors decreased substantially which was found higher in

ANFIS. Jatana, N. et al. [14] in their study proposed an im-

proved crow search algorithm (ICSA). To enhance test

suites, ICSA uses crow intelligence and the cauchy distribu-

tion. Mutation Sensitivity Testing established the fitness

function for search-based approaches. The fitness program is

used to help locate the adequate test suite for the software

under Test that can achieve a high detection score. It was

concluded that, in comparison to other common algorithms,

the proposed approach produces better outcomes, according

to the empirical evaluation.

Khari, M. et al. [15] in their research used six important meta-

heuristic methodologies for test suite development and opti-

mization and compared the results. The mean rhythm, appro-

priate hour, defeated rhythm (process metrics), way distinc-

tion, and impartial feature conclusions were utilized to assess

the relative performances of each algorithm, which were de-

ployed across five Java software programs. It was determined

that the recommended algorithm, the artificial bee colony al-

gorithm (ABC) was introduced as the finest optimizer since

it manufactured the most optimal examination suites in the

least available time. The quickest method was determined to

be the bat algorithm (BA), however, it, provided less-than-

ideal outcomes. The Firefly algorithm (FA) has been shown

to be the unhurried breakthrough. However, the cuckoo

search algorithm (CS), particle swarm optimization (PSO),

and hill-climbing algorithm (HCA) were placed in between.

Sahoo, R. R. et al. [16] inaugurated PSO-based exam suite

creation to attain the most way scope along the provocation

of awning a censorious track, along with the obtainable test

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4403–4413 | 4405

expedients. It was concluded that the combination of im-

proved combined fitness (ICF) along with PSO and acceler-

ated particle swarm optimization (APSO) gives better results.

This function helped them to reach their target within a few

iterations and it can be used to develop test suites to track the

sweep standards. They suggested covering multiple ways at

identical rhythms to enhance the ability of the automated test

suite developer. Faramarzi, A. et al. [17] presented a novel,

escalation software known as equilibrium optimizer (EO). In

their research, they compared the results of EO with particle

swarm optimization (PSO), grey wolf optimization (GWO),

genetic algorithm (GA), gravitational search algorithm

(GSA), salp swarm algorithm (SSA), and CMA-ES by exam-

ining the complete 58 numerical standardized concomitants

additionally with three engineering difficulties moreover

checking their efficiency along with effectiveness. It was

concluded that when compared with other algorithms, EO

showed a higher efficiency and was capable of gaining opti-

mum and near-optimum solutions for many problems inves-

tigated. Mishra, B. D. et al. [18] proposed an approach for

tracking tests by automatically creating the test particulars

and concluding its usage as a real-coded genetic algorithm

(RCGA). They mapped the test particulars with the com-

municable tracks using a real-coded genetic algorithm for

path coverage (RCGAPC) and covered the highest censori-

ous tracks of a specific software under test. It was concluded

that the real-coded genetic algorithm for path coverage

(RCGAPC) develops test particulars for the mass abbrevi-

ated tracks and provides a test case that can offset various

pinpointed tracks at the identical click of rhythm along with

a few integral test suites for the creations for the unusually

better show.

Huang, H. et al. [19] introduced a supervised meta-heuristic

algorithm for mechanized test case development for track

gamut. In their study, they have merged an adjustable fitness

program along with an emerged differential advancement al-

gorithm. They have conducted follow-up experiments on

eight classical benchmark problems. It was concluded before

that the inaugurated approach surpasses every additional

software in contrast. Khari, M. et al. [20] created an auto-

matic try-out implementation that consists of two chief auto-

matic software tried-out constituents: test suite causation and

test suite escalation. The researchers converted the resulting

test suite to a target fitness level by evaluating the simulated

bee colony algorithm with the cuckoo foraging algorithm.

When compared to existing techniques, the suggested

method can give a deposition of the least test suites along

with the greatest track coverage. It was concluded that the

proposed tool gives a good track compass as compared to ex-

isting ones, and thus it is better to be a dependable alternative

for test case development, according to the outcomes of the

trials. Solanki, K. et al. [21] proposed the modified ant col-

ony optimization (m-ACO) techniques as regression testing.

They went through the m-ACO technique experimentally

and comparatively for test suite sequence contrasting with

other harmonizing meta-heuristic techniques utilizing two

popular algorithm testing difficulties and used for communal

problems. Test case prioritization strategies based on GA,

bee colony optimization (BCO) and ACO were used to eval-

uate performance. The average percentage of faults detected

(APFD) and problem tracking reports (PTR) metrics were

used to evaluate the tests. It was concluded that the intro-

duced method m-ACO proved its capability on the two

benchmarks (APFD and PTR). It achieves an increased lia-

bility observation scarlet with the least test cases compara-

tively. Shujuan Jiang et al. [22] planned a novel advance-

ment-rooted technique for creating the test particulars for

several defined–used contents. There was a gap in the study

which can further be done using hybrid algorithms and eval-

uating the ability of new algorithms.

 An essential component of optimization is a fitness function

that is particular to problems. The fitness function strives to

produce relevant results from a small search space. A fitness

task that differentiates between the superior and poorer es-

capes is used to direct these solutions [3]. The fitness func-

tion serves as the foundation for a solution-finding strategy,

utilizing software metrics already used by many engineers,

and requiring an optimization technique. Software metrics

are closely related to many issues in software engineering

[31]. These metrics are suitable for the fitness justification. A

trouble-specific fitness justification can be assimilated to

provide this direction for meta-heuristic searches. Depending

on how appropriate they are for resolving the current issue,

they receive varying ratings in the exploration expanse. Ah-

madianfar. I. et al. [23] introduced GBO, a novel metaheuris-

tic optimization method. It is a metaheuristic optimization al-

gorithm stimulated by Newton's technique. GBO utilizes two

primary machinists to seek both exploration and exploitation.

The production of GBO was tested by making use of 28 col-

lieries and optimizing six engineer problems demonstrating

that the GBO was capable of optimizing real-world issues

with difficult and unexplored search areas. The GBO was

compared against the GWO, ISA, grey wolf optimizer

(WOA), CS, and ABC metaheuristic algorithms, which are

all well-known and current metaheuristic algorithms [32].

Table 1 below illustrates the major contributions of various

authors based on algorithms used and their application do-

mains.

TABLE 1 Major contributions of various authors based on

algorithms used and their application domains.

Authors

Algorithm

Used

Applicatio

n Domain

Major

Contribution

s

[10] A. M.

Altaie et al.

GWO

Algorithm

Automated

Test Suite

Generation

Development

of an

automated test

suite

generation tool

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4403–4413 | 4406

[11] R. K.

Sahoo et al.

Cuckoo

Search

Algorithm

Model-

driven test

case

generation

and

optimization

Model-driven

approach,

optimization

using cuckoo

search

[12] A. Goli

et al.

Artificial

Intelligence,

Meta-

heuristic

algorithms

Demand

prediction

for dairy

products

Integrated

approach using

AI and meta-

heuristic

algorithms

[14] N.

Jatana, B.

Suri

Crow Search

Algorithm

Test data

generation

using

mutation

testing

Improvement

of Crow search

algorithm for

test data

generation

[15] M.

Khari et al.

Various

Meta-

heuristic

Algorithms

Automated

test suite

generation

for path

coverage-

based

optimization

Comparative

performance

analysis of

meta-heuristic

algorithms

[16] R. R.

Sahoo, M.

Ray

PSO

(Particle

Swarm

Optimizatio

n)

Critical path

test case

generation

PSO-based

approach for

critical path test

case generation

[17] A.

Faramarzi

et al.

Equilibrium

Optimizer

Optimizatio

n algorithm

Introduction of

Equilibrium

Optimizer as a

novel

optimization

algorithm

[18] D. B.

Mishra et al.

Genetic

Algorithm

Test case

generation

for critical

path testing

Genetic

algorithm-

based approach

for critical path

testing

[19] H.

Huang et al.

Differential

Evolution

Automated

test case

generation

Differential

evolution with

self-adaptive

fitness function

[20] M.

Khari et al.

Various

Optimizatio

n

Techniques

Automated

testing

Optimization

of test suites

using different

techniques

[21] K.

Solanki et

al.

m-ACO

(Modified

Ant Colony

Regression

testing

Experimental

analysis of the

m-ACO

Optimizatio

n)

technique for

regression

testing

[22] S.

Jiang et al.

Evolutionary

Algorithm

Test data

generation

for data flow

test

Evolutionary

approach for

test data

generation in

data flow

testing

[23] I.

Ahmadianfa

r et al.

Gradient-

based

Optimizer

Metaheuristi

c

optimization

algorithm

Introduction of

Gradient-based

optimizer

3. RESEARCH GAPS IN EXISTING METHODS

 A broad summary of possible gaps is provided below:

• Many studies don't extend their conclusions to larger con-

texts, instead concentrating on particular techniques or

applications. Their conclusions might not be as applica-

ble in other domains due to this lack of generalization.

• Certain articles might not have thorough assessment met-

rics or might not have compared their suggested tech-

niques to the most advanced ones currently in use. This

can lead to an insufficient comprehension of the efficacy

of the suggested methodologies.

• Many publications might not have real-world validation,

even though theoretical frameworks and algorithmic ad-

vances are crucial. The efficiency and robustness of the

suggested strategies are still unknown in the absence of

practical validation.

• Software testing requires scalability, particularly for

large-scale systems. As the complexity of the software

system rises, papers might not sufficiently address scala-

bility difficulties or offer insights into how their ideas

work.

• To evaluate the relative performance of various ap-

proaches, benchmarking against standard datasets or

benchmarks is essential. Evaluation of the relative merits

of the suggested alternatives may be difficult in some ar-

ticles due to improper benchmarking.

• Using a variety of methods or strategies from various

fields could result in more reliable and efficient solutions.

Nevertheless, other articles might not investigate the op-

portunities for cross-domain integration, which could re-

sult in the loss of important insights and synergies.

• Although articles might offer novel approaches, they

might not sufficiently address unresolved issues or rec-

ommend encouraging directions for further study. The

field must advance by addressing unresolved issues and

offering precise guidelines for future investigations.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4403–4413 | 4407

4. PROPOSED WORK

Critical path analysis is a crucial process in software testing

that identifies the order of critical test cases to achieve the

desired quality. This process can be done manually or with

automated tools, allowing testers to optimize their testing ef-

forts by thoroughly testing critical functionalities and scenar-

ios while managing non-critical ones with more flexibility.

In the proposed work, the triangle classification problem

(TCP) [24], the remainder calculation problem (RCP) [29],

and single source shortest path problems (SSPP) [37] are

used to examine the critical route and the measure of critical-

ity. Test cases are created for each path to be run at least once

during path coverage testing to detect any flaws therein. In

this study, the linearly independent path's number is obtained

through the cyclomatic complexity (CC) metric [26]. The

control flow graph (CFG) [27] of the source code is con-

structed to create CC, an intermediary graph. CC is ascer-

tained using the CFG in the source code by putting on the

Thomas J. McCabe Cyclomatic Complexity formula (1) [28].

Vertex (Graph) = Edge − Node + 2 (1)

Here, N represents the number of nodes and, E denotes the

number of edges in the CFG:

A. Triangle Classifier Problem (TCP)

A triangle can be scalene, isosceles, equilateral, or not based

on the input of three sides. Scalene triangles have different

sides and unique interior angles. Isosceles triangles have

equal sides and angles, while equilateral triangles have equal

sides and 60-degree internal angles. TCP's source code is

shown in Figure 1 (a) and its matching CFG to create a line-

arly independent path is shown in Figure 1 (b) below:

 From the triangle classification’s CFG, the resulting five

linearly independent routes are discovered. Route 5 in Figure

1(b) is significant since it leads to an equilateral triangle.

Figure 1 (a). Code of Triangle Classifier Problem in

MATLAB

Fig 1 (b). Control Flow Graph of Fig 1 (a).

B. Remainder Calculation Program (RCP)

The remainder program divides A by B, subtracting A until

a negative integer is produced. Iterations are performed to

consider all possible positive and negative values, similar to

branches, performing iterations never, once, twice, and more.

Figure 2 (a) depicts the source code of RCP and its associated

CFG is shown in Figure 2 (b).

From the remainder calculation program’s CFG, the four lin-

early independent are obtained.

We take both selection and repetition (loop) structure into

consideration when utilizing the remainder calculation (with-

out the use of the division and modulo division operators)

program.

Fig 2 (a). Code of Remainder Calculation Problem in

MATLAB

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4403–4413 | 4408

Fig 2 (b). Control Flow Graph of Figure 2 (a)

C. Single Source Shortest Path (SSSP)

 To resolve the single-source shortest path (SSSP) issue,

the shortest paths must be determined between a particular

vertex (v) and each additional vertex in the graph. This issue

is resolved by algorithms like breadth-firs t-search (BFS) for

unweighted graphs or Dijkstra. Figure 3 depicts the output of

SSSP.

From the single source shortest path’s CFG, the resulting

four routes are linearly independent.

D. Fitness Function

 To assess test cases, a fitness function f is developed be-

fore using search algorithms for branch coverage. Fitness

Fig 3. Output of SSSP

functions are used in genetic programming and algorithms to

direct simulations towards optimal design solutions [29]. The

coverage criterion evaluates the efficacy of test cases, includ-

ing decision, statement, branch, and path coverage. In this

situation, we have to minimize f. After a test case t is com-

pleted, and if the desired branch is concealed, the search is

complete, and f(t)=0. Imagine a test case t comprises only the

set of inputs X so that f(t) = f(X). A test case might generally

become more difficult since it could include a series of func-

tion calls to set the SUT's internal state properly. If not, then

it ought to decide on a value heuristically that illustrates how

much of the branch is still exposed. The search algorithm

would use this information to award superior solutions. The

fitness function is based on approach level A and branch dis-

tance β, which are used to determine the distance of a predi-

cate from its opposite value heuristically, based on the data

flow graph. The fitness function fb is defined for a target

branch b in equation (2).

fb(X) = Ab(X) + ω (βpred(y)(X)) (2)

 The branch distance β is determined at the node of diver-

sion, where a crucial choice is made, making execution im-

possible. A predicate in node y is represented by pred(y). The

fitness function uses approach level, normalized branch dis-

tance, and critical path value to assign higher values to criti-

cal paths for code coverage test cases [2]. Approach level

(AL) and normalized branch distance (NBD) are common

distances used in test generation. AL distance measures the

execution of the target's component, while NBD calculates

branch distance using conditional node test results. The goal

is to minimize approximation levels by counting branches so

that the test case doesn't traverse.

E. Critical Path Weight (CPW)

Nondeterministic polynomial (NP)-complete difficulty arises

in all-path coverage of software testing. Automated test cases

generate critical paths with low coverage chances. Metrics

like statement, branch, decision, and path coverage are used.

Test cases are examined based on fitness values, with more

critical paths being viewed favorably. Building test cases co-

vers all routes, especially critical ones. As shown in Figure 4

as mentioned below, Weight W= 2 is assigned to the Path

X→D while all other paths are assigned lower weights.

Fig 4. Illustration of Critical Path Weight and Approximate

Level Distance

F. Combined Fitness Function (CFF)

It is a strategy that integrates the two strategies mentioned

above. A modest fixed value is added to the branch distance

fitness of a test case in the combined fitness function [13].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4403–4413 | 4409

Fitness function (t) = NBD + AL + CPW (3)

Fitness function (t) = (1 − d−x) + AL + CPW (4)

Where NBD is the normalized branch distance as explained

above AL is the approximation level function CPW is the

combined path weight.

G. Gradient-Based Optimizer (GBO)

Only the fitness function and representation of solutions are

problem-specific elements in the overall architecture of test

case creation. It is advised to segregate these problem-spe-

cific components from the search method itself. The separa-

tion facilitates not just the reuse of problem-independent

search methods, but also the testing and debugging of the en-

tire strategy.

Nature-inspired metaheuristics are extensively studied for

optimization in NP-complete problems [1]. Recent research

has discovered innovative methods, such as the gradient-

based optimizer (GBO) algorithm, which directly influences

the search's course and outcome. Iman Ahmadianfar intro-

duced the gradient-based optimizer (GBO) in 2020 as a

unique gradient-based Newton's method [23] optimization

algorithm. The gradient search rule (GSR), the local escape

operator (LEO), and a set of vectors are the main operators

used by the population-based metaheuristic GBO to investi-

gate the possibilities for resolving ongoing issues. Newton's

approach determines the direction of the search to explore the

search domain. This could be very useful for search-based

software engineering (SBSE) problems such as test case gen-

eration. In optimization problems, the objective function's

minimization is considered. When compared to other recog-

nized metaheuristics, the GBO produces better optimization

results. In terms of exploration and exploitation, the GBO

outperforms all other competing algorithms.

H. Local Escaping Operator (LEO)

The proposed GBO algorithm solves complex issues quickly

with the aid of the LEO. This operator has the potential to

significantly affect the location of the solution. To increase

the effectiveness of the suggested GBO method for resolving

complicated situations, the LEO is developed. This operator

can dramatically alter the place of the solution 𝑋𝑛
𝑚+1. The

LEO provides a method with enhanced quality (𝑋𝐿𝐸𝑂
𝑚) by

combining many techniques, taking into account the most ef-

fective position (𝑋𝑏𝑒𝑠𝑡), the solutions and, two random the

solutions 𝑥𝑟1
𝑚 𝑎𝑛𝑑𝑥𝑟2

𝑚 , and a new randomly generated solu-

tion (𝑥𝑘
𝑚). The algorithm used to produce the solution 𝑋𝐿𝐸𝑂

𝑚

, is as follows:

Algorithm 1: Local Escaping Operation

1: 𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑝𝑟 and 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5

2: 𝑋𝑡𝑒𝑚𝑝
𝑚 = 𝑋𝑛

𝑚+1 + 𝑓1 × (𝑢1 × 𝑥𝑏𝑒𝑠𝑡 − 𝑢2 × 𝑥𝑘
𝑚)

3: 𝑋𝐿𝐸𝑂
𝑚 = 𝑋𝑡𝑚𝑝

𝑚 + 𝑓2 × 𝜌1 × (𝑢3 × (𝑋2𝑛
𝑚 − 𝑋1𝑛

𝑚) +

𝑢2 × (𝑥𝑟1
𝑚 − 𝑥𝑟2

𝑚))/2

4: 𝑋𝑛
𝑚+1 = 𝑋𝐿𝐸𝑂

𝑚

5: else

6: 𝑋𝑡𝑚𝑝
𝑚 = 𝑋𝑏𝑒𝑠𝑡 + 𝑓1 × (𝑢1 × 𝑥𝑏𝑒𝑠𝑡 − 𝑢2 × 𝑥𝑘

𝑚)

7: 𝑋𝐿𝐸𝑂
𝑚 = 𝑋𝑡𝑚𝑝

𝑚 + 𝑓2 × 𝜌1 × (𝑢3 × (𝑋2𝑛
𝑚 − 𝑋1𝑛

𝑚) + 𝑢2 ×

(𝑥𝑟1
𝑚 − 𝑥𝑟2

𝑚))/2

8: 𝑋𝑛
𝑚+1 = 𝑋𝐿𝐸𝑂

𝑚

9: End

10: End

Algorithm 2: Gradient-Based Optimizer with CPW for

Test Generation

Step 1. Initialize the SUT and the GBO optimizer, allocate

values for the GBO parameters, pr, ɛ, A

Assign Critical Path weights to the SUT

Generate an initial test population 𝑋0 = [𝑥0 , 1, 𝑥0, 2, …, 𝑥0,

D]

Estimate the population using the combined objective func-

tion

𝑓(𝑥) = (1 − 𝑑−𝑥) + AL + CPW

Select 𝑥𝑏𝑒𝑠𝑡
𝑚 and 𝑥𝑤𝑜𝑟𝑠𝑡

𝑚 from the population

Step 2. Test Case Generation loop

Do while j < A

 for k = 1 up to N

 for k = 1 up to D

 select random no between [1, 𝑁] such that each

random no 𝑟𝑙 ≠ 𝑘

 Evaluate the solution 𝑥𝑛,𝑖
𝑚+1 with

 end for

 if pr > r then

 Compute the solution 𝑥𝐿𝐸𝑂
𝑚 with

 𝑥𝑛
𝑚+1 = 𝑥𝐿𝐸𝑂

𝑚

 end if

 Evaluate the solution with the critical path function

and upgrade the positions 𝑥𝑏𝑒𝑠𝑡
𝑚 and 𝑥𝑤𝑜𝑟𝑠𝑡

𝑚

 end for

 j = j + 1

end while

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4403–4413 | 4410

Step 3. Generate test data using 𝑥𝑏𝑒𝑠𝑡
𝑚

The GBO aims to generate test cases for critical paths, chal-

lenging autonomous development due to scarce test data, and

requiring a strongly guided search process for solutions. The

method integrates critical path weight with AL and branch

distance, generating a Control Flow Graph from SUTs like

TCP, RCP, or SSSP. It assigns specific paths based on their

criticality, ensuring they are given higher or lower priority.

Using the combined fitness function, the work of GBO as de-

picted above in Figure 5, is to generate best-suited test data

which covers most of the branches and with a focus on the

critical path. The GBO method generates a population of po-

tential solutions, refines it iteratively, and assesses each so-

lution using the combined fitness function, testing the fitness

function throughout each optimization iteration. The answer

that received the highest fitness scores 𝑥𝑏𝑒𝑠𝑡
𝑚 are selected to

generate new solutions, while the answer with the lowest fit-

ness scores 𝑥𝑤𝑜𝑟𝑠𝑡
𝑚 are eliminated from the population. The

optimization algorithm generates new solutions based on se-

lected options, evaluates their fitness scores, and generates

test data using the best population of solutions with the high-

est scores.

Fig 5. Working on the proposed GBO-based test genera-

tion

5. EXPERIMENTAL SETUP AND RESULT

ANALYSIS

This section contains an analysis of the experimental results.

The experiment has been done on Triangle classification, Re-

mainder classification problem, and the Single source short-

est path problem. Implementation has been done in

MATLAB. Software under test is taken as input to evaluate

fitness function. The GBO algorithm has been implemented

with the proposed Critical path-weighted CPW function

combined with AL and NBD. For comparison three state-of-

the-art algorithms are selected including APSO + CFF [5],

PSO + ICF [5], and APSO + ICF [16]. Table 2 shows the

parameter settings used for the GBO algorithm specific to the

software under test.

 Several runs of the GBO algorithm were performed to

evaluate its convergence, Figure 6 depicted below shows the

GBO algorithm's convergence curve. A convergence curve is

a graphical representation of how the performance of a learn-

ing algorithm changes over time. The effectiveness of the al-

gorithm is presented on the y-axis of the curve, while the

number of iterations or training steps appears on the x-axis.

As the algorithm trains, the convergence curve

TABLE 2 Parameter Settings for GBO Algorithm for test

generation

Parameters TCP RCP SPP

Population

Size 1000 400000 1000

Probability

Parameter 0.5 0.5 0.5

Alpha
𝛼 = |𝛽 × sin (

3𝜋

2
+ sin (𝛽 ×

3𝜋

2
))|

Beta

𝛽 = 𝛽𝑚𝑖𝑛 + (𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛) × (1 −

(
𝑚

𝑀
)

3

)
2

Lower Bound 1 -20000 1

Upper Bound 20 20000 1000

Maximum

Iteration 100 100 100

shows how the performance improves with each iteration.

The goal of most learning algorithms is to determine the best

solution to an issue, and the convergence curve can be used

to monitor the progress of the algorithm toward that goal.

Once the curve flattens out and stops improving, it is said to

have converged, indicating that the algorithm has found the

best possible solution. It is evident from the results presented

in Figure 6, that the GBO converges very quickly.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4403–4413 | 4411

The SSSP problem is quite challenging as compared to the

TCP problem however the GBO converges quickly in the sit-

uation of the SSSP problem, as seen in Figure 7 mentioned

below.

Figure 6. Convergence curve to overcome the TCP problem

using the GBO method

As shown in Table 3, GBO + CPW generated fewer tests for

TCP problems as opposed to the state-of-the-art methods. For

the Not a Triangle test the GBO + CPW was 3.47% better

than APSO + ICF, 5.65% better than PSO + ICF, and 9.18%

better than APSO + CFF. For the Scalene test the GBO +

CPW was 3.40% better than APSO + ICF, and 2.40% better

than PSO + ICF however it was only 0.16% better than

APSO + CFF. Similarly, for the Isosceles test problem, GBO

+ CPW is 14.79% better than APSO + ICF, 9.72% better than

PSO + ICF, and 4.32% better than

Fig 7. Convergence curve of the GBO optimizer for the test

case SSSP

APSO + CFF in generating lower no-tests. The number of

iterations required for TCP is shown in Figure 8 below.

TABLE 3 The average quantity of test cases generated for

different algorithms

Algorithm Not a Trian-

gle

 Sca-

lene

Isosce-

les

APSO +

CFF

490 408 100

PSO + ICF 472 417 106

APSO + ICF 461 421 113

GBO +

CPW

445 407 96

Fig 8. No. of iterations required for TCP

In summary, experiments conducted show us that:

• GBO with the combined fitness functions can con-

verge for all SUTs.

• GBO can cover all test cases in their entirety when

all fitness functions are merged.

• GBO with CPW gives better results than existing

methods about no tests generated, run time, and iterations re-

quired

• In comparison to other existing fitness functions,

GBO with CPW fitness function creates the optimal amount

of test cases that cover the intended path with the fewest iter-

ations.

6. CONCLUSION AND FUTURE SCOPE

Test case generation is a critical challenge in software testing,

leading to the development of various techniques [4]. Critical

path-based automated test generation analyzes systems to

generate test cases. Previous research has primarily focused

on creating test cases that ensure maximum path coverage.

However, achieving high path coverage alone may not be

sufficient to ensure the quality of a software system. The cov-

erage of the critical path is considered more important than

the percentage of code coverage in achieving the highest

level of software quality. To address some of the issues asso-

ciated with critical path-based automated test generation, this

work proposes the use of optimization in search-based soft-

ware engineering (SBSE). Specifically, a novel fitness func-

tion is introduced to assign weights to the critical paths, ena-

bling the optimization algorithm to generate test data that co-

vers the most important paths during testing. This work also

employs the GBO optimizer to create test cases that span

multiple important routes in a single run. The improved fit-

ness function incorporates and assigns weights to the critical

paths, allowing the optimizer to focus on covering these crit-

ical paths for better coverage while reducing the test genera-

tion time. The introduction of critical path weight criteria,

along with approach level (AL) and normalized branch dis-

tance (NBD) functions, enhances the performance of the fit-

ness function. Additionally, the use of a gradient-based opti-

mizer (GBO) yields promising results by improving

445 461 472 490

407 421 417 408

96 113 106 100

GBO + CPW APSO + ICF PSO + ICF APSO + CFF

Not a Triangle Scalene Isosceles

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4403–4413 | 4412

exploration, exploitation, and convergence and avoiding lo-

cal optima. Experimental results demonstrate that the GBO,

with its improved fitness function, outperforms existing

state-of-the-art approaches. In the future, we plan to incorpo-

rate this combined fitness function with critical path weight

into other test problems, such as test case prioritization and

minimization. Furthermore, we aim to explore other efficient

optimization algorithms to further enhance the effectiveness

of test generation.

LIST OF ABBREVIATIONS

AL = Approach level

NBD = Normalized branch distance

GBO = Gradient-based optimizer

APSO= Accelerated Particle Swarm Optimization

CFF = Combined Fitness Function

CPW = Critical Path Weight

CONFLICT OF INTEREST

 The author declares no conflict of interest financial or other-

wise.

REFERENCES

[1] S. Carbas, A. Toktas, and D. Ustun, “Introduction and

Overview: Nature-Inspired Metaheuristic Algorithms

for Engineering Optimization Applications”, Nature-

Inspired Metaheuristic Algorithms for Engineering

Optimization Applications, pp. 1-9, 2021.

https://doi.org/10.1007/978-981-33-6773-9_1

[2] Y. Chen, Y. Zhong, T. Shi, and J. Liu, “Comparison of

two fitness functions for GA-based path-oriented test

data generation”, Fifth International Conference on

Natural Computation, vol. 4, pp. 177-181, Aug 2009.

IEEE. https://doi.org/10.1109/ICNC.2009.235

[3] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-

based software engineering: Trends, techniques and

applications”, ACM Computing Surveys (CSUR), vol.

45(1), pp. 1-61, 2012.

https://doi.org/10.1145/2379776.2379787

[4] V. Tomar, and M. Bansal, "Software Testing and Test

Case Optimization: Concepts and Trends."

In Electronic Systems and Intelligent Computing:

Proceedings of ESIC 2021, pp. 525-532. Singapore:

Springer Nature Singapore, 2022.

[5] D. Garg and P. Garg, "Basis path testing using SGA &

HGA with ExLB fitness function." Procedia Computer

Science”, 70 2015, pp. 593-602.

[6] N. Nayak, and D. P. Mohapatra, “Automatic test data

generation for data flow testing using particle swarm

optimization”, In Contemporary Computing: Third

International Conference, Part II vol. 3, pp. 1-12, Aug

2010. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-14825-5_1

[7] D. B. Mishra, R. Mishra, K. N. Das, and A. A.

Acharya, “Test case generation and optimization for

critical path testing using genetic algorithm”, In Soft

Computing for Problem Solving: SocProS 2017, Vol.

2 (pp. 67-80), 2019. Springer Singapore.

https://doi.org/10.1007/978-981-13-1595-4_6

[8] M. Khari, P. Kumar, “An extensive evaluation of

search-based software testing: a review”, Soft

Computing, vol. 23, pp. 1933-1946, 2019.

https://doi.org/10.1007/s00500-017-2906-y

[9] M. S. Daoud, M. Shehab, H. M. Al-Mimi, L.

Abualigah, R.A. Zitar, and M. K. Y. Shambour,

“Gradient-Based Optimizer (GBO): A Review,

Theory, Variants, and Applications”, Archives of

Computational Methods in Engineering, vol. 30(4), pp.

2431-2449, May 2023.

https://doi.org/10.1007/s11831-022-09872-y

[10] A. M. Altaie, T. M. Tawfeeq, and M. G. Saeed,

“Automated Test Suite Generation Tool based on

GWO Algorithm”, Webology, vol. 19(1), pp. 3835-

3849, 2022.

https://doi.org/10.14704/WEB/V19I1/WEB19252

[11] R. K. Sahoo, S. Satpathy, S. Sahoo, and A. Sarkar,

“Model driven test case generation and optimization

using adaptive cuckoo search algorithm”, Innovations

in Systems and Software Engineering, vol. 18(2), pp.

321-331, 2022. https://doi.org/10.1007/s11334-020-

00378-z

[12] A. Goli, H. Khademi-Zare, R. Tavakkoli-Moghaddam,

A. Sadeghieh, M. Sasanian, and R. Malekalipour

Kordestanizadeh, “An integrated approach based on

artificial intelligence and novel meta-heuristic

algorithms to predict demand for dairy products: a case

study”, Network: computation in neural systems, vol.

32(1), pp. 1-35, 2021.

https://doi.org/10.1080/0954898X.2020.1849841

[13] J. Lu, W. Xie, and H. Zhou, “Combined fitness

function-based particle swarm optimization algorithm

for system identification”, Computers & Industrial

Engineering, vol. 95, pp. 122-134, 2016.

https://doi.org/10.1016/j.cie.2016.03.007

[14] N. Jatana, and B. Suri, “An improved crow search

algorithm for test data generation using search-based

mutation testing”, Neural Processing Letters, vol. 52,

pp. 767-784, 2020. https://doi.org/10.1007/s11063-

020-10288-7

[15] M. Khari, A. Sinha, E. Verdu, and R. G. Crespo,

“Performance analysis of six meta-heuristic algorithms

over automated test suite generation for path coverage-

https://doi.org/10.1145/2379776.2379787

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4403–4413 | 4413

based optimization”, Soft Computing, vol. 24(12), pp.

9143-9160, 2020. https://doi.org/10.1007/s00500-019-

04444-y

[16] R. R. Sahoo, and M. Ray, “PSO based test case

generation for critical path using improved combined

fitness function”, Journal of King Saud University-

Computer and Information Sciences, vol. 32(4), pp.

479-490, 2020.

https://doi.org/10.1016/j.jksuci.2019.09.010

[17] A. Faramarzi, M. Heidarinejad, B. Stephens, and S.

Mirjalili, “Equilibrium optimizer: A novel

optimization algorithm”, Knowledge-Based Systems,

vol. 191, p. 105190, 2020.

https://doi.org/10.1016/j.knosys.2019.105190

[18] D. B. Mishra, R. Mishra, K. N. Das, and A. A.

Acharya, “Test case generation and optimization for

critical path testing using genetic algorithm”, In Soft

Computing for Problem Solving: SocProS 2017, vol.

2, pp. 67-80, 2019. Springer Singapore.

https://doi.org/10.1007/978-981-13-1595-4_6

[19] H. Huang, F. Liu, X. Zhuo, and Z. Hao, “Differential

evolution based on self-adaptive fitness function for

automated test case generation”, IEEE Computational

Intelligence Magazine, vol. 12(2), pp. 46-55, 2017.

https://doi.org/10.1109/MCI.2017.2670462

[20] M. Khari, P. Kumar, D. Burgos, and R. G. Crespo,

“Optimized test suites for automated testing using

different optimization techniques”, Soft Computing,

vol. 22, pp. 8341-8352, 2018.

https://doi.org/10.1007/s00500-017-2780-7

[21] K. Solanki, Y. Singh, and S. Dalal, “Experimental

analysis of m-ACO technique for regression testing”,

Indian Journal of Science and Technology, vol. 9(30),

pp. 1-7, 2016.

https://doi.org/10.17485/ijst/2016/v9i30/86588

[22] S, Jiang, J. Chen, Y. Zhang, J. Qian, R. Wang, and M.

Xue, “Evolutionary approach to generating test data

for data flow test”, IET Software, vol. 12(4), pp. 318-

323, 2018. https://doi.org/10.1049/iet-sen.2018.5197

[23] I. Ahmadianfar, O. Bozorg-Haddad, and X. Chu,

“Gradient-based optimizer: A new metaheuristic

optimization algorithm”, Information Sciences, vol.

540, pp. 131-159, 2020.

https://doi.org/10.1016/j.ins.2020.06.037

[24] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y.

Le Traon, “Comparing white-box and black-box test

prioritization”, In Proceedings of the 38th International

Conference on Software Engineering, pp. 523-534,

May 2016. https://doi.org/10.1145/2884781.2884791

[25] V. Tomar, M. Bansal, and P. Singh, "Regression

Testing Approaches, Tools, and Applications in

Various Environments." In 2022 4th International

Conference on Artificial Intelligence and Speech

Technology (AIST), pp. 1-6. IEEE, 2022.

[26] C. Ebert, J. Cain, G. Antoniol, S. Counsell, and P.

Laplante, “Cyclomatic complexity”, IEEE software,

vol. 33(6), pp. 27-29, 2016.

https://doi.org/10.1109/MS.2016.147

[27] A. R. Álvares, J. N. Amaral, and F. M. Q. Pereira,

“Instruction visibility in SPEC CPU2017”, Journal of

Computer Languages, vol. 66, p. 101062, Oct 2021.

https://doi.org/10.1016/j.cola.2021.101062

[28] N. Ukić, J. Maras, and L. Šerić, “The influence of

cyclomatic complexity distribution on the

understandability of xtUML models”, Software

Quality Journal, vol. 26, pp. 273-319, 2018.

https://doi.org/10.1007/s11219-016-9351-5

[29] M. Harman, Y. Jia, and Y. Zhang, “Achievements,

open problems and challenges for search-based

software testing”, 8th International Conference on

Software Testing, Verification and Validation (ICST),

pp. 1-12, April 2015, IEEE.

https://doi.org/10.1109/ICST.2015.7102580

[30] R. Mall, “Fundamentals of software engineering”, PHI

Learning Pvt. Ltd., 2018.

[31] K. Chen, F. Y. Zhou, and X. F.Yuan, “Hybrid particle

swarm optimization with spiral-shaped mechanism for

feature selection”, Expert Systems with Applications,

vol. 128, pp. 140-156, 2019.

https://doi.org/10.1016/j.eswa.2019.03.039.

[32] V. Tomar, M. Bansal, and P. Singh, "Metaheuristic

Algorithms for Optimization: A Brief

Review." Engineering Proceedings 59, no. 1 (2024):

238.

https://doi.org/10.1016/j.eswa.2019.03.039

