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Abstract: In computer science, transforming spherical coordinates into Cartesian coordinates is an important mathematical operation. The 

CORDIC (Coordinate Rotation Digital Computer) iterative algorithm can perform this operation, as well as trigonometric functions and 

vector rotations, using only simple arithmetic operations like addition, subtraction, and bit-shifting. This research paper presents hardware 

architecture for a 3-D CORDIC processor using Quartus II 7.1 ALTERA software, which enables easy modifications and design changes 

due to its regularity and simplicity. The proposed 3-D CORDIC model is evaluated by comparing the calculated results with the simulated 

results to determine its accuracy. The results were satisfaction and the proposed model could be suitable for numerous real-time 

applications. 
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1. Introduction 

The iterative algorithm called: CORDIC Coordinate 

Rotation Digital Computer calculates the values of 

trigonometric functions like sine, cosine, square root, 

logarithm, magnitude, phase and more functions. [1].  

The CORDIC algorithm is a method that rotates a vector 

repeatedly to approximate mathematical functions. It 

accomplishes this by decomposing the desired function into 

a series of minute rotations and shifts. The vector rotates by 

a predetermined degree on each iteration, and its coordinates 

are updated accordingly. Multiple iterations of this 

procedure are carried out until the desired precision is 

achieved. Because of CORDIC's efficiency and simplicity, 

hardware and embedded systems can benefit from its use 

[2]. 

In computer science, transforming spherical coordinates to 

Cartesian coordinates is a crucial mathematical operation 

with applications in computer graphics [14], game 

development, robotics, and signal processing [5], Barcode 

Identification [15], fingerprints recognition systems [10]. 

The 3-D CORDIC algorithm is a well-known method for 

this conversion, rotating the spherical coordinate system and 

approximating the conversion with high precision through 

using straightforward shift and adds operations. Due to the 

CORDIC algorithm's regularity and simplicity for 

generating high throughput and low latency, implementing 

it using an FPGA provides a flexible and affordable 

development environment, allowing for easy design 

revisions [11]. The proposed 3-D CORDIC processor that 

converts from spherical to Cartesian coordinates was 

implemented using the (Very High-Speed Integrated Circuit 

Hardware Description Language) VHDL. First of all build 

and installation of memory entity (angle) to hold the 

arctangent   ,then Build the 2-D CORDIC entity with angle 

LUT memory entity, then compile and simulate the entity 

functions using Quartus II 7.1 tool of ALTERA. The last 

step construct 3-D CORDIC Processor using two entities of 

2-D CORDIC and compile and simulate the entity functions 

using Quartus II 7.1 tool of ALTERA. 

 VHDL stands for Very High-Speed Integrated Circuit 

Hardware Description Language. It is a programming 

language used to describe and simulate digital circuits and 

systems. VHDL allows for the design and modeling of 

hardware components, such as processors, controllers, and 

other digital systems, using a concise and structured syntax. 

It is commonly used in the field of digital design for FPGA 

and ASIC implementations [21]. 

  The remaining paper is organized as follows:  

Section 2 presents the prior work for various CORDIC 

architecture types. In Section 3 experimental work includes 

the theory of CORDIC algorithm and spherical coordinates 

and the proposed architecture for rotation mode derived 

from the algorithm for 2-D CORDIC and 3-D CORDIC 

processor are presented. In section 4 the results and 

discussion about the simulation of the proposed model on 

VHDL  are reported. Finally, section 5 have the conclusions.  

2. Related works 

The Cordic algorithm has a rich history dating to the 1950s 
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when it was first introduced by Jack Volder. It was initially 

developed as a method to perform trigonometric 

calculations using digital hardware. Over the years, the 

algorithm has been refined and expanded, finding 

widespread application in various fields such as navigation, 

signal processing, and graphics due to its efficiency and 

versatility [2]. 

Jack Volder [1] presented the Coordinate Rotation Digital 

Computer (CORDIC) which is designed for real-time 

airborne computation. It utilizes a distinct computing 

technique that is particularly suited for resolving the 

trigonometric relationships required for plane coordinate 

rotation and rectangular to polar coordinate conversion. 

Volder compares the limitations of existing methods, 

explains how CORDIC overcomes these, and covers various 

forms of the algorithm. Volder highlighted the algorithm's 

accuracy and efficiency and its applications in signal 

processing, control systems, and computer graphics. 

Compared the limitations of existing methods, explained 

how CORDIC overcomes these, and covers various forms 

of the algorithm.  

 Jack Volder [2] traced the history and development of the 

CORDIC algorithm, a technique used for computing basic 

functions such as sine, cosine, and logarithms. The article 

provides a detailed explanation of the algorithm's derivation 

and the motivation behind its creation which was the need 

of B-58 aircraft's analogy navigation computer to be 

replaced with a high-accuracy and high-performance digital 

computer. The author also discussed the advantages and 

disadvantages of the CORDIC algorithm compared to other 

methods, and highlighted its simplicity and efficiency in a 

wide range of applications. Overall, the article provides a 

comprehensive overview of the CORDIC algorithm and its 

importance in modern computing. 

Kumar [6] discussed the implementation of serial and 

parallel architectures for several mathematical functions 

(Sine, Cosine, Exponential, Inverse Exponential, Logarithm 

and Rectangular to polar) on the Cyclone IV E FPGA, with 

a focus on comparing the area, delay, and power 

consumption metrics of each architecture. The results 

indicate that the serial architecture is more area-efficient, 

while the parallel architecture requires more area. However, 

the parallel architecture outperforms the serial design in 

terms of speed. This trade-off between latency and accuracy 

can be beneficial for various real-time applications. 

Mazenc et al. [7] presented an extension of the Coordinate 

Rotation Digital Computer algorithm, enabling the 

computation of several functions, including cos-1, sin-1, 

cosh-1 and sinh-1. 

Walther [9] presented Coordinate Rotation Digital 

Computer algorithm for computing elementary functions 

such as multiplication, division, sin, cos, tan, arctan, sinh, 

cosh, tanh, arctanh, exp and square-root. The author also 

describes a hardware floating point processor built using the 

algorithm at Hewlett-Packard Laboratories, complete with a 

block diagram, microprogram control details, and actual 

performance metrics. 

Lakshmi et al. [13] A Survey implied that CORDIC 

algorithm has two main advantages reduced latency and 

improved throughput. 

Sergiyenko et al. [16] proposed a new algorithm for 

calculating sine and cosine functions using three stages of 

rotations based on a modified hybrid approach. These stages 

involve using a ROM table, a network of CORDIC micro 

rotations. The error in calculations for small angles is within 

acceptable limits. 

H. Nair and A. Chalil [17] implemented a 32-bit floating-

point serial and parallel CORDIC architecture on an FPGA 

using different adders to create a more area and speed 

efficient CORDIC architecture. The proposed architecture 

with Ladner Fischer adder has better area utilization and less 

delay compared to other adders in both serial and parallel 

CORDIC architectures 

Paz and Garrido [18]   proposed that new CORDIC-based 

algorithm does not require complex iterations or actual 

multiplication to compute functions accurately, unlike 

previous approaches. The proposed algorithm has been 

implemented in hardware and shown to have a better 

balance between space usage and accuracy compared to 

other CORDIC-based approaches. The authors make a 

comparison between different pipelined architectures used 

for the computation of arcsine using CORDIC. 

Wang et al. [19] proposed a design for a high-accuracy and 

energy-efficient Izhikevich neuron based on Fast-

Convergence Coordinate Rotation Digital Computer. The 

design includes an error propagation model for systematic 

error analysis and effective error reduction, along with two 

methods for reducing errors in the design. By using FC-

CORDIC for square calculation, redundant CORDIC 

iterations are eliminated, improving accuracy and energy 

efficiency. 

K. T. Chen et al. [20] mentioned that many functions can be 

computed by CORDIC algorithm as shown in the table 1 

below :( *this is our proposed model idea) 

Table 1: CORDIC algorithm calculated functions [20]. 

Coordinate 

system(m) 

Rotation Mode 

Zn=0 

Vectoring Mode 

Xn=0 or Yn=0 

Circular* 

m=1 

sin(x) 

cos(x) 

tan(x) 

arcsin(x) 

arccos(x) 

arctan(x) 
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Linear 

m=0 

 

f(x,y)=xy 

 

f(x,y)=x/y 

Hyperbolic 

m=-1 

sinh(x) 

cosh(x) 

tanh(x) 

ex 

arcsinh(x) 

arccosh(x) 

arctanh(x) 

ln(x) 

x0.5 

 Table2 presents a summary of some articles about CORDIC 

algorithm. 

Table 2:  Some CORDIC algorithm articles. 

Researcher Article’s Main topic in CORDIC 

Kumar[6] 

2019 

Compared serial and parallel architectures 

for mathematical functions and found that 

the parallel architecture offers better speed 

but requires more area. 

Mazenc et 

al.[7] 

1993 

Extended the algorithm to compute 

additional functions such as inverse 

trigonometric and hyperbolic functions 

Walther [9] 

1971 

Presented the CORDIC algorithm for 

elementary functions and described a 

hardware floating-point processor 

implementation 

Lakshmi et al. 

[13] 2010 

Highlighted the advantages of the CORDIC 

algorithm, including reduced latency and 

improved throughput 

Sergiyenko et 

al. 

[16] 2021 

Introduced a modified hybrid approach for 

calculating sine and cosine functions with 

reduced hardware volume and calculation 

delay. 

Nair and 

Chalil 

[17] 2022 

Implemented a more efficient CORDIC 

architecture using different adders 

 

Paz and 

Garrido 

[18] 2023 

Proposed a new CORDIC-based algorithm 

that eliminates the need for complex 

iterations or actual multiplication for 

accurate function computation. 

Wang et 

al.[19] 

2022 

Designed a high-accuracy and energy-

efficient neuron based on the Fast-

Convergence Coordinate Rotation Digital 

Computer, which eliminates redundant 

iterations and improves accuracy and energy 

efficiency. 

 

It can be said that the CORDIC algorithm has a significant 

impact on modern computing, providing efficient and 

accurate computation for various functions in diverse 

applications. Researchers continue to explore and enhance 

the algorithm for improved performance and application-

specific optimizations. Finally, it’s obvious that CORDIC 

reduced latency and improved throughput [19].  

3. Experimental Procedure  

3.1 Theory 

       3.1.1 Spherical Coordinates System [8] 

The spherical coordinate system is a way to describe the 

location of a point in 3D space using three values: how far 

the point is from a fixed starting point (radial distance), how 

high or low the point is compared to a fixed up-down 

direction (inclination or elevation angle), and the direction 

of the point's projection onto a flat plane that passes through 

the starting point and is perpendicular to the up-down 

direction (azimuth or reference angle). The inclination angle 

can also be replaced by an elevation angle measured from 

the flat reference plane. As seen in figure 1. 

 

Fig 1: Spherical Coordinates [8] 

A set of three values (r, θ, φ) in the spherical coordinate 

system tells us the exact location of a point in 3D space.  

Spherical coordinate takes its importance because they are 

related to longitude (θ) and latitude (φ) which widely used 

in navigation systems. Based on this fact we can transfer any 

point on the earth (R, θ, φ) to its equivalent Cartesian 

coordinates (X, Y, Z). 

To plot this point using its spherical coordinates, we follow 

these steps: 

 1- Move r units away from the starting point (origin) in the 

direction of the zenith (upward). 

2- Rotate by θ degrees around the origin in the direction of 

the azimuth reference. 

3-Rotate by φ degrees around the zenith (upward) in the 

correct direction. 

These steps help us determine the precise location of the 

point in 3D space based on its spherical coordinates (r, θ, φ), 

where θ represents inclination or elevation angle. To convert 

spherical coordinates (r, θ, φ) to Cartesian coordinates (x, y, 
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z), the following equations can be used [8]:  

= cossinrx  
(1) 

= sinsinry
 

(2) 

cosrZ =  
(3) 

 3.1.2 CORDIC Algorithm  

Volder’s algorithm is based on general equations for 

rotating a vector in 2D space. Given a vector V with 

coordinates (x, y) that needs to be rotated by an angle Ø, we 

can get a new vector V' with updated coordinates (x', y') 

using the following method, which is derived from the 

equations for vector rotation [4]: 

 

Fig 2: Vector V is rotated by angle Ø. [4] 

)]tan(.).[cos(' −= yxx
               

(4) 

 

)]tan(.).[cos(' += xyy
 

(5) 

 

 

Rewrite in terms of αi: (0 ≤ i ≤ n) where i is iteration 

number [4]: 

)]tan(..).[cos(1 iiiiii dyxx  −=+
            (6) 

)]tan(..).[cos(1 iiiiii dxyy  +=+
             (7) 

]2...[1

i

iiiii dyxKx −

+ −=
 

 

 (8) 

]2...[1

i

iiiii dxyKy −

+ +=
 

                  

(9)                          

1

21/1))2(cos(tan)cos( 21

=

+=== −−−

i

ii

ii

d

K 

 

The product of the 
sK i '  approaches ...935252607.0 as 

the number of iterations goes to infinity. For 11 iterations   

K =cos(45.00000°) * cos(26.56505°) * cos(14.03624°) * 

cos(7.12502°) * cos(3.57633°) * cos(1.78991°) * 

cos(0.89517°) * cos(0.44761°) * cos(0.22380°) * 

cos(0.11190°) * cos(0.05590°)  = 
...935252607.0

 

The exact gain depends on the number of iterations, 

according equation below: 


−

=

−+=
1

0

2 )21/(1
N

i

iK

 (10)   [4]   

According to Volder’s algorithm the CORDIC arithmetic 

unit is simple as shown in figure 3 below: 

 

Fig 3: CORDIC Hardware. [1] 

3.2 Implementation 

      3.2.1 Angle Conversion Formula 

This paper assumes that the conversion formula as follows: 

Step size 🡪 1 degree = (2^16)/720 = 91.02 decimal = (5B)hex. 

 Assume that Ɵ =30 then t its equivalent in hexadecimal. 

(30) hex. = {[(2^16)/ 

720]*30}decimal=(2730)decimal=(0AAA)hex. 

 

Fig 4: Decimal to Hex-decimal conversion angles in 2’s 

complement    representation. 
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Angles in CORDIC algorithm assume that θi such that,  

tan(θi)=2-i    

Table 3: Look up Table for angles used in CORDIC. 

 I tan(θi)=2-i i  
Hexadecimal 

Value 

0 1 45.00000 ° 1000 

1 0.5 26.56505 ° 9720 

2 0.25 14.03624 ° 4FD9 

3 0.125 7.12502 ° 2888 

4 0.0625 3.57633 ° 1458 

5 0.03125 1.78991 ° A2EB 

6 0.015625 0.89517 ° 517B 

7 0.0078125 0.44761 ° 28BE 

8 0.00396625 0.2238° 145F 

9 0.001953125 0.1119° A2F9 

10 0.0009765625 0.0559° 517C 

11 0.00048828125 0.0279° 28BE 

12 0.000244140625 0.0139° 145F 

13 0.0001220703125 0.0069° A2F9 

14 0.000061035156 0.0034° 517C 

15 0.000030517578 0.0017° 28BE 

 

In this paper first building and installation of lookup tables 

as shown below to hold the arctangent base angles where: 

 1502tan 1 = −− iwhereangles i
 

 

Fig 5: Angle LUT Input/output 

3.2.2 Two-D CORDIC 

In this paper 3-D CORDIC processor contains two cascaded 

2-D CRDIC Processor that transforms from polar to 

Cartesian coordinates which is defined by the following 

equation [5]: 

cosrx =  (11)  

sinry =  (12) 

As pointed out above, the transformation is accomplished 

by selecting the rotation mode. 

 Let X0= polar magnitude, z0= polar phase, y0=0  and 

using proposed  2-D CORDIC entity see Fig 6 below ,  the 

output  will be rcosθ  and rsinθ the result represents the polar 

input transformed to Cartesian space . 

 

Fig 6: 2-D CORDIC Entity using VHDL 

In this paper the proposed model used Rotation Mode of 

CORDIC algorithm as shown in the following table: 

Table 4: Some of CORDIC Rotation Mode Applications. 

Function Input Output 

cosƟ 

sinƟ 

tanƟ 

X=(1/G)  

Y=0 

Z=Ɵ 

Xn=cosƟ 

Yn=sinƟ 

tanƟ=( sinƟ/ cosƟ) 

polar to 

rectangular 

X=R  

 Y=0 

Z=Ɵ 

Xn=RcosƟ 

Yn=RsinƟ 

 

3.2.3 Three-D CORDIC 

To implement 3-D CORDIC Processor two cascade 2-D 

CORDIC processors are used; the new processor called 

sphere and shown in the following figure: 

 

Fig 7: 3-D CORDIC Entity using VHDL 
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 Let the spherical coordinates (r, θ, φ) use 3-D CORDIC to 

get the equivalent Cartesian coordinates(x,y,z) performs  in 

two stages as below : 

The first 2-D CORDIC has the following inputs: 

 x0= r ; y0=0 z0= θ  and the output of the first stage will be 

rcosθ  and rsinθ which can be used as inputs to the second 

stage as follows:  

x0= rsinθ  ; y0=0 , z0=φ and the ouputs will be x= 

rsinθcosφ 

and  y=rsinθsinφ  and output x from the first stage 

represents  

z = rcosθ  .    

3.3 The Gain Consideration 

When the CORDIC algorithm is applied to a vector V to 

rotate it by an angle Ө, a new vector V ́ will be generated in 

such a way that changes from V to V ́ but magnitude change:  

Where n is the number of iterations needed to generate the 

end vector.   

This type of change will affect both initial vector 

components by a constant factor for a fixed number of 

iterations, let this factor be called the gain Gn, therefore the 

gain will be given as in eq. 17. 

And it will affect both components of V ́ by multiplications 

aggregate to:  

Gn = 1.646760258….… as n→ ∞  

But CORDIC Rotation mode equations are [6]: 

]sincos[ 0000 zyzxGx nn −=  (14)  

 

]sincos[ 0000 zxzyGy nn +=  (15)  

 

0=nz  (16)  

 


−+=

N
iGn 221  

(17) 

Because of implementation of CORDIC twice in the 

proposed 3-D model, the gain must considered twice to 

eliminate the gain factor R must set to: 

R = (1/Gn) * (1/Gn) = (.607253)^2 = 

(0.368756206)*10000 ((to eliminate Floating Point)) = 

3687.5 = (0E68)hex.  

4. Results and Discussion 

The input of 2-D CORDIC is X0=(1/Gn) and Y0=0 and Z 

=Ɵ to get the desired output  Xn=cos(Ɵ) and Yn=sin(Ɵ) 

after 15 iteration . 

 

 

4.1.  2-D CORDIC Results: 

Simply let X0= (1/Gn) = (.607253) = (17B9)hexa , and Y0=0 

, so the above  the final iteration results will be : 

 

 

 

Table 4:2-D CORDIC Results when X0=(1/Gn)  and 

Y0=0 and Z =Ɵ . 

Z             

deci

mal 

Z 

hexade

cimal 

X 

Theore

tical 

Cos(z) 

X 

Simul

ation 

Cos(z) 

X 

Error

*10-4 

Y 

Theore

tical  

Sine(Z

) 

Y 

Simul

ation 

Sine(Z

) 

Y 

Error

*10-4 

90 2000 0000 0002 2 2710 2711 1 

75 1AAA 0A1C 0A1C 0 25BB 25BD 2 

60 1555 1388 1387 1 21D4 21D6 2 

45 1000 1BF9 1BF9 0 1BF9 1BF9 0 

30 0AAA 21D4 21D7 3 1388 1386 2 

15 0555 25BB 25BE 3 0A1C 0A19 3 

-15 FAAA 25BB 25BB 0 F5E4 F5E3 1 

-30 F555 21D4 21D6 2 EC78 EC79 1 

-45 F000 1B9F 1BA0 1 E461 E461 0 

-60 EAAA 1388 1387 1 DE2C DE29 3 

-75 E555 0A1C 0A1F 3 DA45 DA42 3 

-90 E000 0000 0000 0 D8F0 D8EE 2 

Aver

age  

   1.33   1.666

7 

 

The error in X value (Cos Ɵ) and error in Y Value (sin 

Ɵ) is shown in figure 8 below: 

||21|'| 2 VV
N

i


−+=  

                

  (13) [6] 

0

sin

cos

00

0

=

=

=

n

n

n

z

zxy

zx
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Fig 8:  The proposed 2-D CORDIC model Error in 

X_Value  (COS (z)) and Y_Value (SIN(Z)) . 

4.2. 3-D CORDIC Results: 

Let the spherical coordinates r=0E68, θ=1000, φ=1000 find 

the equivalent Cartesian coordinates (x, y, z); by 

calculations:  

X_ calculated= r * (sin 45) * (cos 45)= [(1/Gn^2)] * sin45 * 

cos45=0.5 *10000   =5000=(1388)hexa 

Y_ calculated = r * (sin 45) * (sin 45)= [(1/Gn^2)] * sin45 

* sin45=0.5 *10000 =5000=(1388)hexa  

Z_ calculated = r * (cos 45) = [(1/Gn^2)] * cos45=0.429455 

*10000=4294= (10C6)hexa 

The simulation result on Quartus II 7.1 software when 

(r=0E68, θ=1000, φ=1000)as shown in  Figure 9: 

 

Fig 9: Simulation results when(r=0E68, θ=1000, 

φ=0AAA). 

Let the spherical coordinates r=0E68, θ=1555, φ=0AAA 

find the equivalent Cartesian coordinates (x, y, z); by 

calculations:  

X= r * (sin 60) * (cos 30)= [(1/Gn^2)] * sin60* cos30=0.75 

*10000   =7500=(1D4C)hex. 

Y= r * (sin 60) * (sin 30)= [(1/Gn^2)] * sin60 * 

sin30=0.433012 *10000 =4330=(10EA)hex.  

Z= r * (cos 60) = [(1/Gn^2)] * cos60=0.3036707 

*10000=3036= (0BDC) hex. 

 

The simulation result on Quartus II 7.1 software when 

(r=0E68, θ=1555, φ=0AAA)as shown in  Figure 10: 

 

Figure 10: Simulation results when(r=0E68, θ=1555, 

φ=0AAA). 

The simulation results for converting spherical coordinate’s 

r=0E68, θ, φ to  equivalent Cartesian Coordinates is 

summarized in  table 5.  

 

The accuracy of 2-D CORDIC Processor is acceptable; 

since the average error in cosine(Ɵ)= 1.33*10-4 and the 

average error in sine(Ɵ) =1.6667*10-4. 

The accuracy of 3-D CORDIC Processor is acceptable; 

Since the average error in  X_Value= 4*10-4                 

And the average error in  Y_Value= 2*10-4      

And the average error in  Z_Value= 1*10-4      

Table 5: 3-D CORDIC Results Cartesian Coordinates (X, Y, Z) Equivalent to Spherical Coordinates (r=0E68,and  θ, φ ). 

θ φ 

X X X Y Y Y Z Z Z 

Calculated simulation 
Deviation*10-

4 
calculated Simulation De*10-4 Calculate simulation 

Deviation*10-

4 

60 30 1D4C 1D52 6 10EA 1.00E+08 3 0BDC 0BDC 0 

45 30 17EC 17F0 4 0DCF 10C5 1 10C5 10C4 1 

45 45 1388 138A 2 138A 10C5 2 10C6 10C4 2 

Avg       4     2     1 

 The proposed model evaluates high speed calculation for  : 

2-D CORDIC Processor the latency = 16 clock cycle and for  

3-D CORDIC Processor the latency =32 clock cycle . 

5. Conclusions 

This research paper focuses on implementing 3-D CORDIC 

processor using two 2-D CORDIC Processor. This 3-D 

CORDIC Processor is used to convert from spherical 

coordinates to Cartesian coordinates and constructed using 

VHDL. 

Using FPGA as flexible implementation tool make it easy 
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to modify the proposed model without additional cost. 

The accuracy of 2-D CORDIC Processor is acceptable; 

since the average error in cosine(Ɵ)= 1.33*10-4 and the 

average error in sine(Ɵ) =1.6667*10-4. 

The accuracy of 3-D CORDIC Processor is acceptable. 

The proposed model evaluates high speed calculation, 

reducing latency at the cost of accuracy is beneficial for 

numerous real-time applications like: Digital Signal 

Processing (DSP), wireless communication systems, 

navigation and GPS. 

Nomenclatures 

K Constant gain  

Abbreviations 

C

O

R

D

I

C 

Coordinate Rotation Digital Computer 

F

P

G

A 

Field Programmable Gate Array 

L

U

T 

Look Up Table 

V

H

D

L 

Very High-Speed Integrated Circuit Hardware Description 

Language 

  

References 

[1] Volder, Jack E. (1959)."The CORDIC Trigonometric 

Computing Technique." IRE Transactions on 

Electronic Computers, Vol. EC-8, no. 3, 1959, pp. 

330-334. 

[2] Volder, J. E. (2000). “The Birth of CORDIC”. Journal 

of VLSI Signal Processing, 25, 101-105. 

https://doi.org/10.1023/A:1008191618576. 

[3] Duprat, J., & Muller, J. (1993). “The CORDIC 

algorithm: new results for fast VLSI implementation”. 

IEEE Transactions on Computers, 42(2), 168-178. 

[4] Li, Huan, and Yan Xin. (2010). "Modified CORDIC 

algorithm and its implementation based on FPGA." 

2010 Third International Conference on Intelligent 

Networks and Intelligent Systems.(pp. 618-621).  

IEEE. 

[5]  Bhuria, S., & Muralidhar, P. (2010, November). 

FPGA implementation of sine and cosine value 

generators using Cordic Algorithm for Satellite 

Attitude Determination and calculators. In 2010 

International Conference on Power, Control and 

Embedded Systems (pp. 1-5). IEEE. 

[6] Kumar, P. A. (2019, March). FPGA implementation of 

the trigonometric functions using the CORDIC 

algorithm. In 2019 5th International Conference on 

Advanced Computing & Communication Systems 

(ICACCS) (pp. 894-900). IEEE. 

[7] Mazenc, Mazenc, C., Merrheim, X., & Muller, J. M. 

(1993). Computing Functions cos-1and sin-1Using 

CORDIC. IEEE Transactions on Computers, 42(1), 

118-122 

[8] Sadiku, Matthew N. O. (2001),"Coordinate Systems 

and Transformation." Chapter 2 in Elements of 

Electromagnetics, third edition, Oxford University 

Press, pp. 23-51. 

[9] Walther, J. S. (1971, May). A unified algorithm for 

elementary functions. In Proceedings of the May 18-

20, 1971, spring joint computer conference (pp. 379-

385) 

[10] Neji, N., Boudabous, A., Kharrat, W., & Masmoudi, 

N. (2011, March). Architecture and FPGA 

implementation of the CORDIC algorithm for 

fingerprints recognition systems. In Eighth 

International Multi-Conference on Systems, Signals & 

Devices (pp. 1-5). IEEE.  

[11] Gopikiran, G., & Thilagavathy, R. (2011, July). FPGA 

implementation of floatingpoint rotation mode 

CORDIC algorithm. In 2011 International Conference 

on Signal Processing, Communication, Computing 

and Networking Technologies (pp. 506-508). 

[12] Andraka, R. (1998, March). A survey of CORDIC 

algorithms for FPGA based computers. In Proceedings 

of the 1998 ACM/SIGDA sixth international 

symposium on Field programmable gate arrays (pp. 

191-200). 

[13] Lakshmi, B., & Dhar, A. S. (2010). CORDIC 

Architectures: A Survey. Hindawi Publishing 

Corporation VLSI Design, 2010, Article ID 794891, 

19 pages. doi:10.1155/2010/794891. 

[14] Lang, T., Lang, T., & Antelo, E. (2005). High-

throughput CORDIC-based geometry operations for 

3D computer graphics. IEEE Transactions on 

Computers, 54(3), 347-361. 

[15] Li, J. H., Wang, G. C., Chen, Y., Zhang, M., & Li, P. 

(2012). A VLSI Design of Image Rotation for Real 

Time 2-D Barcode Identification. Applied Mechanics 

and Materials, 198, 357-360. 

[16] Sergiyenko, A., Moroz, L., Mychuda, L., & Samotyj, 

V. (2021, September). FPGA implementation of 

CORDIC algorithms for sine and cosine floating-point 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 815–823  |  823 

calculations. In 2021 11th IEEE International 

Conference on Intelligent Data Acquisition and 

Advanced Computing Systems: Technology and 

Applications (IDAACS) (Vol. 1, pp. 383-386). IEEE. 

[17] Nair, H., & Chalil, A. (2022, March). FPGA 

Implementation of Area and Speed Efficient CORDIC 

Algorithm. In 2022 6th International Conference on 

Computing Methodologies and Communication 

(ICCMC) (pp. 512-518). IEEE. 

[18]  Paz, P., & Garrido, M. (2023). CORDIC-Based 

Computation of Arcsine and Arccosine Functions on 

FPGA. IEEE Transactions on Circuits and Systems II: 

Express Briefs. doi: 10.1109/TCSII.2023.3262353. 

[19] Wang, J., Peng, Z., Zhan, Y., Li, Y., Yu, G., Chong, K. 

S., & Wang, C. (2022). A high-accuracy and energy-

efficient CORDIC based izhikevich neuron with error 

suppression and compensation. IEEE Transactions on 

Biomedical Circuits and Systems, 16(5), 807-821. 

[20] Chen, K. T., Fan, K., Han, X., & Baba, T. (2015). A 

CORDIC algorithm with improved rotation strategy 

for embedded applications. Journal of Industrial and 

Intelligent Information, 3(4), 274-279. 

[21] Weijun Zhang (2001)." VHDL Tutorial: Learn by 

Example," University of California, Retrieved  

April,1,2023,from http://esd.cs.ucr.edu/labs/tutorial/. 

 

 


