

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 815–823 | 815

Flexible and Cost-Effective Spherical to Cartesian Coordinate

Conversion Using 3-D CORDIC Algorithm on FPGA

Nadia M. Salem1, Sami I. Serhan2, Khawla M. Al-Tarawneh3, Ra’fat Al-Msie’deen4

Submitted: 14/03/2024 Revised: 28/04/2024 Accepted: 04/05/2024

Abstract: In computer science, transforming spherical coordinates into Cartesian coordinates is an important mathematical operation. The

CORDIC (Coordinate Rotation Digital Computer) iterative algorithm can perform this operation, as well as trigonometric functions and

vector rotations, using only simple arithmetic operations like addition, subtraction, and bit-shifting. This research paper presents hardware

architecture for a 3-D CORDIC processor using Quartus II 7.1 ALTERA software, which enables easy modifications and design changes

due to its regularity and simplicity. The proposed 3-D CORDIC model is evaluated by comparing the calculated results with the simulated

results to determine its accuracy. The results were satisfaction and the proposed model could be suitable for numerous real-time

applications.

Keywords: Cartesian, CORDIC, Cosine, FPGA, Sine, Spherical, VHDL

1. Introduction

The iterative algorithm called: CORDIC Coordinate

Rotation Digital Computer calculates the values of

trigonometric functions like sine, cosine, square root,

logarithm, magnitude, phase and more functions. [1].

The CORDIC algorithm is a method that rotates a vector

repeatedly to approximate mathematical functions. It

accomplishes this by decomposing the desired function into

a series of minute rotations and shifts. The vector rotates by

a predetermined degree on each iteration, and its coordinates

are updated accordingly. Multiple iterations of this

procedure are carried out until the desired precision is

achieved. Because of CORDIC's efficiency and simplicity,

hardware and embedded systems can benefit from its use

[2].

In computer science, transforming spherical coordinates to

Cartesian coordinates is a crucial mathematical operation

with applications in computer graphics [14], game

development, robotics, and signal processing [5], Barcode

Identification [15], fingerprints recognition systems [10].

The 3-D CORDIC algorithm is a well-known method for

this conversion, rotating the spherical coordinate system and

approximating the conversion with high precision through

using straightforward shift and adds operations. Due to the

CORDIC algorithm's regularity and simplicity for

generating high throughput and low latency, implementing

it using an FPGA provides a flexible and affordable

development environment, allowing for easy design

revisions [11]. The proposed 3-D CORDIC processor that

converts from spherical to Cartesian coordinates was

implemented using the (Very High-Speed Integrated Circuit

Hardware Description Language) VHDL. First of all build

and installation of memory entity (angle) to hold the

arctangent ,then Build the 2-D CORDIC entity with angle

LUT memory entity, then compile and simulate the entity

functions using Quartus II 7.1 tool of ALTERA. The last

step construct 3-D CORDIC Processor using two entities of

2-D CORDIC and compile and simulate the entity functions

using Quartus II 7.1 tool of ALTERA.

 VHDL stands for Very High-Speed Integrated Circuit

Hardware Description Language. It is a programming

language used to describe and simulate digital circuits and

systems. VHDL allows for the design and modeling of

hardware components, such as processors, controllers, and

other digital systems, using a concise and structured syntax.

It is commonly used in the field of digital design for FPGA

and ASIC implementations [21].

 The remaining paper is organized as follows:

Section 2 presents the prior work for various CORDIC

architecture types. In Section 3 experimental work includes

the theory of CORDIC algorithm and spherical coordinates

and the proposed architecture for rotation mode derived

from the algorithm for 2-D CORDIC and 3-D CORDIC

processor are presented. In section 4 the results and

discussion about the simulation of the proposed model on

VHDL are reported. Finally, section 5 have the conclusions.

2. Related works

The Cordic algorithm has a rich history dating to the 1950s

1 King Abdullah II School for Information Technology, Jordan’s University,

nad9220478@ju.edu.jo
2 King Abdullah II School for Information Technology, Jordan’s University,

samiserh@ju.edu.jo
3 King Abdullah II School for Information Technology, Jordan’s University,

Kol9220471@ju.edu.jo
4 Faculty of Information Technology, Mutah University,

rafatalmsiedeen@mutah.edu.jo

mailto:nad9220478@ju.edu.jo
mailto:samiserh@ju.edu.jo
mailto:Kol9220471@ju.edu.jo
mailto:rafatalmsiedeen@mutah.edu.jo

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 815–823 | 816

when it was first introduced by Jack Volder. It was initially

developed as a method to perform trigonometric

calculations using digital hardware. Over the years, the

algorithm has been refined and expanded, finding

widespread application in various fields such as navigation,

signal processing, and graphics due to its efficiency and

versatility [2].

Jack Volder [1] presented the Coordinate Rotation Digital

Computer (CORDIC) which is designed for real-time

airborne computation. It utilizes a distinct computing

technique that is particularly suited for resolving the

trigonometric relationships required for plane coordinate

rotation and rectangular to polar coordinate conversion.

Volder compares the limitations of existing methods,

explains how CORDIC overcomes these, and covers various

forms of the algorithm. Volder highlighted the algorithm's

accuracy and efficiency and its applications in signal

processing, control systems, and computer graphics.

Compared the limitations of existing methods, explained

how CORDIC overcomes these, and covers various forms

of the algorithm.

 Jack Volder [2] traced the history and development of the

CORDIC algorithm, a technique used for computing basic

functions such as sine, cosine, and logarithms. The article

provides a detailed explanation of the algorithm's derivation

and the motivation behind its creation which was the need

of B-58 aircraft's analogy navigation computer to be

replaced with a high-accuracy and high-performance digital

computer. The author also discussed the advantages and

disadvantages of the CORDIC algorithm compared to other

methods, and highlighted its simplicity and efficiency in a

wide range of applications. Overall, the article provides a

comprehensive overview of the CORDIC algorithm and its

importance in modern computing.

Kumar [6] discussed the implementation of serial and

parallel architectures for several mathematical functions

(Sine, Cosine, Exponential, Inverse Exponential, Logarithm

and Rectangular to polar) on the Cyclone IV E FPGA, with

a focus on comparing the area, delay, and power

consumption metrics of each architecture. The results

indicate that the serial architecture is more area-efficient,

while the parallel architecture requires more area. However,

the parallel architecture outperforms the serial design in

terms of speed. This trade-off between latency and accuracy

can be beneficial for various real-time applications.

Mazenc et al. [7] presented an extension of the Coordinate

Rotation Digital Computer algorithm, enabling the

computation of several functions, including cos-1, sin-1,

cosh-1 and sinh-1.

Walther [9] presented Coordinate Rotation Digital

Computer algorithm for computing elementary functions

such as multiplication, division, sin, cos, tan, arctan, sinh,

cosh, tanh, arctanh, exp and square-root. The author also

describes a hardware floating point processor built using the

algorithm at Hewlett-Packard Laboratories, complete with a

block diagram, microprogram control details, and actual

performance metrics.

Lakshmi et al. [13] A Survey implied that CORDIC

algorithm has two main advantages reduced latency and

improved throughput.

Sergiyenko et al. [16] proposed a new algorithm for

calculating sine and cosine functions using three stages of

rotations based on a modified hybrid approach. These stages

involve using a ROM table, a network of CORDIC micro

rotations. The error in calculations for small angles is within

acceptable limits.

H. Nair and A. Chalil [17] implemented a 32-bit floating-

point serial and parallel CORDIC architecture on an FPGA

using different adders to create a more area and speed

efficient CORDIC architecture. The proposed architecture

with Ladner Fischer adder has better area utilization and less

delay compared to other adders in both serial and parallel

CORDIC architectures

Paz and Garrido [18] proposed that new CORDIC-based

algorithm does not require complex iterations or actual

multiplication to compute functions accurately, unlike

previous approaches. The proposed algorithm has been

implemented in hardware and shown to have a better

balance between space usage and accuracy compared to

other CORDIC-based approaches. The authors make a

comparison between different pipelined architectures used

for the computation of arcsine using CORDIC.

Wang et al. [19] proposed a design for a high-accuracy and

energy-efficient Izhikevich neuron based on Fast-

Convergence Coordinate Rotation Digital Computer. The

design includes an error propagation model for systematic

error analysis and effective error reduction, along with two

methods for reducing errors in the design. By using FC-

CORDIC for square calculation, redundant CORDIC

iterations are eliminated, improving accuracy and energy

efficiency.

K. T. Chen et al. [20] mentioned that many functions can be

computed by CORDIC algorithm as shown in the table 1

below :(*this is our proposed model idea)

Table 1: CORDIC algorithm calculated functions [20].

Coordinate

system(m)

Rotation Mode

Zn=0

Vectoring Mode

Xn=0 or Yn=0

Circular*

m=1

sin(x)

cos(x)

tan(x)

arcsin(x)

arccos(x)

arctan(x)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 815–823 | 817

Linear

m=0

f(x,y)=xy

f(x,y)=x/y

Hyperbolic

m=-1

sinh(x)

cosh(x)

tanh(x)

ex

arcsinh(x)

arccosh(x)

arctanh(x)

ln(x)

x0.5

 Table2 presents a summary of some articles about CORDIC

algorithm.

Table 2: Some CORDIC algorithm articles.

Researcher Article’s Main topic in CORDIC

Kumar[6]

2019

Compared serial and parallel architectures

for mathematical functions and found that

the parallel architecture offers better speed

but requires more area.

Mazenc et

al.[7]

1993

Extended the algorithm to compute

additional functions such as inverse

trigonometric and hyperbolic functions

Walther [9]

1971

Presented the CORDIC algorithm for

elementary functions and described a

hardware floating-point processor

implementation

Lakshmi et al.

[13] 2010

Highlighted the advantages of the CORDIC

algorithm, including reduced latency and

improved throughput

Sergiyenko et

al.

[16] 2021

Introduced a modified hybrid approach for

calculating sine and cosine functions with

reduced hardware volume and calculation

delay.

Nair and

Chalil

[17] 2022

Implemented a more efficient CORDIC

architecture using different adders

Paz and

Garrido

[18] 2023

Proposed a new CORDIC-based algorithm

that eliminates the need for complex

iterations or actual multiplication for

accurate function computation.

Wang et

al.[19]

2022

Designed a high-accuracy and energy-

efficient neuron based on the Fast-

Convergence Coordinate Rotation Digital

Computer, which eliminates redundant

iterations and improves accuracy and energy

efficiency.

It can be said that the CORDIC algorithm has a significant

impact on modern computing, providing efficient and

accurate computation for various functions in diverse

applications. Researchers continue to explore and enhance

the algorithm for improved performance and application-

specific optimizations. Finally, it’s obvious that CORDIC

reduced latency and improved throughput [19].

3. Experimental Procedure

3.1 Theory

 3.1.1 Spherical Coordinates System [8]

The spherical coordinate system is a way to describe the

location of a point in 3D space using three values: how far

the point is from a fixed starting point (radial distance), how

high or low the point is compared to a fixed up-down

direction (inclination or elevation angle), and the direction

of the point's projection onto a flat plane that passes through

the starting point and is perpendicular to the up-down

direction (azimuth or reference angle). The inclination angle

can also be replaced by an elevation angle measured from

the flat reference plane. As seen in figure 1.

Fig 1: Spherical Coordinates [8]

A set of three values (r, θ, φ) in the spherical coordinate

system tells us the exact location of a point in 3D space.

Spherical coordinate takes its importance because they are

related to longitude (θ) and latitude (φ) which widely used

in navigation systems. Based on this fact we can transfer any

point on the earth (R, θ, φ) to its equivalent Cartesian

coordinates (X, Y, Z).

To plot this point using its spherical coordinates, we follow

these steps:

 1- Move r units away from the starting point (origin) in the

direction of the zenith (upward).

2- Rotate by θ degrees around the origin in the direction of

the azimuth reference.

3-Rotate by φ degrees around the zenith (upward) in the

correct direction.

These steps help us determine the precise location of the

point in 3D space based on its spherical coordinates (r, θ, φ),

where θ represents inclination or elevation angle. To convert

spherical coordinates (r, θ, φ) to Cartesian coordinates (x, y,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 815–823 | 818

z), the following equations can be used [8]:

= cossinrx
(1)

= sinsinry

(2)

cosrZ =
(3)

 3.1.2 CORDIC Algorithm

Volder’s algorithm is based on general equations for

rotating a vector in 2D space. Given a vector V with

coordinates (x, y) that needs to be rotated by an angle Ø, we

can get a new vector V' with updated coordinates (x', y')

using the following method, which is derived from the

equations for vector rotation [4]:

Fig 2: Vector V is rotated by angle Ø. [4]

)]tan(.).[cos(' −= yxx

(4)

)]tan(.).[cos(' += xyy

(5)

Rewrite in terms of αi: (0 ≤ i ≤ n) where i is iteration

number [4]:

)]tan(..).[cos(1 iiiiii dyxx −=+
 (6)

)]tan(..).[cos(1 iiiiii dxyy +=+
 (7)

]2...[1

i

iiiii dyxKx −

+ −=

 (8)

]2...[1

i

iiiii dxyKy −

+ +=

(9)

1

21/1))2(cos(tan)cos(21

=

+=== −−−

i

ii

ii

d

K

The product of the
sK i ' approaches ...935252607.0 as

the number of iterations goes to infinity. For 11 iterations

K =cos(45.00000°) * cos(26.56505°) * cos(14.03624°) *

cos(7.12502°) * cos(3.57633°) * cos(1.78991°) *

cos(0.89517°) * cos(0.44761°) * cos(0.22380°) *

cos(0.11190°) * cos(0.05590°) =
...935252607.0

The exact gain depends on the number of iterations,

according equation below:

−

=

−+=
1

0

2)21/(1
N

i

iK

 (10) [4]

According to Volder’s algorithm the CORDIC arithmetic

unit is simple as shown in figure 3 below:

Fig 3: CORDIC Hardware. [1]

3.2 Implementation

 3.2.1 Angle Conversion Formula

This paper assumes that the conversion formula as follows:

Step size 🡪 1 degree = (2^16)/720 = 91.02 decimal = (5B)hex.

 Assume that Ɵ =30 then t its equivalent in hexadecimal.

(30) hex. = {[(2^16)/

720]*30}decimal=(2730)decimal=(0AAA)hex.

Fig 4: Decimal to Hex-decimal conversion angles in 2’s

complement representation.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 815–823 | 819

Angles in CORDIC algorithm assume that θi such that,

tan(θi)=2-i

Table 3: Look up Table for angles used in CORDIC.

 I tan(θi)=2-i i
Hexadecimal

Value

0 1 45.00000 ° 1000

1 0.5 26.56505 ° 9720

2 0.25 14.03624 ° 4FD9

3 0.125 7.12502 ° 2888

4 0.0625 3.57633 ° 1458

5 0.03125 1.78991 ° A2EB

6 0.015625 0.89517 ° 517B

7 0.0078125 0.44761 ° 28BE

8 0.00396625 0.2238° 145F

9 0.001953125 0.1119° A2F9

10 0.0009765625 0.0559° 517C

11 0.00048828125 0.0279° 28BE

12 0.000244140625 0.0139° 145F

13 0.0001220703125 0.0069° A2F9

14 0.000061035156 0.0034° 517C

15 0.000030517578 0.0017° 28BE

In this paper first building and installation of lookup tables

as shown below to hold the arctangent base angles where:

 1502tan 1 = −− iwhereangles i

Fig 5: Angle LUT Input/output

3.2.2 Two-D CORDIC

In this paper 3-D CORDIC processor contains two cascaded

2-D CRDIC Processor that transforms from polar to

Cartesian coordinates which is defined by the following

equation [5]:

cosrx = (11)

sinry = (12)

As pointed out above, the transformation is accomplished

by selecting the rotation mode.

 Let X0= polar magnitude, z0= polar phase, y0=0 and

using proposed 2-D CORDIC entity see Fig 6 below , the

output will be rcosθ and rsinθ the result represents the polar

input transformed to Cartesian space .

Fig 6: 2-D CORDIC Entity using VHDL

In this paper the proposed model used Rotation Mode of

CORDIC algorithm as shown in the following table:

Table 4: Some of CORDIC Rotation Mode Applications.

Function Input Output

cosƟ

sinƟ

tanƟ

X=(1/G)

Y=0

Z=Ɵ

Xn=cosƟ

Yn=sinƟ

tanƟ=(sinƟ/ cosƟ)

polar to

rectangular

X=R

 Y=0

Z=Ɵ

Xn=RcosƟ

Yn=RsinƟ

3.2.3 Three-D CORDIC

To implement 3-D CORDIC Processor two cascade 2-D

CORDIC processors are used; the new processor called

sphere and shown in the following figure:

Fig 7: 3-D CORDIC Entity using VHDL

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 815–823 | 820

 Let the spherical coordinates (r, θ, φ) use 3-D CORDIC to

get the equivalent Cartesian coordinates(x,y,z) performs in

two stages as below :

The first 2-D CORDIC has the following inputs:

 x0= r ; y0=0 z0= θ and the output of the first stage will be

rcosθ and rsinθ which can be used as inputs to the second

stage as follows:

x0= rsinθ ; y0=0 , z0=φ and the ouputs will be x=

rsinθcosφ

and y=rsinθsinφ and output x from the first stage

represents

z = rcosθ .

3.3 The Gain Consideration

When the CORDIC algorithm is applied to a vector V to

rotate it by an angle Ө, a new vector V ́ will be generated in

such a way that changes from V to V ́ but magnitude change:

Where n is the number of iterations needed to generate the

end vector.

This type of change will affect both initial vector

components by a constant factor for a fixed number of

iterations, let this factor be called the gain Gn, therefore the

gain will be given as in eq. 17.

And it will affect both components of V ́ by multiplications

aggregate to:

Gn = 1.646760258….… as n→ ∞

But CORDIC Rotation mode equations are [6]:

]sincos[0000 zyzxGx nn −= (14)

]sincos[0000 zxzyGy nn += (15)

0=nz (16)

−+=

N
iGn 221

(17)

Because of implementation of CORDIC twice in the

proposed 3-D model, the gain must considered twice to

eliminate the gain factor R must set to:

R = (1/Gn) * (1/Gn) = (.607253)^2 =

(0.368756206)*10000 ((to eliminate Floating Point)) =

3687.5 = (0E68)hex.

4. Results and Discussion

The input of 2-D CORDIC is X0=(1/Gn) and Y0=0 and Z

=Ɵ to get the desired output Xn=cos(Ɵ) and Yn=sin(Ɵ)

after 15 iteration .

4.1. 2-D CORDIC Results:

Simply let X0= (1/Gn) = (.607253) = (17B9)hexa , and Y0=0

, so the above the final iteration results will be :

Table 4:2-D CORDIC Results when X0=(1/Gn) and

Y0=0 and Z =Ɵ .

Z

deci

mal

Z

hexade

cimal

X

Theore

tical

Cos(z)

X

Simul

ation

Cos(z)

X

Error

*10-4

Y

Theore

tical

Sine(Z

)

Y

Simul

ation

Sine(Z

)

Y

Error

*10-4

90 2000 0000 0002 2 2710 2711 1

75 1AAA 0A1C 0A1C 0 25BB 25BD 2

60 1555 1388 1387 1 21D4 21D6 2

45 1000 1BF9 1BF9 0 1BF9 1BF9 0

30 0AAA 21D4 21D7 3 1388 1386 2

15 0555 25BB 25BE 3 0A1C 0A19 3

-15 FAAA 25BB 25BB 0 F5E4 F5E3 1

-30 F555 21D4 21D6 2 EC78 EC79 1

-45 F000 1B9F 1BA0 1 E461 E461 0

-60 EAAA 1388 1387 1 DE2C DE29 3

-75 E555 0A1C 0A1F 3 DA45 DA42 3

-90 E000 0000 0000 0 D8F0 D8EE 2

Aver

age

 1.33 1.666

7

The error in X value (Cos Ɵ) and error in Y Value (sin

Ɵ) is shown in figure 8 below:

||21|'| 2 VV
N

i

−+=

 (13) [6]

0

sin

cos

00

0

=

=

=

n

n

n

z

zxy

zx

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 815–823 | 821

Fig 8: The proposed 2-D CORDIC model Error in

X_Value (COS (z)) and Y_Value (SIN(Z)) .

4.2. 3-D CORDIC Results:

Let the spherical coordinates r=0E68, θ=1000, φ=1000 find

the equivalent Cartesian coordinates (x, y, z); by

calculations:

X_ calculated= r * (sin 45) * (cos 45)= [(1/Gn^2)] * sin45 *

cos45=0.5 *10000 =5000=(1388)hexa

Y_ calculated = r * (sin 45) * (sin 45)= [(1/Gn^2)] * sin45

* sin45=0.5 *10000 =5000=(1388)hexa

Z_ calculated = r * (cos 45) = [(1/Gn^2)] * cos45=0.429455

*10000=4294= (10C6)hexa

The simulation result on Quartus II 7.1 software when

(r=0E68, θ=1000, φ=1000)as shown in Figure 9:

Fig 9: Simulation results when(r=0E68, θ=1000,

φ=0AAA).

Let the spherical coordinates r=0E68, θ=1555, φ=0AAA

find the equivalent Cartesian coordinates (x, y, z); by

calculations:

X= r * (sin 60) * (cos 30)= [(1/Gn^2)] * sin60* cos30=0.75

*10000 =7500=(1D4C)hex.

Y= r * (sin 60) * (sin 30)= [(1/Gn^2)] * sin60 *

sin30=0.433012 *10000 =4330=(10EA)hex.

Z= r * (cos 60) = [(1/Gn^2)] * cos60=0.3036707

*10000=3036= (0BDC) hex.

The simulation result on Quartus II 7.1 software when

(r=0E68, θ=1555, φ=0AAA)as shown in Figure 10:

Figure 10: Simulation results when(r=0E68, θ=1555,

φ=0AAA).

The simulation results for converting spherical coordinate’s

r=0E68, θ, φ to equivalent Cartesian Coordinates is

summarized in table 5.

The accuracy of 2-D CORDIC Processor is acceptable;

since the average error in cosine(Ɵ)= 1.33*10-4 and the

average error in sine(Ɵ) =1.6667*10-4.

The accuracy of 3-D CORDIC Processor is acceptable;

Since the average error in X_Value= 4*10-4

And the average error in Y_Value= 2*10-4

And the average error in Z_Value= 1*10-4

Table 5: 3-D CORDIC Results Cartesian Coordinates (X, Y, Z) Equivalent to Spherical Coordinates (r=0E68,and θ, φ).

θ φ

X X X Y Y Y Z Z Z

Calculated simulation
Deviation*10-

4
calculated Simulation De*10-4 Calculate simulation

Deviation*10-

4

60 30 1D4C 1D52 6 10EA 1.00E+08 3 0BDC 0BDC 0

45 30 17EC 17F0 4 0DCF 10C5 1 10C5 10C4 1

45 45 1388 138A 2 138A 10C5 2 10C6 10C4 2

Avg 4 2 1

 The proposed model evaluates high speed calculation for :

2-D CORDIC Processor the latency = 16 clock cycle and for

3-D CORDIC Processor the latency =32 clock cycle .

5. Conclusions

This research paper focuses on implementing 3-D CORDIC

processor using two 2-D CORDIC Processor. This 3-D

CORDIC Processor is used to convert from spherical

coordinates to Cartesian coordinates and constructed using

VHDL.

Using FPGA as flexible implementation tool make it easy

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 815–823 | 822

to modify the proposed model without additional cost.

The accuracy of 2-D CORDIC Processor is acceptable;

since the average error in cosine(Ɵ)= 1.33*10-4 and the

average error in sine(Ɵ) =1.6667*10-4.

The accuracy of 3-D CORDIC Processor is acceptable.

The proposed model evaluates high speed calculation,

reducing latency at the cost of accuracy is beneficial for

numerous real-time applications like: Digital Signal

Processing (DSP), wireless communication systems,

navigation and GPS.

Nomenclatures

K Constant gain

Abbreviations

C

O

R

D

I

C

Coordinate Rotation Digital Computer

F

P

G

A

Field Programmable Gate Array

L

U

T

Look Up Table

V

H

D

L

Very High-Speed Integrated Circuit Hardware Description

Language

References

[1] Volder, Jack E. (1959)."The CORDIC Trigonometric

Computing Technique." IRE Transactions on

Electronic Computers, Vol. EC-8, no. 3, 1959, pp.

330-334.

[2] Volder, J. E. (2000). “The Birth of CORDIC”. Journal

of VLSI Signal Processing, 25, 101-105.

https://doi.org/10.1023/A:1008191618576.

[3] Duprat, J., & Muller, J. (1993). “The CORDIC

algorithm: new results for fast VLSI implementation”.

IEEE Transactions on Computers, 42(2), 168-178.

[4] Li, Huan, and Yan Xin. (2010). "Modified CORDIC

algorithm and its implementation based on FPGA."

2010 Third International Conference on Intelligent

Networks and Intelligent Systems.(pp. 618-621).

IEEE.

[5] Bhuria, S., & Muralidhar, P. (2010, November).

FPGA implementation of sine and cosine value

generators using Cordic Algorithm for Satellite

Attitude Determination and calculators. In 2010

International Conference on Power, Control and

Embedded Systems (pp. 1-5). IEEE.

[6] Kumar, P. A. (2019, March). FPGA implementation of

the trigonometric functions using the CORDIC

algorithm. In 2019 5th International Conference on

Advanced Computing & Communication Systems

(ICACCS) (pp. 894-900). IEEE.

[7] Mazenc, Mazenc, C., Merrheim, X., & Muller, J. M.

(1993). Computing Functions cos-1and sin-1Using

CORDIC. IEEE Transactions on Computers, 42(1),

118-122

[8] Sadiku, Matthew N. O. (2001),"Coordinate Systems

and Transformation." Chapter 2 in Elements of

Electromagnetics, third edition, Oxford University

Press, pp. 23-51.

[9] Walther, J. S. (1971, May). A unified algorithm for

elementary functions. In Proceedings of the May 18-

20, 1971, spring joint computer conference (pp. 379-

385)

[10] Neji, N., Boudabous, A., Kharrat, W., & Masmoudi,

N. (2011, March). Architecture and FPGA

implementation of the CORDIC algorithm for

fingerprints recognition systems. In Eighth

International Multi-Conference on Systems, Signals &

Devices (pp. 1-5). IEEE.

[11] Gopikiran, G., & Thilagavathy, R. (2011, July). FPGA

implementation of floatingpoint rotation mode

CORDIC algorithm. In 2011 International Conference

on Signal Processing, Communication, Computing

and Networking Technologies (pp. 506-508).

[12] Andraka, R. (1998, March). A survey of CORDIC

algorithms for FPGA based computers. In Proceedings

of the 1998 ACM/SIGDA sixth international

symposium on Field programmable gate arrays (pp.

191-200).

[13] Lakshmi, B., & Dhar, A. S. (2010). CORDIC

Architectures: A Survey. Hindawi Publishing

Corporation VLSI Design, 2010, Article ID 794891,

19 pages. doi:10.1155/2010/794891.

[14] Lang, T., Lang, T., & Antelo, E. (2005). High-

throughput CORDIC-based geometry operations for

3D computer graphics. IEEE Transactions on

Computers, 54(3), 347-361.

[15] Li, J. H., Wang, G. C., Chen, Y., Zhang, M., & Li, P.

(2012). A VLSI Design of Image Rotation for Real

Time 2-D Barcode Identification. Applied Mechanics

and Materials, 198, 357-360.

[16] Sergiyenko, A., Moroz, L., Mychuda, L., & Samotyj,

V. (2021, September). FPGA implementation of

CORDIC algorithms for sine and cosine floating-point

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 815–823 | 823

calculations. In 2021 11th IEEE International

Conference on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and

Applications (IDAACS) (Vol. 1, pp. 383-386). IEEE.

[17] Nair, H., & Chalil, A. (2022, March). FPGA

Implementation of Area and Speed Efficient CORDIC

Algorithm. In 2022 6th International Conference on

Computing Methodologies and Communication

(ICCMC) (pp. 512-518). IEEE.

[18] Paz, P., & Garrido, M. (2023). CORDIC-Based

Computation of Arcsine and Arccosine Functions on

FPGA. IEEE Transactions on Circuits and Systems II:

Express Briefs. doi: 10.1109/TCSII.2023.3262353.

[19] Wang, J., Peng, Z., Zhan, Y., Li, Y., Yu, G., Chong, K.

S., & Wang, C. (2022). A high-accuracy and energy-

efficient CORDIC based izhikevich neuron with error

suppression and compensation. IEEE Transactions on

Biomedical Circuits and Systems, 16(5), 807-821.

[20] Chen, K. T., Fan, K., Han, X., & Baba, T. (2015). A

CORDIC algorithm with improved rotation strategy

for embedded applications. Journal of Industrial and

Intelligent Information, 3(4), 274-279.

[21] Weijun Zhang (2001)." VHDL Tutorial: Learn by

Example," University of California, Retrieved

April,1,2023,from http://esd.cs.ucr.edu/labs/tutorial/.

