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Abstract: The increase in volume of high-dimensional data necessitates the use of dimensionality reduction strategies (DRS), which reduce 

dimensions and extract meaningful insights by eradicating irrelevant features. Linear and nonlinear are the two types in DRS. Nonlinear 

dimensionality reduction methods have gained considerable popularity in recent years due to their effectiveness in handling real-world 

datasets with complex nonlinear structures. However, there are some fields where linear data sets are frequently used, including physics, 

economics, health informatics, social sciences, etc. The major drawback of many existing linear and nonlinear DRS models is their 

computationally expensive nature. To address this issue, a fast, simple, linear (FaSL) unsupervised feature extraction method is proposed 

using descriptive statistics. The FaSL performance is evaluated by applying clustering on various benchmark data sets and compared with 

five linear state-of-the-art methods. The experimental results demonstrate that FaSL outperforms other linear models such as PCA, LDA, 

LPP, ICA, and FA in terms of accuracy and computation time. The average accuracy improvement of FaSL over PCA, LDA, LPP, ICA, and 

FA is, in order, 3.4, 9.2, 5.67, 3.97, and 0.075 while reducing computational time by 2.26, 3.1, 1.29, 7.58, and 6.2 times, respectively. 
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1. Introduction 

Massive data sets are now a common phenomenon in 

machine learning problems due to recent developments in 

data collection techniques. These sets require substantial 

processing time and resources, and the learning 

algorithm’s efficiency declines with incorrect, irrelevant, 

and noisy features [1-2].  To increase the effectiveness and 

efficiency of data mining approaches, dimensionality 

reduction strategies (DRS) are used to reduce data set 

dimension by eliminating irrelevant, noisy data. These can 

be classified into feature extraction and feature selection 

methods [2-3]. These methods have been used successfully 

in a variety of real-world applications; including image 

processing, object detection, video in processing, disease 

detection, stock analysis etc. [4-7]. Feature selection 

methods select most relevant attribute subset from the 

original attributes of the data. Feature extraction methods 

transform original data into reduced meaningful 

information which is a combination of all features [8-9]. 

These can be categorized into supervised, semi supervised 

and as unsupervised based on whether or not the methods 

utilize true labels. Among these unsupervised methods are 

most challenging without the utilization of domain 

knowledge [10]. 

Also, DRS can be classified into linear and nonlinear 

models. Linear DRS assumes linear intrinsic structure, 

which may not be suitable for real-world datasets with 

nonlinear intrinsic structures [11]. Nonlinear DRS are 

become interesting and burning topic in machine learning 

research for more than a decade, with numerous proposed 

methods proved to be effective for the selected 

applications.  

Also, DRS can be classified into linear and nonlinear 

models. Linear DRS assumes linear intrinsic structure, 

which may not be suitable for real-world datasets with 

nonlinear intrinsic structures [11]. Nonlinear DRS are 

become interesting and burning topic in machine learning 

research for more than a decade, with numerous proposed 

methods proved to be effective for the selected 

applications.  

In fact, there are many real-world datasets with linear 

relationshipsbetween the variables, and they may be found 

in a variety of disciplines, such as physics, economics, 

finance, and the social sciences [12–19]. In 2017, Meier, 

A., and Kramer analyzed 29 DR methods on 13 datasets 

and came to the conclusion that MDS, GPLVM, and PCA 

performed better among all 29 DRS [20]. Maateen et al., 

has experimented the linear model PCA performance with 

13 nonlinear data models on various datasets and reported 

that PCA, a linear model outperformed on most of the 

natural data sets compared to 13 various nonlinear DR 

models [21]. Though PCA is a traditional linear 

unsupervised DR method, it is found in all studies of DR 

methods.  
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To date, PCA, the linear DR is a widely used algorithm in 

feature extraction applications [22]. Despite the nonlinear 

model’s success; linear models are preferred strongly on 

some real-world data sets and linear models are better in 

solving the classification problems compared to nonlinear 

models [23]. Hence, till date researchers are focusing on 

linear DR models.  

However, when data dimensionality increases, the 

computational cost of typical dimensionality reduction 

algorithms, including linear models (PCA and LDA), 

increases exponentially, making computation increasingly 

challenging [24]. Also, none of the feature selection 

methods produce a more informative combination of 

characteristics than the original data, and feature extraction 

methods do not transform a combination into a 

representation of the original features. 

In view of these, in this paper, simple statistical features 

are used to propose a Fast, Simple and Linear unsupervised 

feature extraction method (FaSL). The FaSL reduces 

dimensions of a given data set of size m×n into m×4 

without any domain knowledge. The method's performance 

is examined using k-means clustering. Relative 

performance of the proposed FaSL is studied with various 

linear methods using different validity measures, error rate, 

and computational cost on 6 real-life and 7 simulated data 

sets. The results of the FaSL are enterprising with higher 

accuracy and lower computation times. The average 

accuracy improvement of FaSL over PCA, LDA, LPP, 

ICA, and FA is, in order, 3.4, 9.2, 5.67, 3.97, and 0.075. 

On average, the reduction in computational time of FaSL 

over PCA, LDA, LPP, ICA, and FA, respectively, 2.26, 

3.1, 1.29, 7.58, and 6.2 times. 

The remaining part of the paper is organized as follows, 

section-2 contains main contributions of the paper, section-

3presents the proposed FaSL methodology, experimental 

results and discussions are discussed in section-4 and 

conclusions and possible future enhancements are provided 

in section-5. 

2. RELATED WORK  

Dimensionality reduction methods are the fundamental 

requirement in the pre-processing phase of many data 

analysis models with huge dimensional data sets. DRS are 

used to reduce dimensions either by selection or 

transforming overall features into set of features for further 

analysis. DRS are divided into feature selection and feature 

extraction methods. The literature contains a large number 

of feature selection/extraction algorithms. 

Featureselection aims to choose a portion of the original 

features by eliminating redundant / irrelevant information. 

Feature selection techniques are divided into supervised, 

unsupervised, and semi-supervised categories according to 

the labels that are specified in the data. Supervised feature 

selection algorithms select subset of features by assessing 

their association with class labels or their performance in 

prediction [25-26]. Unsupervised feature selection 

techniques select features based on data variance or 

distribution [27-28]. Semi-supervised featureselection 

methods used the labelled data as additional details to 

improve the performance of the method [29-30]. 

Feature extraction methods reduce the dimension of the 

original data set by transforming features into combination 

of all original features. Among these unsupervised are 

more challenging due to the ignorance of true labels. 

Existing unsupervised feature extraction methods are 

divided into linear and nonlinear models [31]. Since the 

paper focus on the linear models, the existing few popular 

linear feature extraction models are: 

2.1 Principal Component Analysis (PCA) 

Define abbreviations and acronyms the first time they are 

used in the text, even after they have already been defined 

in the abstract. Abbreviations such as IEEE, SI, ac, and dc 

do not have to be defined. Abbreviations that incorporate 

periods should not have spaces: write “C.N.R.S.,” not “C. 

N. R. S.” Do not use abbreviations in the title unless they 

are unavoidable (for example, “IEEE” in the title of this 

article). 

2.2 Linear Discriminant Analysis (LDA) 

The goal of LDA is to identify a feature subspace that 

maximizes group separability [34]. The objective of 

classical LDA is to maximize the trace ratio value of the 

between-class scatter matrix and within-class scatter 

matrix in the subspace, such that the points within the same 

class will be drawn together and the points between 

different classes will be kept as far as possible. It is a 

supervised linear feature extraction method. 

2.3 Factor Analysis (FA) 

This method creates a common score by taking the most 

common variance out of all the variables.  We can use this 

score as an index of all the variables for further analysis 

[35]. 

2.4 Locality Preserving Projection (LPP) 

Locality Preserving Projection [36] is a linear 

approximation of LaplacianEmbedding. The goal of LPP is 

to project the original data while keeping nearest 

neighbour relationships. 

2.5 Independent Component Analysis (ICA) 

In addition to PCA and other linear transformations, 

Independent Component Analysis is a popular technique. 

The givendata is described by ICA as a combination of 

unknown and independent sources. [37]. ICA is a higher-
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order approach that looks for linear projections that are 

nearly statistically independent and are not always 

orthogonal to one another. 

Though the aforementioned methods each provide a 

reduced set with either original or extracted / transformed 

features, but not completely meet the requirements. Most 

of the current research is on proposing nonlinear models 

since most of the real-world datasets are nonlinear by 

structure. But the linear models are better in solving the 

classification problems compared to nonlinear models [38]. 

Hence, researchers are focusing on linear DR models and 

the most widely used linear models (PCA, LDA) 

computational complexity increases exponentially with the 

increase of data dimensions.   

Hence the paper confines to develop a fast, simple, linear 

unsupervised feature extraction method. The proposed 

method performance is evaluated on various real and 

synthetic datasets with the state of art of the linear 

reduction methods. 

Contributions 

The major contributions of this paper are 

i. A new unsupervised feature extraction method 

using descriptive statistics is proposed for 

dimensionality reduction. 

ii. The method is simple, lower computational cost 

with improved accuracy. 

iii. A drastic reduction in dimension of the high 

dimensioned data sets is achieved in lower 

computational time. 

iv. The performance of FaSL is evaluated with 

application of clustering using 5 various linear 

state-of-the-art methods, 6 different validity 

measures on 6 real-life and 7 simulated data sets.  

 

3. A Fast, Simple, Linear (Fasl) Unsupervised Feature 

Extraction Method  

Let X = {X1, . . ., Xm} be a data set in a n-dimensional 

Euclidean space Rn, where m is no of samples and n is 

no of dimensions. Each sample Xi is a vector with n 

features and Xj is a column vector represents jth feature 

values of all m samples. The proposed method extracts 

four features from the data set. Each feature is a 

Squared Euclidean distance of each sample to mean, 

maximum, minimum and sum of the selected data set. 

The following are the key steps. 

i. Acquire high dimensional benchmark data 

sets of various domains. 

ii. Pre-process the dataset 

iii. Extract Features: Each feature is a Squared 

Euclidean distance of each sample to mean 

maximum, minimum and sum of the selected 

data set. 

The features are:  

o Feature F1 = ‖d(Xi , Xmean)‖where Xmean = 

[Xmean1...Xmeanj,  .Xmeann]; 

Xmeanj=∑ Xij
m
i=1 m⁄ , is the mean of the elements of 

column j.  

o Feature  F2 = ‖d(Xi , Xmax)‖ , where Xmax=[ 

Xmax1, .., Xmaxj, ..Xmaxn]; Xmaxjis maximum 

of jth column/feature  

o Feature  F3 = ‖d(Xi , Xmin)‖ , whereXmin=[ 

Xmin1, .., Xminj, ..Xminn]; Xminj is minimum of 

jth column  

o Feature  F4 = ‖d(Xi , Xsum)‖ ,where Xsum= 

[Xsum1, .., Xsumj, ..Xsumn]; Xsumj=∑ Xij
m
i=1

 , is the 

sum of elements of column j.  

iv. Apply k-means clustering method 

       The proposed model transforms m× n dataset 

into m× 4 size, where m, n are number of samples and 

features. The steps of the proposed method depicted in the 

figure1.  

 

 

Fig.1. Fast, Simple, Linear (FaSL) unsupervised feature 

extraction method 

For example, assume the following dataset of size 8X6. 

For example, assume the following dataset of size 8X6. 

Dataset (8X6) = 

0.384465 0.968647 0.042657 0.937293 0.250838 0.409011 

      

0.198445 0.960714 0.044687 0.921429 0.122681 0.220098 
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0.400157 0.968434 0.041942 0.936867 0.262813 0.423814 

0.442284 0.971203 0.041103 0.942406 0.295956 0.461889 

0.390355 0.96 

8358 
0.041729 0.936717 0.254919 0.411407 

0.503066 0.974912 0.04193 0.949825 0.347458 0.52008 

0.462264 0.972794 0.038835 0.945589 0.312322 0.480125 

0.471215 0.972293 0.037657 0.944586 0.32035 0.493014 

Mean of the Dataset= 

0.4065

31 

0.9696

69 

0.0413

17 

0.9393

39 

0.2709

17 

0.427

43 

 

Squared Euclidean distance between each element of 

dataset to mean (represented in a row) is as follows: New 

Dataset (8X1)̍= 

0.03

52 

0.32

97 

0.01

13 

0.05

57 

0.0

28 

0.15

46 

0.08

75 

0.10

48 

 

 

4. Experimental Results and Discussions 

This section focused on performance assessment of the 

proposed FaSL method for unsupervised problems. A total 

of 6 publicly accessible data sets and seven simulated are 

used to study the performance. The number of features of 

the datasets is vary from 4 to 1024 and the number of 

samples is varied from 150 to 5473. The results are 

compared with linear unsupervised feature extraction 

methods and LDA, which is supervised linear model. The 

linear models are: Principal Component Analysis (PCA), 

Independent Component Analysis (ICA), Factor Analysis 

(FA), Locality Preserving Projection (LPP), and Linear 

Discriminant Analysis (LDA). The relative performance of 

the proposed is evaluated using Clustering (k-means) 

method.  

K-means clustering algorithm is used for assessment of 

quality after reduction of the dimensions. For each data set, 

for each DR method k-means is run 30 times and the 

average values are taken for evaluation. k-value in k-means 

is a priori and is considered as the number of true classes 

of the data set in all experiments. The quality of the 

clustering solutions is measured using the external and 

internal cluster validity measures: Rand Index (RI), 

Jaccard coefficient (Jacc), Fowlkes-Mallow’s index (FM), 

Normalized Mutual Information (NMI), Normalized 

Variation of Information (NVI), Davis Bouldin (DB), 

Silhouette (Sil) index [39-42]. Error rate is also computed 

in all experiments. In addition to all these measures, 

execution time of each dimensionality reduction method 

for each dataset is considered for evaluation of results. 

Table-1 shows details of datasets considered for 

experimentation. The table contains dataset name, number 

of samples of the dataset, number of classes and from 

where the dataset is downloaded in order. Observed mean 

values of all validity measures in 30 independent runs of k-

means on each data set are presented inTable-2. For each 

validity measure, if higher values are better, then 

represented with “↑”, otherwise i.e., lower values are most 

preferable then indicates with “↓”. Table-3 shows elapsed 

time noticed for 30 independent runs of k-means by each 

algorithm for each dataset after reduction of the 

dimensions. 

Table 1. Details of datasets 

Dataset 
#Sampl

es 

#Featur

es 

Classe

s 

Source: 

dataset 

download

ed 

Boston 

Housing 
506 14 3 

Kaggle 

database 

[43] 

Pageblock

s 
5473 10 5 

UCI 

Machine 

learning 

repository 

[44] 

Ionospher

e 
351 34 2 

Yale 165 1024 15 

iris 150 4 3 

wine 178 13 3 

Demo_Da

ta 
1000 21 3 

Nguyen X. 

Vinh et al. 

(2014) 

[45] 

highdim1 1024 32 16 

High 

dimension

al datasets 

[46-47] 

highdim2 1024 64 16 

highdim3 1024 128 16 

highdim4 1024 256 16 

highdim5 1024 512 16 

highdim6 1024 1024 16 

 

Table 2.Mean Values in 30 independent runs of k-means 

 

Dataset 

 

Method 

Original PCA LDA LPP ICA FA FaSL 

 
 

Metric 

 RI ↑ 0.56 0.56 0.48 0.58 0.57 0.62 0.54 
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Boston JAC↑ 0.32 0.32 0.31 0.32 0.32 0.31 0.28 

 FM↑ 0.49 0.49 0.49 0.48 0.48 0.48 0.44 

 DB ↓ 0.62 0.6 0.93 0.53 0.66 0.44 0.57 
 

Sil↑ 0.73 0.73 0.54 0.75 0.7 0.76 0.66 
 

NMI ↑ 0.13 0.13 0.05 0.13 0.13 0.18 0.07 
 

NVI↓ 0.92 0.92 0.97 0.93 0.92 0.89 0.96 
 

Error↓ 74.95 74.95 70.84 74.67 74.63 45.68 66.52 

 RI ↑ 0.33 0.6 0.43 0.59 0.6 0.57 0.59 

 JAC↑ 0.21 0.58 0.34 0.56 0.58 0.54 0.57 

Pageblocks FM↑ 0.43 0.73 0.56 0.72 0.73 0.71 0.73 

 DB ↓ 1.3 0.54 1.09 0.52 0.54 0.46 0.47 
 

Sil↑ 0.36 0.83 0.37 0.82 0.83 0.84 0.85 
 

NMI↑ 0.13 0.05 0.07 0.05 0.05 0.05 0.05 
 

NVI↓ 0.94 0.97 0.96 0.97 0.97 0.97 0.97 
 

Error↓ 73.79 27.26 54.84 28.26 27.26 29.85 28.04 

 RI ↑ 0.58 0.58 0.5 0.57 0.58 0.5 0.6 

ionosphere JAC↑ 0.43 0.43 0.39 0.42 0.43 0.34 0.44 

 FM↑ 0.6 0.61 0.56 0.59 0.6 0.59 0.61 

 DB↓ 1.51 1.5 1.58 1.41 1.36 1.61 0.77 

 Sil↑ 0.41 0.41 0.43 0.45 0.45 0.52 0.68 

 NMI ↑ 0.13 0.12 0 0.1 0.13 0.12 0.16 

 NVI↓ 0.92 0.93 0.99 0.94 0.92 0.97 0.91 
 

Error↓ 28.83 29.29 55.23 30.36 28.86 28.81 27.35 

 RI ↑ 0.88 0.88 0.81 0.89 0.88 0.89 0.89 

Yale JAC↑ 0.14 0.13 0.0526 0.16 0.13 0.15 0.14 

 FM↑ 0.25 0.24 0.1102 0.28 0.24 0.27 0.25 

 DB↓ 1.78 1.81 2.107 1.74 1.76 1.87 0.74 

 Sil↑ 0.16 0.16 0.0348 0.17 0.16 0.26 0.49 

 NMI↑ 0.46 0.46 0.2469 0.5 0.45 0.49 0.47 

 NVI↓ 0.69 0.7 0.86 0.66 0.7 0.66 0.68 
 

Error↓ 87.8 87.8 92.3 88.16 87.3 86.02 83.3 

 RI ↑ 0.68 0.68 0.54 0.7 0.68 0.56 0.69 

 JAC↑ 0.38 0.38 0.25 0.4 0.38 0.39 0.4 

Wine FM↑ 0.55 0.55 0.41 0.57 0.55 0.56 0.57 

 DB↓ 0.55 0.56 0.87 1.05 0.55 0.52 0.54 

 Sil↑ 0.69 0.69 0.52 0.49 0.7 0.68 0.72 

 NMI↑ 0.32 0.34 0.07 0.4 0.34 0.4 0.39 

 NVI↓ 0.8 0.79 0.96 0.74 0.79 0.72 0.75 

 Error↓ 33.4 32.5 53.37 35.674 32.35 35.18 30.91 

 RI ↑ 0.87 0.89 0.89 0.89 0.92 0.87 0.86 

 JAC↑ 0.73 0.77 0.77 0.77 0.82 0.73 0.65 

Iris FM↑ 0.84 0.86 0.86 0.86 0.89 0.83 0.79 

 DB↓ 0.46 0.46 0.58 0.49 0.31 0.31 0.58 

 Sil↑ 0.8 0.8 0.75 0.78 0.86 0.85 0.68 

 NMI↑ 0.79 0.81 0.81 0.81 0.84 0.78 0.66 

 NVI↓ 0.33 0.3 0.3 0.3 0.27 0.34 0.49 

 Error↓ 19.13 14.91 15.31 15 8.73 17.97 11.6 

 RI ↑ 0.67 0.67 0.66 0.67 0.66 0.65 0.57 
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 JAC↑ 0.33 0.34 0.33 0.34 0.33 0.31 0.22 

Demo_Data FM↑ 0.5 0.51 0.5 0.51 0.5 0.47 0.36 

 DB↓ 1.33 1.34 1.25 1.34 1.01 0.49 1 

 Sil↑ 0.42 0.42 0.46 0.42 0.53 0.73 0.48 

 NMI↑ 0.37 0.37 0.37 0.37 0.37 0.27 0.03 

 NVI↓ 0.76 0.76 0.77 0.76 0.77 0.84 0.97 

 Error↓ 70.98 69.23 70.1 68.91 70.4 55.52 60.2 

 RI ↑ 0.96 0.96 0.96 0.96 0.96 0.95 0.96 

 JAC↑ 0.62 0.64 0.64 0.64 0.64 0.56 0.64 

highdim1 FM↑ 0.78 0.79 0.79 0.79 0.79 0.73 0.79 

 DB ↓ 0.76 0.81 0.75 0.87 0.78 0.26 0.44 

 Sil↑ 0.66 0.67 0.66 0.67 0.68 0.83 0.78 

 NMI↑ 0.92 0.92 0.92 0.92 0.92 0.87 0.91 

 NVI↓ 0.14 0.13 0.13 0.135 0.13 0.22 0.16 

  Error↓ 75.13 71.46 71.59 78.27 74.71 71.33 70.65 

 

 

Table3. Time (Elapsed time) taken in seconds for 30 independent runs of k-means 

 

Method 
 

Original PCA LDA LPP ICA FA FaSL 
 

 

Dataset 

BOSTON 11.57 11.8 15.46 10 13.09 11.3 9.9 

Pageblocks 1514.2 1304.17 1807.66 1435.43 1303.06 1035.57 1328.53 

ionosphere 9.11 8.59 9.18 23.28 8.22 13.55 5.66 

Yale 21.69 4.44 28.18 7.55 269.37 138.18 3.85 

wine 3.04 2.27 2.53 2.77 3.15 6.17 2.27 

Iris 2.37 1.44 2.2 2.09 1.87 2.93 1.51 

Demo_data 50.99 35.5 34.18 34.6 38.11 32.84 53.94 

highdim1 64.33 72.7 49.58 43.58 84.02 57.58 61.77 

highdim2 89.62 93.2 83.88 65.82 73.53 49.93 50.28 

highdim3 92.33 90.74 94.91 50.99 67.07 55.89 52.62 

highdim4 145.62 152.48 124.56 53.45 109.24 125.59 57.64 

highdim5 273.58 251.3 260.86 45.45 233.82 865.66 56.86 

highdim6 608.45 534.5 752.43 39.3 606.82 793.62 52.81 

 

5.1 Discussions 

From Table-2, FaSL shows its superiority for Ionosphere, 

Yale, wine, highdim1, highdim3 and for highdim6 data 

sets. Fasl is equally good with PCA, and ICA for iris, 

highdim4 and Page blocks datasets. But, in case of Boston 

Housing dataset, Demo_data, highdim2, and for highdim5 

Factor Analysis perform better compared to all other linear 

models. 

`Friedman's test can be used to compare the quality of 

some m-algorithms on n-datasets. If the performance of the 

algorithms varies, applying Friedman's test rejects the null 

hypothesis that "all algorithms have equal 

performance"[34]. Then the Nemenyi test can be applied to 

identify which algorithms differ substantially from one 

another [35]. The diagrams for each validity measure are 

shown in Figure 1 along with the mean rank of each 

algorithm in comparison (lower ranks to the left). As per 

Nemenyi test, thick line connects groups of algorithms 

that, are not significantly different from one another. In 

each subfigure, the critical difference (CD) is also 

displayed above the axis. 
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From Fig. 1 (a), it is observed that the proposed FaSL is 

better than PCA, LPP, and LDA and is comparable with 

ICA and FA in terms of DB. FaSL is likely good with 

PCA, ICA, and FA and is better compared to LPP and 

LDA in terms of error rate from figure 1 (b). From 1(c), 

(d), (g), (i), FaSL is equally compatible with PCA, LPP, 

ICA and is better compared to FA and LDA in terms of 

FM, JAC, RI and time. From 1(i) FaSL is far better than all 

algorithms in terms of time, compatible with LPP, PCA, 

ICA but significantly better than LDA, FA. From 1(h) 

FaSL is compatible with PCA, ICA and FA and better than 

LPP, LDA. 

From Fig. 1 (a), it is observed that the proposed FaSL is 

better than PCA, LPP, and LDA and is comparable with 

ICA and FA in terms of DB. FaSL is likely good with 

PCA, ICA, and FA and is better compared to LPP and 

LDA in terms of error rate from figure 1 (b). From 1(c) , 

(d), (g), (i) FaSL is equally compatible with PCA, LPP, 

ICA and is better compared to FA and LDA in terms of 

FM, JAC, RI and time. From 1(i) FaSL is far better than all 

algorithms in terms of time, compatible with LPP, PCA, 

ICA but significantly better than LDA, FA. From 1(h) 

FaSL is compatible with PCA, ICA and FA and better than 

LPP, LDA 

 

Fig.1.CD diagrams after Nemenyi test for each evaluation 

criterion in order (a)DB (b)Error (c)FM (d)JACC (e)NMI 

(f)NVI (g) RI (h) SIL (i)Time 

5.1.1. Relative Performance of selected linear models 

VsFaSL  

FaSL is proposed to reduce dimensions (to 4) as much as 

possible of the high dimensioned dataset(s) such that 

improves efficiency of the learning algorithm 

(unsupervised \supervised) in finding appropriate groups in 

significantly reduced time. Hence, the section focuses on 

evaluating performance of FaSL in terms of time and error 

rate.  

(a) Performance Evaluation of FaSL in terms of Time  

FaSL reduce any dataset dimensions to 4, the time it 

required to complete 30 independent runs of k-means is 

presented in Table-3 along with other linear DR methods. 

Table-3 demonstrates that FaSL finds clusters using k-

means in very less time for Ionosphere, Yale, wine, 

highdim2, highdim3, highdim4, highdim5 and for 

highdim6. Drastic time reduction can be noticed on 

datasets with a greater number of dimensions ie., for 

example Demo_data and highdim6. Details of observations 

in the difference in mean timings of each algorithm in 

comparison with the FaSL  are presented as follows. 

PCA (widely used DR method): Among the data sets 

PCA find clusters using k-means in less time for only two 

data sets (Pageblocks, Demo_data) compared to FaSL. 

Whereas FaSL drastically reduce the time for the datasets 

with higher dimensions (>25). The difference is very much 

attractive and significant. In highdim6 (1024 dimensions), 

FaSL finds results in 10times reduced time compared to 

PCA. PCA takes four times of FaSL time in case of 

highdim5. 

LDA (Supervised): converge k-means in less time for 

only two datasets: Demo_data and highdim1, but the 

difference may be negligible. In case of highdim6, LDA 

takes 14 times more time compared to FaSL 

LPP: Though it takes less time compared to FaSL for high 

dimensioned datasets, but it may be negligible difference 

and the FaSL is equally good with LPP. LPP takes 4 times 

more time for page block dataset compared to FaSL 

ICA: It is noticed that ICA recorded lower timing 

compared to FaSL in case of two datasets, Pageblocks and 

Demo_data. But the difference is very negligible and not 

significant. Whereas in case of dataset, highdim6, ICA 

takes 11 times more time compared to FaSL. In case of 

Yale, ICA takes 69 times more time compared to FaSL. 

FA: FaSL is compatible with FA in terms of time in all 

datasets except in Yale, highdim4, highdim5 and 

highdim6. In case of Yale FA takes 35 times more 

timecompared to FaSL. In case ofhighdim5 and highdim6 

FA requires 15 times more time compared to FaSL. 

Compared to the above all linear models FaSLis either 

far better or equally good in terms of time. 

(b) Performance Evaluation of FaSL in terms of Error 

rate:  

Any algorithm must have the qualities simplicity, low 

computing complexity, and ability to provide accurate 

output. Quality of clustering is measured in this work in 

number of ways using various evaluation criterion and 

reported in table-2 and figure-1. In addition to these, 

accuracy is studied in terms of error rates, and is computed 

in each experiment of each dataset and mean error rates are 

reported in table-2.  
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The following are the few observations in each case of 

algorithm compared to FaSL in terms of error rate.  

PCA (widely used): PCA produce results more accurately 

in only two cases, Pageblocks and highdim4. But are very 

negligible difference with FaSL, 0.7857 and -0.027. 

Hence, for each dataset (Boston Housing, Yale, 

Demo_data, highdim2, highdim3, highdim6) FaSL is either 

far better or equally good (Pageblocks, ionosphere, wine, 

iris, highdim1, highdim4, highdim5) with PCA. 

LDA (Supervised): Noticed that FaSL outperforms 

compared to LDA almost in each dataset 

LPP (Local Projection based): Observed that FaSL is far 

better in each case of dataset compared to LPP in terms of 

error rate. 

ICA: Noticed form table-2 ICA is better in only two cases 

(Page blocks, iris). But in case of Pageblocks the 

difference is negligible i.e., 0.7. But remaining all cases 

FaSL shows its supremacy with lower error rates with 

increased accuracy. 

FA: FA is better in three cases, (Boston Housing, 

Demo_data, highdim2 and highdim5), but in remaining 9 

cases FaSL is better than FA. 

The average accuracy improvement of FaSL in terms 

of error rate over PCA, LDA, LPP, ICA, and FA is 3.4, 

9.2, 5.67, 3.97, and 0.075 in order. 

5.2 Limitations 

 Fasl is a simple linear DR method developed using simple 

statistics methods; represent characteristic of a collection 

such as mean, maximum, minimum, sum and Euclidean 

distance, better captures hidden differences. Being the 

proposed linear or separable bench mark data sets are 

browsed and selected from well-known public data sites. 

For the experimentation only popular linear DR feature 

extraction methods areselected. Experimental results are 

reported by running k-means 30 times. FaSL shows its 

superiority compared to the popular, widely used linear 

DRS on various datasets. However, like all other DRS, 

FaSL is also may not be suitable to the any kind of dataset. 

Conclusion 

In view of ‘curse in dimensionality’ in many data analysis 

methods numerous dimensionality reduction methods are 

evolved as linear and nonlinear. As linear methods assume 

the intrinsic structure of dataset as linear may not be 

applicable for most of the real-world datasets. But there 

exists some disciplines Physics, Economics, Medical, 

social science which generates real word data with linear 

relationships among attributes. Also, some of the nonlinear 

models may not satisfy the classification or clustering 

applications. Hence, still PCA, LDA are the widely used 

linear unsupervised, supervised models. All these DR 

models are computationally expensive. Hence, a fast, 

simple, linear (FaSL) unsupervised feature extraction 

method using descriptive statistics is proposed. FaSL is 

very simple and reduce any dataset size to four 

dimensions. For experimentation 6 real world and 7 

synthetic benchmark data sets are taken from popular 

public data bases. Performance of FaSL is evaluated by 

applying on k-means clustering, results are evaluated with 

5 widely used various linear DR models, PCA, LDA, LPP, 

ICA, FA. Relative performance is studied and quality of 

clustering is assessed using 7 different validity measures 

along with error rate and elapsed time. Experimental 

results have shown that FaSL is either far better on most of 

the selected datasets or equally good on few datasets 

compared to the linear models in the experimentation. 

FaSL is simple, fast enough and more accurate compared 

to PCA, LDA, LPP, ICA and FA on the selected datasets.  

In case of highdim6 (1024 dimensions), FaSL is 10times, 

14 times, 11 times, 15 times faster compared to PCA, 

LDA, ICA and FA in order. In average FaSL is 2.26, 3.1, 

1.29, 7.58, 6.2 times faster than PCA, LDA, LPP, ICA and 

FA in order in terms of time. The average accuracy 

improvement of FaSL in terms of error rate over PCA, 

LDA, LPP, ICA, and FA is 3.4, 9.2, 5.67, 3.97, and 0.075 

in order. 

Being a linear model, the FaSL, linear or separable public 

datasets and linear DRS are only included in the 

experimentation. Like any linear DR method, FaSL may 

not satisfy real world data with nonlinearity. Hence, 

extending the proposed FaSL to identify the hidden 

intrinsic local structures of the datasets and make the 

enhanced model more reliable and to suitable to nonlinear 

data sets is the future endeavor.  
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