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Abstract: Vehicle tracking and Traffic Monitoring is essential as it forms the main dimension of a smart city. Globally, during the last 

decade the number of automobiles in roadways has increased drastically. Traffic monitoring in such a high traffic density era is significantly 

difficult in various developing countries. Hence, the work focuses on regulating traffic jams by tracking the vehicle and transmitting the 

data to the regulating authorities in shorter duration with the help of Cognitive Radio technology. The CR technology is very useful for 

effective traffic monitoring to transmit the traffic management parameters by exploiting Primary User’s (PU) spectrum. For spectrum 

detection and allocation for high-speed transmission of traffic parameters, various tree related machine learning algorithms like random 

forest, decision trees and XGBoost are used, examined and compared for better results. Of these, random forest gives high accurate 

prediction of available spectrum and allocation. On applying the model, we ensure that timely delivery of traffic monitoring information 

can help in better traffic management and vehicle tracking. 

Keywords: vehicle tracking, traffic management, cognitive radio networks, spectrum allocation 

1. Introduction 

To enable Intelligent transport system applications, traffic 

monitoring and vehicle tracking are key factors. With 

urbanization of cities, the population density grows rapidly 

because of which the traffic density also grows rapidly. 

Intelligent traffic systems should allow the maximum traffic in 

the road network but at the same time should respond 

immediately to the road network traffic in order to avoid road 

congestion. The contemporary smart city scenario is facilitated 

by the growing evolution and the use of the Internet of Things 

(IoT) and th Internet of Everything (IoE) technologies, which 

are driving the smart city archetype to the big data scale. 

Developing an automated and intelligent city system requires 

taking municipal data and turning it into actionable knowledge 

or insights, then creating a corresponding data-driven model 

[1]. Solutions for smart cities concentrate on a number of 

areas, including intelligent transportation, industry, energy, 

environment, health care, and living and infrastructure [2]. The 

main tenets of smart cities, including smart life, smart 

government, smart communications and smart environment, is 

the intelligent transport system [3]. Millions of drones, 

unmanned aerial vehicles (UAV) and autonomous cars will be 

a safe and environmentally friendly mode of transportation by 

2030. To ensure the safety of passengers and pedestrians, they 

must meet strict requirements for localization, latency, and 

reliability. Traffic monitoring systems can help many 

applications including shortest route detection, automatic 

parking system, accident prone area, high traffic route for 

timely healthcare and more and more [4]. 

The number of video surveillance systems in cities is 

currently increasing quickly. These systems consist of 

different resolution and fixed frame rate video cameras as 

well as different mounting locations and resolutions [5]. 

Vehicles can serve as performance indicators for the 

transportation system if quantitative and qualitative road 

traffic characteristics are continuously monitored from fixed 

cameras. Low counting accuracy, categorizing a limited 

number of vehicle types, and tracking an object while 

determining its speed and direction of travel in all directions 

as it crosses the intersection's functional zone are the most 

commonly noted issues when evaluating real-time data from 

street cameras. Despite the obvious advantages of setting up 

such systems, not much study has been done to gather and 

analyze the speed and gesticulation patterns of traffic flows 

utilizing survey street cameras [6]. 

Traffic Monitoring Systems can be well organized by 

enabling the traffic data to be circulated to data centers in a 

quicker and faster way with the help of Cognitive Radio 

Networks (CRN). Since traffic monitoring involves real time 

streaming of video surveillance CRN will be the best option 

to communicate real time traffic.  

Cognitive Radio Networks (CRNs) clout the alterable 

mechanism to efficaciously utilize underutilized wireless 

spectrum abundantly available. In recent decades, a diverse 

spectrum of interests has been drawn to CRNs. A CR 
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network has two users namely Primary User (PU) also called 

as licensed user and the second user is Secondary User (SU) 

also called as Unlicensed user. One of their most alluring 

features is that they may allow a large number of unlicensed 

users, often referred to as Cognitive Users (CUs), to use 

licensed spectrum bands opportunistically, which will help 

to maximize the use of a licensed spectrum more effectively 

[7,8]. The CRNs routing protocol has drawn a lot of attention 

recently, since it uses the idle licensed spectrum to send and 

receive data packets between the two CUs. This provides the 

desired benefits for many potential applications, including 

IIoT, smart cities, the military, healthcare, and self-driving 

cars. For instance, this protocol will improve the 

send/receive spectrum for data packets in smart city 

applications, improve smart application communication, and 

lower user costs [9].  

With rapid development in smart cities, intelligent 

transportation systems can incorporate Cognitive Radio 

technology to address the main issue of band limited 

spectrum to communicate real time information about road 

traffic [10,11].  

Spectrum prediction is an important venture in CR networks 

where SUs senses the spectrum availability based on the 

absence of PU. Because spectrum prediction necessitates the 

ongoing monitoring of variables like transmission rate and 

channel status, it is not only a difficult task but also one that is 

computationally expensive to accomplish. 

In recent days, Machine learning algorithms are used to predict 

the availability of channels for transmitting real time data. To 

improve the accuracy of spectrum prediction, tree-based 

classifier models are used for intelligent transportation 

systems. Researchers have used different machine learning 

algorithms for traffic detection by vehicle detection. The main 

aim of our work is to use Cognitive Radio technology for fast 

communication of traffic related information among the users 

in CR Network. For spectrum sensing in the CR network, 

various tree-based classifier models are used for comparison. 

2. Literature Survey 

2.1. Traffic Management 

Traffic control can be achieved through the use of tracking and 

video surveillance [12]. The construction of an intelligent 

transportation system is aided by the important information 

that surveillance cameras provide, such as traffic density and 

vehicle information. Manual traffic monitoring and analysis is 

a laborious task. Road traffic density needs to be measured, 

particularly in large cities, in order to properly manage traffic 

and operate traffic signals.  

In [13,14], the authors propose an approach to traffic density 

estimation that does not include vehicle tracking. Four distinct 

picture thresholding methods [14] were used with the 

expectation–maximization (EM) algorithm [13] to determine 

which was the most accurate. Determining the image threshold 

might be considered an extreme form of contrast enhancement, 

i.e., making dark pixels darker and brilliant pixels lighter, for 

the purposes of image-in-video extraction and recognition. An 

intelligent transportation system's primary foundation is 

localization. Intelligent transportation relies heavily on the 

precise and quick localization of vehicles. Generally, nodes 

and automobiles rely on GPS signals for localization because 

of the highly dynamic nature of the vehicular network, vehicle 

mobility, and signal weakness caused by unfavourable 

wireless channel conditions. 

In rough terrain, GPS accuracy is only 10 meters or greater 

[15]. The accuracy of GPS-based localization has recently 

been increased through the use of cooperative localization. A 

distributed cooperative localization technique was presented 

by the authors in [16] that fuses V2X measurements through 

particle filtering. This technique is used in tunnels. Deep 

neural networks and low-resolution video surveillance system 

data are used in some research [17] to measure traffic density 

and count the number of autos on the route. Conventional 

machine vision techniques are exemplified by the systems 

created in [18], which examined freight traffic issues. The 

majority of recent works address the modification and 

enhancement of contemporary detection systems, including 

SSD [19], Yolo [20], and Faster R-CNN and genetic 

algorithms [21], in order to identify a vehicle. The current 

approaches to real-time vehicle detection and classification 

impose stringent installation location and camera performance 

requirements in addition to requiring substantial processing 

power.  

Most research works focussed on video surveillance and 

localization of vehicles which is highly hectic on 

implementation. 

2.2 CRN and Machine Learning Techniques 

A Cognitive radio network is an insightful and intuitive 

device that focuses on efficient channel utilization [22]. A 

CRN, or cognitive radio network, is a wireless system that 

uses resource allocation to manage current radio spectrum 

usage. The proliferation of wireless and mobile devices has 

led to problems with spectrum availability and resource 

allocation. CRNs have shown to be a very effective remedy 

for this issue [23]. The topic of spectrum assignment and 

access for CRNs is covered in [24], with an emphasis on 

interference that affects both users. In [25], a power mixture 

strategy for spectrum allocation is given. This technique 

increases the through-put to a CRN while satisfying the 

interference requirements for both users. The invasive weed 

optimization approach is suggested in [26] in order to 

improve the spectrum handoff efficiency, which represents 

load balancing and lowers handoff latency. Spectrum 

resources are allocated to smart grid users equitably in [27] 

using the standard grid configuration (SGCN).  For 

computational reasons related to mathematical structure, 
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wireless multiple-access channels have been utilized for PUs 

and the optimization of the energy efficiency (EE) problem 

seen in cognitive systems [28].  

Using cognitive radio and machine learning, a smart and 

intelligent traffic system can be created that is both 

successful and efficient [29,30]. Spectral and energy-

efficient smart traffic management systems and devices are 

necessary when they work with cognitive radiology [31,32]. 

The goal of machine learning, a well-known branch of 

computer science, is to create algorithms and software that 

can be tested and trained on a variety of interesting data sets 

and that can respond intelligently to new information [33]. 

The development of contemporary technologies, including 

speech recognition, computer vision, image processing, and 

object (face, text, posture, and people) detection in robots, 

depends on machine learning approaches and algorithms [34, 

35]. The intelligent traffic system can benefit from machine 

learning (ML) to convert traditional traffic management 

systems into smart and intelligent, given the successful 

application of ML in other scientific and technological 

domains. By integrating ML and CR technologies, it will be 

possible to realize the vision of intelligent traffic systems by 

enabling sensing and monitoring equipment to adjust their 

parameters in real-time for data transmission and processing 

based on dynamic radio conditions. 

In CRN, the main key feature where Machine learning 

algorithms can be applied are Spectrum Sensing (SS). One 

of the most predominant functions of a CR is spectrum 

sensing, which determines whether a PU is present or not. 

The SS problem can be stated as a classification problem, 

with a binary value as the output that indicates channel 

availability. For Supervised ML algorithms, let us assume M 

number of training data points a = {a (1), a (2),….. a(M)} 

with corresponding output labels b = {b (1), b (2), …… 

b(M)} that indicates the channel availability or 

unavailability. When an unknown data point a(i) is provided 

to the trained model, the model has to classify it to one of the 

class b(i), b(i) = 1 channel availability and b(i) = 0 channel 

unavailability. Support Vector Machine (SVM), k closest 

neighbour (KNN), Bayesian classifier, and artificial neural 

networks (ANN) are the most often utilized supervised 

machine learning algorithms in SS. 

In [36], every secondary user provides sensory data to the 

fusion centre, which analyses this data to determine whether 

the principal user is present worldwide.  Before using the 

combined signal to obtain a local result, a selection combiner 

(SC) combines the Energy Detector (ED) outputs with 

signals from the primary user (PU), which are established by 

various antennas on SU. A hybrid Support Vector Machine 

(SVM) is used at the Fusion Center (FC) to expunge SUs, 

which greatly enhances detection performance and lowers 

the quantity of false positives. In order to improve SVM 

performance in terms of detection probability and 

misclassification risk, two phase SVM is used in [37]. The 

classifier is trained using the energy levels of the PUs as 

feature vectors. A high-dimensional feature space was first 

created by mapping the incoming signal, and then SVM was 

employed for further classification in [38] feature-based 

testing. Decision statistics like energy detection, maximum-

minimum eigenvalue ratios, and their higher order 

combinations make up the feature vector. 

In order to increase spectrum sensing's identification rate, the 

paper [39] suggested using machine learning (ML) to 

optimize the RBF method. RBF algorithm is used in 

conjunction with SVM. The SVM/RBF method 

outperformed the RBF approach in terms of average 

spectrum detection success rate. This suggests that using 

machine learning to analyze the RBF neural network 

technique can increase spectrum sensing's success rate. The 

paper [40] proposes an effective feature extraction and 

reduction method-based SS model for CR based on machine 

learning (ML). The five stages of the proposed study are 

featuring extraction, dimensionality reduction, wavelet 

transform, noise removal, and classification. Ensemble 

machine learning classifiers such as Support Vector Machine 

(SVM), Naive Bayes (NB), and K-Nearest Neighbour 

(KNN) are used to identify whether the PU signal is active 

or not. To evaluate the effectiveness of the models for SS that 

are presented, simulations are run. The outcomes 

demonstrated that SVM, with its higher accuracy and lower 

SNR, achieves the greatest performance for SS. 

Through their parallel connection, long-short-term memory 

(LSTM) and convolutional neural networks (CNN) provide 

complementary feature extraction capabilities that are 

completely utilized by the cooperative spectrum sensing 

model developed by the study [41]. Among them, the CNN 

is used to extract hidden spatial information, and the LSTM 

network is used to extract time characteristics. When the 

network is connected serially, CNN and LSTM can both 

process the original dataset directly, preventing information 

feature loss. Three important CR-VANETs concerns are 

presented in this research [42]: optimal channel allocation to 

CR users, channel indexing for selective SS, and dependable 

Cooperative Spectrum Sensing (CSS). All three are 

addressed in a single framework. In CSS, Deep 

Reinforcement Learning (DRL) technique is applied to 

achieve the global CSS session by combining the local SS 

choice with more crucial features like the timestamp and the 

location of the sensing signal acquisition. To reduce CR 

users' sense overload, selective channel-based spectrum 

sensing is crucial.  The Long Short-Term Memory (LSTM) 

model, which is based on deep learning, is used in this study's 

time series analysis to index the key user channels for 

selective SS. In the end, we formulate the complicated 

environment as a Partial Observable Markov Decision 

Process (POMDP) framework and solve the channel 
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allocation to the CR-VANETs through a value iteration 

approach. 

Observations from Literature survey 

• In most of the research works, SVM, KNN, ANN 

and deep learning algorithms are used for SS in 

CRN. 

• The feature used in most of the ML and DL 

algorithms is Energy Statistics.  

Hence, the proposed model in this research is carried out 

with the help of tree-based machine learning algorithms like 

decision trees, random forest and XGBoost with probability 

vector features. Finally, the model is applied in real time 

traffic management and serves as a support for Intelligent 

Transportation Systems. 

3. System Model 

Figure 1 illustrates how the cognitive radio in the 

intelligent transportation system operates. To monitor the 

traffic conditions in various regions of the city, various 

sensing and monitoring nodes are installed on the traffic 

road. These nodes also conduct spectrum sensing at 

specific time slots, sharing the monitored data with the 

intelligent transportation system's central control. 

 

Fig 1. Cognitive Radio and tree-based ML models in 

Spectrum Prediction 

The same time frame (T) is shared by all sensor nodes, and 

it is further split into two time slots: T-s, or sensing, and T-

tr, or transmission. When the principal users' spectrums are 

judged free for use, the slot-sensing nodes in T-s transmit 

their data to the fusion centre or CR base station in the T-

tr slot. To exchange the data gathered from the sensing 

nodes, however, the CR base station speaks with other 

parts of the intelligent transportation system. Secondary 

users' sensed data is classified using tree-based algorithms 

(TBAs). The spectrum sensing's training and testing 

accuracy is assessed to determine whether or not the 

spectrum is open for use. Let us consider an intelligent 

transportation system with a centralized CR-based Sensor 

Network that comprises M wireless sensing nodes, further 

referred to as secondary users (SUs). The SUs can conduct 

spectrum sensing by applying a binary hypothesis test to 

the received signal. This can be stated as 

𝑆𝑖𝑔𝑛𝑎𝑙 (𝑛) = {
𝑃𝑟𝑖𝑚𝑎𝑟𝑦(𝑛) + 𝑁𝑜𝑖𝑠𝑒(𝑛),    𝐻𝑦𝑝(1)

𝑁𝑜𝑖𝑠𝑒(𝑛),   𝐻𝑦𝑝(0)
                  

(1) 

where Primary(n) represents the primary user’s signal and 

Noise(n) represents Additive White Gaussian Noise 

(AWGN). The binary hypothesis Hyp(0) and Hyp(1) 

represents the absence and presence of Primary User, 

respectively. There are other methods for doing spectrum 

sensing, but energy detection is the most widely used since 

it is simple to use and doesn't require any knowledge of the 

primary signal. 

Process demonstrates that SUs continuously scans the 

surrounding environment to gather the N number of 

received signal samples in accordance with Equation (1). 

The average energy of these N received samples can be 

calculated by taking the square of the magnitude of each 

sample and averaging the total number of received 

samples. It is necessary to compute a preset detection 

threshold in order to achieve a high target detection 

probability. After that, a preset detection threshold is 

compared to the average energy of the samples that were 

received. The final stage involves making a conclusion 

based on the comparison between the detection threshold 

and the average energy of the signal. The principal user is 

recognized as being present in the measured spectrum if the 

average energy exceeds the detection threshold; otherwise, 

SUs is free to use the spectrum. The average energy of the 

received primary signal samples, or test statistic T, is 

compared to the detection threshold. T can be written as 

𝑇 =  
1

𝑁
 ∑ ⬚𝑁

1 (𝑆𝑖𝑔𝑛𝑎𝑙(𝑛))2                              (2)  

Two crucial parameters related to spectrum sensing are 

probabilities of detection (P-d) and false alarm (P-f), which 

also demonstrate the effectiveness of CRNs. High (P-d) and 

low (P-f) are always necessary for an effective CRN. While 

(P-f) provides the incorrect probability of PU's presence in 

the provided spectrum, (P-d) truly provides us with the 

likelihood of PU's presence in the supplied spectrum. As a 

result, high (P-d) is always necessary to prevent SUs from 

interfering with PUs. However, low (P-f) is required for 

effective CRNs since it represents a lost chance to utilize the 

open spectrum. By comparing T with the established 

detection threshold λ, one can often calculate (P-d) and (P-f) 

based on whether the primary users are present in the 

spectrum. P-d and P-f can be defined as [43] in terms of T 

and λ. 

𝑃 − 𝑑 = Pr(𝑇 >  𝜆 | 𝐻𝑦𝑝(1)                                                  (3) 
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𝑃 − 𝑓 = Pr(𝑇 >  𝜆 | 𝐻𝑦𝑝(0))                                                (4) 

The first step in the spectrum sensing procedure is to divide 

the received signal into N samples, depending on the needs. 

Both (P-d) and (P-f) rely on N. Higher (P-d) and lower (P-f) 

are guaranteed by larger values of N. Thus, (P-d) and (P-f) 

have the following expressions [44]: 

𝑃 − 𝑑 = 𝑄 ((
𝜆

𝜎𝑛
2 −  𝛾 − 1) √

𝛮

2𝛾+1
)                                        (5) 

𝑃 − 𝑓 = 𝑄 (( 
𝜆

𝜎𝑛
2 − 1) √𝑁)                                                   (6) 

where Q(.) is called the Q-function, defined by 

𝑄(𝑥) =  
1

√2𝜋
 ∫ ⬚

∞

𝑥
𝑒𝑥𝑝 (− 

𝑣2

2
 ) 𝑑𝑣                                        (7) 

To reduce the likelihood of missing PU detections, a greater 

target detection probability (P-d1) is assumed in spectrum 

sensing. Interference with PU communication results from 

the failure to detect PU, which is undesired in CRNs. 

Consequently, one can utilize (P-d1) to get such a value of λ, 

which can be useful to get both lower (P-f) and higher (P-d): 

𝜆 =  𝜎𝑛
2(𝛾 + 1 + √

2𝛾+1

𝑁
 𝑄−1(𝑃 − 𝑑1)                                 (8) 

Steps: 

1. Energy detector: The entire process of energy 

detection involves comparing the received signal to 

the average energy of received signal samples using 

a pre-defined detection threshold. 

2. Calculating P-d and P-f: Theoretical and simulated 

values of P-d and P-f are calculated based on the 

equation 5, 6 and 7. 

3. Data Set creation: To construct a set of values for 

two probabilities, the estimated values of P-d and P-

f are supplied into the data generation block. 

4. Data training: During the data-training phase, the 

model is trained for 70% of the values in the data 

set. 

5. Data testing: 30% of the data set is left over after 

the model has been trained and tested. 

6. Evaluation by various tree-based ML algorithms 

4. Evaluation Metrics 

A variety of metrics were used to evaluate the effectiveness 

of a model and the generalization ability of the trained 

classifier. In order to find the optimal classifier during 

classification training, the assessment metrics are essential. 

4.1 Precision 

This is one of the evaluation measures that indicates the ratio 

of correctly anticipated positive outcomes to all expected 

positive values. A different way to define this would be a 

measure of the percentage of correctly predicted positive 

patterns in a positive class compared to all of the predicted 

patterns [51]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                   (9) 

4.2 Accuracy 

By calculating the ratio of correctly predicted positive and 

negative values to the total number of assessed cases, this 

metric evaluates the overall performance of the model [51]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   (10) 

5. Results and Discussions 

5.1. Data Modeling 

The spectrum sensing technique yields two distinct data 

sets, one derived from the theoretical approach and the other 

from the simulation process.  

Equations 5 and 6 are used to get the theoretical values of 

the probability of detection (P-d) and the chance of false 

alarm (P-f). Results from Matlab simulations are used to 

assess how well various tree-based machine learning 

models perform. SNR () = -10dB, target detection 

probability (P-d1) = 0.8, and frequency are set to fs = 8MHz.  

Spectrum-sensing data evaluation is done using Matlab's 

analysis of the categorization learning tool [69]. We 

generate the random noise and primary signal samples in 

Matlab to build an environment. To produce the noise and 

main signal independently, 500 Monte Carlo simulations are 

used. Each simulation calculates the average energy of the 

received signal for both noise only and noise with primary 

signal. The predetermined energy detection threshold is 

used to compare the average energy of the two scenarios. Pf 

is the number of times the average energy exceeds the 

threshold under hypothesis H0 (only noise) following 1000 

runs. The total number of simulations is then split by this 

figure. This process computes values of 100 Pf. Similarly, 

Pd is calculated as follows: under hypothesis H1 (noise + 

primary signal), Pd is equal to the total number of 

simulations divided by the number of times the average 

energy surpasses the threshold. The simulated values of Pd 

and Pf are computed in this manner. The classifiers are 

trained using 70% of the total data from both the theoretical 

and simulated data sets, with the remaining 30% being 

utilized for testing. 

All tree-based models are compared in terms of training 

(validation) and testing accuracy after being trained and 

tested in the classification learner. Tables 1 and 2 offer an 

analysis of the testing and training accuracies of many tree-

based classifiers using simulated data for 500, 1000, and 

1500 samples of the received signal. Tables 3 and 4 display 

the precision score. 
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The training and testing accuracies of several classifier types 

are shown in Table 1 and Figure 2. It is possible to deduce 

from the data that accuracy rises as sample count increases. 

The sensing findings alter in relation to P-d and P-f when the 

number of samples varies. In real-time scenarios, it exhibits 

high P-d and low P-f values as the number of samples grows. 

We assign a 1 to P-d and a 0 to P-f. It so gives the dataset 

more 1s than 0s. Consequently, classifiers that are taught 

with a large number of 1s yield high testing and training 

accuracies.  

 

 

 

For the same theoretical data set, Table 2 compares the 

testing and training accuracies of each classifier for 500, 

1000, and 1500 received signal samples. 

 

 

 

 

 

For the same simulated data set, Table 3 compares the 

precision scores of all classifiers for testing and training for 

500, 1000, and 1500 received signal samples. For the same 

simulated data set, Table 4 compares the precision scores of all 
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classifiers for testing and training for 500, 1000, and 1500 

received signal samples. 

The Random Forest classifier has a high accuracy and 

precision score based on the results of both theoretical and 

simulated data. The Random Forest tree classifier's theoretical 

and simulated data sets have average testing accuracies of 

90.28% and 91.74%, respectively. Comparably, the Random 

Forest tree classifier's average testing precision scores for the 

theoretical and simulated data sets are 89.57% and 91.08%, 

respectively. 

6. Conclusion 

Smart Intelligent Transport systems are revolutionizing in 

recent research works where incorporating Machine learning 

algorithms, sensor devices, and spectrum utilization can 

modernize the transportation system.  Cognitive Radio 

technology can be used to resolve spectrum scarcity problems 

for wireless sensor network-based applications. Machine 

learning algorithms help in efficient spectrum detection and 

prediction of available spectrum and helps CR technology for 

further efficient spectrum utilization. ML algorithms also help 

in receiving traffic related information to the base station via 

Primary user network without interference with other primary 

user communication. This paper uses tree-based machine 

learning methods to detect and forecast spectrum. The 

discovered energy value is utilized to forecast the spectrum's 

availability. Using both theoretical and simulation techniques, 

the data set for P-d and P-f is constructed using the detected 

energy values. The training and testing accuracy and precision 

scores are computed using several tree-based classifiers, such 

as random forest, gradient boost, XGBoost, and decision tree. 

The values of the simulated and theoretical data sets are used 

to apply the classifiers. The classifiers are used with varying 

sample ranges, beginning with 500, 1000, and 1500 samples. 

Random forest produces the highest accuracy and precision in 

testing and training out of all the classifiers. On theoretically 

produced values P-d and P-f data set, the random forest 

classifier's testing and training accuracies are 85.41% and 

85.20% for 500 samples, 90.40% and 91.38% for 1000 

samples, and 93.38% and 94.28% for 1500 samples. Using 

simulated P-d and P-f data sets, the random forest classifier's 

testing and training accuracies are 87.34% and 86.91% for 500 

samples, 92.42% and 92.19% for 1000 samples, and 96.48% 

and 96.12% for 1500 samples. 
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