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Abstract: Neurodegenerative diseases like Parkinson’s Diseases, Alzheimer’s Diseases, Multiple sclerosis and Huntington’s disease can 

severe a person’s walking style due to their impact on the brain and the nervous system. Gait analysis, which involves the study of a 

person's walking pattern and movement, plays a crucial role in the diagnosis and monitoring of these diseases. By examining changes in 

gait parameters such as stride length, walking speed, and balance, healthcare professionals can gather important information about the 

underlying neurological impairments and track disease progression. Gait analysis involves the measurement of various parameters, 

including the stride interval. Changes in the stride interval can indicate alterations in motor control and gait stability, allowing healthcare 

professionals to assess the severity of neurodegenerative diseases and monitor the effectiveness of treatment interventions. There is lack 

of research in studying the effect of Continuous Wavelet Transform (CWT) in stride intervals of the young people and old people. It is not 

clear whether the CWT is a feasible feature extraction method to classify the stride interval of old people and young people. The objective 

of this paper is to apply Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Random Forest algorithms to the maximum 

Root Mean Square (RMS) value of CWT to determine the most effective machine learning techniques for distinguishing between older 

and younger walking patterns. KNN stands out the best in performance by scoring 93% for all weighted average (precision), weighted 

average (recall) and weighted average (f1-score). SVM comes out second in performance by scoring 86% for weighted average (precision), 

83% for weighted average (recall) and 84% for weighted average (f1-score) with the shortest processing time, 3.2302s. From the boxplot 

of the Maximum CWT RMS of the young and the old people, it can be seen that the stride interval of the young people is higher and more 

diverse than the old people. 
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1. Introduction 

Stride intervals, integral to understanding human 

locomotion, describe the temporal aspect between two 

successive footfalls of the same foot, essentially marking the 

cycle from one step to the next [1], [2]. Within the realm of 

sports science and rehabilitation, monitoring and analyzing 

stride intervals can reveal patterns or deviations that may 

indicate fatigue, asymmetry, or potential for injury [3], [4]. 

Furthermore, the concept extends beyond athletic 

performance, offering researchers a window into the 

neuromuscular health of individuals, as changes in stride 

intervals can sometimes be early indicators of conditions 

affecting motor control, such as Parkinson's disease [5]–[8]. 

Machine learning is a rapidly growing field that involves the 

development of algorithms and models that can learn and 

make predictions from data without being explicitly 

programmed [9]. Traditionally, stride interval analysis was 

carried out by human experts, which was time-consuming 

and prone to human error. However, with the advent of 

machine learning, this process has been greatly streamlined 

and improved [10], [11]. One of the machine learning 

techniques used in analyzing stride intervals is the Support 

Vector Machine (SVM). SVM is a supervised learning 

algorithm that is commonly used for classification and 

regression tasks [12], [13]. SVM works by finding the 

optimal hyperplane that can separate data points of different 

classes in a high-dimensional space [14], [15]. Other than 

SVM, other machine learning techniques such as decision 

trees, random forests, and k-nearest neighbors have also 

been applied to the analysis of stride interval [16]. These 

methods work by identifying patterns and relationships in 

the data and using them to make predictions about new data 

points [17]. Current research does not clearly show the 

difference between young gait and old gait in terms of 

characteristic of the continuous wavelet transform on the 

stride interval. It is widely believed that the long – range 

correlations in old gait are reduced while the is higher 

stability in the young gait. 
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1.1. Past Research 

Gait of the old people and young people are becoming a 

research of great interest to many researchers. It was 

reported that the spatial parameters of the gait analysis of 

turning with amplitudes of 90°, 180° and 360° were higher 

for elderly because more time and steps are required to turn. 

It was suggested that turning can enhance the sensitivity to 

detect the biomechanical differences between young and old 

people [18]. The walking speed, stride length, step width 

and stride time were becoming the key parameters to 

analyze the performance of age simulation suit to simulate 

the aging process to be experimented in young adults [19]. 

The computation of DFA showed that stride interval was 

more random in elders and subjects with Parkinson’s 

disease [20]. CWT could be used on the time spectrum to 

analyze the gait pattern coupled with the use of Kalman 

filter [21]. Another research proposed the feeding of 

optimum statistical and entropy features that were extracted 

from the decomposed wavelet coefficients of the time series 

data [22]. CWT could be used on the analysis of the surface 

– electromyography (sEMG) signal to study the muscle 

activity of Parkinson’s subjects [23]. The accuracy of 

96.75% was achieved in the classification of 3 different 

neurodegenerative diseases by combining a novel neural 

network architecture and CWT [24]. One research utilised 

CWT to extract the main curve points of the ankle joints like 

peaks and valleys to analyze the performance of karate skills 

[25]. The classification of human activity could achieve 

accuracy of 97.48% and F1 score of 97.52% by performing 

Convoluted Neural Network (CNN) on the scalogram 

derived from CWT [26]. According to one research, CWT 

could be used on the acceleration and angular velocity of 

medial – lateral (ML), vertical (VT) and anteriorposterior 

(AP) which were collected from inertial measurement unit 

(IMU) sensors on the six lower limb locations to calculate 

the power spectral density. The result showed there were 

significant differences of the signals from male and female 

[27]. CWT was very useful in transforming the signal into 

time – frequency features which could then be extracted by 

CNN which helped to achieve the accuracy of 99.26% for 

human activity recognition [28]. Besides, 1D – CNN model 

could be trained on the signals that were decomposed by 

CWT for gait abnormality detection [29]. 

2. Materials and Methods 

Fig. 1 shows the overall flow chart of the experiment. The 

research starts with data collection from Physionet. The 

CWT instantaneous RMS of the data is collected, and the 

maximum values are derived. Then, the maximum values 

are then fed to the one-dimensional SVM, one-dimensional 

KNN and one-dimensional random forest. The accuracy, 

precision and F1 – score of the machine learning techniques 

are then computed to identify the best machine learning 

technique to be used in this research,  

 

Fig. 1. The Overall Flow Chart of the Experiment 

2.1. Data Acquisition and Feature Derivation 

Data from the Gait in Aging and Disease Database on 

Physionet was used to gather stride interval information 

from five elderly individuals (average age  of 74.6) and five 

young individuals (average age of 24.4) [30]. Both groups 

were directed to walk in a circular path for approximately 

15 minutes. Feature extraction was conducted using CWT 

methods. 

The CWT is a powerful tool for analyzing signals by 

decomposing them into a set of wavelets, which are 

localized in both time and frequency domains. The formula 

for the CWT of a signal f(t) with respect to a mother 

wavelet, ψ(t) is represented in Eq.(1) [31],[32]. 

𝑓𝑊(𝑎, 𝑏) = ∫ 𝑓(𝑡)
1

√𝑎
𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡 (1) 

W(a,b) is the wavelet transform of the function f(t). ψ^* (t) 

is the complex conjugate of the wavelet function, ψ(t). a and 

b are the scale and translation parameters, respectively. 

The choice of the mother wavelet is crucial, as it determines 

the time-frequency resolution and the ability to capture 

specific features of the signal. One commonly used mother 

wavelet is the Morlet wavelet, defined by its Fourier 

Transform as in Eq.(2) [33]. 

�̂�(𝜔) = 𝜋−
1

4𝑒−
𝜔

2𝑒𝑖𝜔0𝜔                                       (2) 

�̂�(𝜔) is the Fourier Transform of the wavelet function, 

𝜓(𝑡). 𝜔 is the frequency variable. 𝜔0 is a constant frequency 

offset. The 𝑒−
𝜔

2  term is a Gaussian Function, which gives 

the wavelet its shape in the frequency domain. The 𝑒𝑖𝜔0𝜔 

term is a complex exponential that shifts the wavelet in the 

frequency domain. The mother wavelet used in this project 

is the Morlet wavelet. 
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2.2. Machine Learning 

The classification of old and young gaits, using a mix of 

synthetic and original data in this paper, employs three 

different machine learning techniques, which are SVM, 

KNN and Random Forest.  

The key idea behind SVMs is to find the optimal hyperplane 

that separates different classes of data points with the 

maximum margin [34]. One of the key advantages of SVMs 

is their ability to handle non-linear decision boundaries by 

using kernel functions [35]. Kernel functions map the input 

data into a higher-dimensional feature space, where a linear 

hyperplane can separate the classes effectively. The 

different types of kernel functions include polynomial 

kernel, Radial Basis Function (RBF) kernel, linear kernel 

and sigmoid kernel [36]. 

The formulation of the hyperplane of SVM can be expressed 

in Eq.(3), subject to constraints, 𝑦𝑖 = (𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 −

𝜉𝑖 , 𝜉𝑖 ≥ 0. 

 

𝑊min(
1

2
||𝑤||2) + 𝐶∑𝜉𝑖  

(3) 

K-Nearest Neighbors (KNN) is a non-parametric, 

supervised machine learning algorithm used for 

classification and regression tasks. It is a simple yet 

powerful algorithm that classifies new data points based on 

their similarity to the existing data points in the training set 

[37]. The core idea behind KNN is to find the k nearest 

neighbors of a new data point and assign it the class label 

that is most common among those k neighbors. One of the 

key advantages of KNN is its simplicity and ease of 

implementation. It does not require any prior knowledge 

about the data distribution, and it can handle multi-class 

classification problems naturally. 

The mathematical formulation of KNN involves calculating 

the distance between the new data point and all the training 

data points, and then selecting the k nearest neighbors based 

on the smallest distances [38]. The most commonly used 

distance metric is the Euclidean distance, but other metrics 

like Manhattan distance or Minkowski distance can also be 

used. The classification decision is made by taking a 

majority vote among the k nearest neighbors, where the new 

data point is assigned the class label that is most frequent 

among its k nearest neighbors. 

Random forest is a powerful ensemble learning algorithm 

that combines multiple decision trees to improve predictive 

performance and robustness. The mathematical formulation 

of the random forest involves the following steps [39]: 

1) A bootstrap sample of size N is drawn from the original 

data, where N is the size of the training data. 

2) An unpruned decision tree is grown on the bootstrap 

sample, with the following randomization. 

a) At each node, m features are randomly selected 

from the total M features, where 𝑚 ≪ 𝑀. 

b) The best split among the m features is chosen. 

3) Steps 1 and 2 are repeated to grow a forest of trees 

equivalent to n_estimators. 

4) The prediction for a new instance is made by 

aggregating the predictions of all the individual trees 

in the forest. For classification tasks, the majority vote 

of the trees is taken. 

The SVM algorithm employs a random search approach to 

discover the optimal combination of parameter values, 

aiming to achieve the most favorable outcome. Table 1 

displays the parameters included in the random search 

algorithm. The random search involves randomly sampling 

candidate solutions from the search space and evaluating 

their fitness or objective function value. Random search 

space consists of four key steps which are listed below 

[40],[41]: 

1) The search space is defined. The range or domain of 

the variables or parameters to be optimized is 

specified. 

2) General candidate solutions within the defined search 

space are randomly generated. 

3) For each randomly generated candidate solution, its 

fitness or objective value function is evaluated. 

4) Steps 2 and 3 are repeated for a specified number of 

iterations. 

Table 1. The Range of Variables in SVM’s Random 

Search Method 

Parameters Values 

C Between 0 and 1000 

𝛾 Between 0 to 1 

Kernel Linear, Polynomial, RBF, 

Sigmoid 

Random state 

 

None, 42 

Based on Table 1, the ′𝐶′ parameter controls the 

regularization strength in the SVM model. The ′𝛾′ parameter 

defines how much influence a single training example has. 

A small ′𝛾′ value means the kernel considers a wider area 

around each training instance, effectively using a larger 

radius of influence. A large ′𝛾′ value means the kernel only 

considers very close training instances, using a smaller area 

of influence. In a random state, ‘None’ means that the 

random state is not fixed and will be different each time and 

‘42’ means that the same random initialization will be 

produced every time. 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1007–1015  |  1010 

The grid search cross-validation technique is used in KNN 

to determine optimal parameter values that yield the best 

results. Table 2 displays the parameters included in the grid 

search cross-validation process. Grid search cross-

validation is a technique used in machine learning to tune 

the hyperparameters of a model by systematically 

evaluating its performance across a grid of hyperparameter 

values. Grid search cross-validation consists of the 

following steps [42]: 

 

1) The hyperparameter search space is defined by 

specifying the range or set of values for each parameter 

to be tuned. 

2) A grid is created by considering all possible 

combinations of the hyperparameter values. 

3) For each combination in the grid: 

a) The model is trained using that set of 

hyperparameters. 

b) The model’s performance is evaluated using cross-

validation on a held-out validation set. 

4) The hyperparameter combination that yields the best 

performance metric on the validation set is selected. 

Table 2. The Range of Variables in KNN’s Grid Search 

Cross – Validation Technique 

Parameters Values 

k_range Between 1 and 31 

weight_options uniform, distance 

algorithm_options auto, ball_tree, kd_tree, 

brute 

p_values 1,2 

 

Based on Table 2, ‘k_range’ represents the values for the 

‘n_neighbors’ parameter in the KNN algorithm, which 

determines the number of nearest neighbors to consider 

when making predictions. The ‘weight_options’ determines 

how the contributions of the neighbors are weighted when 

making predictions. The 'uniform' assigns equal weights to 

all neighbors, while 'distance' assigns weights inversely 

proportional to their distances from the target point. The 

‘algorithm_options’ determines the algorithm used to 

compute the nearest neighbors. The 'auto' allows the 

algorithm to decide the most appropriate strategy based on 

the input data, while the other options specify the specific 

algorithm to use. The ‘p_values’ represents the possible 

values for the p parameter in the Minkowski distance metric 

used by the KNN algorithm. When ‘p_values’=1, it 

corresponds to the Manhattan distance, and when 

‘p_values’=2, it corresponds to the Euclidean distance. 

Similar to SVM, Random Forest utilizes a random search 

approach to identify the most effective parameter values that 

lead to optimal results. Table 3 displays the parameters 

included in the random search algorithm for Random Forest. 

Table 3. The Range of Variables in Random Forest’s 

Random Search Method 

Parameters Values 

n_estimators Between 200 and 2000 

max_depth Between 10 and 110 

min_samples_split 2,5,10 

min_samples_leaf 1,2,4 

 

Based on Table 3, ‘n_estimators’ represents the number of 

decision trees to be used in the Random Forest algorithm. 

The ‘max_depth’ represents the maximum depth of the trees 

in the Random Forest. A larger value of ‘max_depth’ allows 

the trees to grow deeper, potentially capturing more 

complex patterns in the data. The ‘min_samples_split’ 

represents the minimum number of samples required to split 

an internal node in the decision trees. A higher value for 

‘min_samples_split’ can help prevent overfitting on noisy 

or insignificant data. The ‘min_samples_leaf’ represents the 

minimum number of samples required to be at a leaf node. 

The machine learning's performance for SVM, KNN and 

Random Forest are evaluated using metrics such as 

precision, recall, and the F1 score which are represented in 

Eq. (4), (5) and (6) respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
          (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                       (5) 

𝑃𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                    (6) 

3. Results and Discussions 

Fig. 2 shows the boxplot of the maximum CWT RMS for 

old and young gait. Fig. 2 shows that the maximum CWT 

RMS of the stride interval of the young people is higher than 

that of old people which indicates that the stride interval of 

the young people is higher. The range of the maximum 

CWT RMS of the young people which can be seen from the 

length of the boxplot is higher than that of the old people 

which indicates that the stride interval of the young people 

is more diverse. 
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Fig. 2.  The Boxplot of Maximum CWT RMS for Stride 

Interval of Old and Young Gait   

Tables 4, 5, and 6 display the optimal parameters for 

Support Vector Machines (SVM), K-Nearest Neighbors 

(KNN), and Random Forest models, respectively. 

Table 4. SVM’s Variables Derived by Random Search 

Method 

Parameters Values 

C 255.14251480865047 

𝛾 0.43036282552725214 

Kernel RBF 

Random state 42 

 

Table 5. KNN’s Variables Derived by Grid Search Cross-

Validation Method 

Parameters Values 

k_range 16 

weight_options uniform 

algorithm_options auto 

p_values 1 

 

Table 6. Random Forest’s Variables Derived by Random 

Search Method 

Parameters Values 

n_estimators 1200 

max_depth 50 

min_samples_split 10 

min_samples_leaf 4 

 

The classification reports, which are based on a single input 

of Maximum CWT RMS, are displayed in Fig. 3, Fig. 4 and 

Fig. 5. These reports are generated using SVM, KNN, and 

Random Forest algorithms respectively. 

 

 

Fig. 3.  The SVM’s Classification Report with a Singular 

Input, Maximum CWT RMS 

 

Fig. 4.  The KNN’s Classification Report with a Singular 

Input, Maximum CWT RMS 

 

Fig. 5.  The Random Forest’s Classification Report with a 

Singular Input, Maximum CWT RMS 

The machine learning outcomes of the SVM and KNN, each 

with a single input of Maximum CWT RMS, are depicted in 

the visual graphs presented in Fig. 6 and Fig. 7. 

 

Fig. 6. The Graphical Representation of SVM with a 

Singular Input, Maximum CWT RMS 
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Fig. 7. The Graphical Representation of KNN with a 

Singular Input, Maximum CWT RMS 

Fig. 8 illustrates a decision tree derived from a random 

forest model with only one input, which is the Maximum 

CWT RMS. 

 

Fig. 8. A Single Decision Tree from the Collection of 1200 

Decision Trees with Single Input, Maximum CWT RMS 

Fig. 9 displays the outcomes of SVM, including 15 instances 

of true negatives, 1 false positive, 6 false negatives, and 20 

true positives. Fig. 10 depicts the results of KNN, 

comprising 15 true negatives, 1 false positive, 2 false 

negatives, and 24 true positives. Fig. 11 showcases the 

results of the random forest, with 13 true negatives, 3 false 

positives, 4 false negatives, and 22 true positives. 

 

 

Fig. 9. The Confusion Matrix for SVM that Uses Single 

Input, Maximum CWT RMS 

 

Fig. 10. The Confusion Matrix for KNN that Uses Single 

Input, Maximum CWT RMS 

 

Fig. 11. The Confusion Matrix for the Random Forest that 

Uses a Single Input, Maximum CWT RMS 

Table 7 presents the computation durations for SVM, KNN, 

and Random Forest when applied to the maximum CWT 

RMS. A glance at Table 7 reveals that SVM has the quickest 

processing time of 3.2302 seconds, while Random Forest 

takes the longest time, clocking in at 280.9027 seconds. 

Table 7. The Duration Required for SVM, KNN, and 

Random Forest to Process the Maximum CWT RMS 

Algorithm Processing Time (sec) 

SVM 3.2302 

KNN 17.3960 
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Random Forest 280.9027 

 

Table 8 presents a summary of the weighted averages for 

precision, recall, and the f1-score, as per the classification 

report for various algorithm implementations, including 

SVM, KNN, and Random Forest. An examination of Table 

8 reveals that, in terms of the weighted averages of 

precision, recall, and the f1-score, KNN outperforms both 

SVM and Random Forest. 

Table 8. A Synopsis of the Weighted Mean Derived from 

the Classification Report of SVM, KNN, and Random 

Forest, using a Single Input, the Maximum CWT RMS 

Algorithm Weighted 

Average 

(Precision) 

Weighted 

Average 

(recall) 

Weighted 

Average(f1-

score) 

SVM 0.86 0.83 0.84 

KNN 0.93 0.93 0.93 

Random 

Forest 

0.84 0.83 0.83 

 

4. Conclusions 

The result of the random search method for SVM shows that 

the value of ′𝑪′ of 255.143, and the value of ′𝜸′ of 0.430 

with the use of RBF kernel and random state of 42 offers the 

best performance of SVM. The result of the grid search 

cross-validation technique for KNN shows that the uniform 

vote of the nearest 16 neighbors with the use of the 'auto' 

algorithm and calculation of distance using Manhattan 

distance offers the best performance. The testing of the 

machine learning system in classifying the old gait and 

young gait shows the following result. The result of the 

random search method for random forest shows that the 

number of decision trees of 1200, the maximum depth of 

trees of 50, the minimum number of samples required to 

split an internal node in the decision tree is 10 and the 

minimum samples of leaf required to be at a leaf node to be 

4. KNN stands out the best in performance by scoring 93% 

for weighted average (precision), weighted average (recall) 

and weighted average (f1 – score). SVM comes out second 

in performance by scoring 86% for weighted average 

(precision), 83% for weighted average (recall) and 84% for 

weighted average (f1-score) with the shortest processing 

time, 3.2302s. From the boxplot of the Maximum CWT 

RMS of the young and the old people, it can be seen that the 

stride interval of the young people is higher and more 

diverse than the old people.  
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