

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4591–4596 | 4591

Defining a Standard Classification in Activity Model Confirmation,

Approval and Adjustment

Dr. Prasanna Kumar M. 1, Dr. Kiran P 2, Dr. Bhavani Shankar K. 3, Dhanraj 4

Submitted: 04/02/2024 Revised: 13/03/2024 Accepted: 20/03/2024

Abstract Defining a standard classification in activity model confirmation, approval, and adjustment for software development is crucial

to navigating the complexities of the software development lifecycle effectively. This classification framework provides a structured

approach to managing various activities, ensuring consistency, transparency, and quality throughout the process. The framework

addresses the challenges posed by diverse stakeholders, the evolving nature of technology, and the need for efficient resource allocation.

It balances structured processes with the flexibility to adapt to changing requirements, promoting collaboration and communication

among teams. By establishing clear stages of confirmation, approval, and adjustment, the framework enhances decision-making, risk

management, and project visibility. It facilitates efficient resource allocation, reduces bottlenecks, and fosters a culture of continuous

improvement. In conclusion, the standard classification framework empowers organizations to streamline software development,

optimize resource utilization, and adapt to industry shifts. It serves as a guiding beacon, ensuring that each activity progresses through

well-defined stages, leading to successful software outcomes in an ever-changing landscape.

Keywords: Standard classification , activity model , adjustment & software development.

1. Introduction

In the realm of software development, the process of

defining a standard classification in activity model

confirmation, approval, and adjustment holds a pivotal

role. This framework provides a structured and systematic

approach to managing the intricate stages that software

activities undergo. By establishing clear criteria and

guidelines for confirming, approving, and adjusting these

activities, this classification ensures consistency,

transparency, and effective

resource allocation. This introduction explores how this

standardized framework addresses the challenges posed by

diverse stakeholders, the dynamic nature of technology,

and the imperative of maintaining a balance between

structured processes and adaptive flexibility. Through this

classification, software development endeavors are poised

to make informed decisions, mitigate risks, and drive

continuous improvement, ultimately leading to successful

outcomes in the ever-evolving landscape of software

development.

2. Background

Defining a standard classification in activity model

confirmation, approval, and adjustment for software

development is rooted in the need for structured and

efficient management of the software development

lifecycle. This background highlights the reasons why such

a classification is essential:

1. Complexity of Software Projects: Software

development involves multifaceted processes, tasks,

and activities. Without a standardized classification, it

can be challenging to keep track of the various stages

an activity goes through, leading to confusion,

miscommunication, and potential delays[1.2]

2. Consistency and Quality Assurance: A standardized

classification ensures that each activity undergoes a

consistent review and approval process. This

consistency contributes to higher quality software by

enforcing thorough assessments, risk evaluations, and

alignment with business objectives.

3. Effective Resource Allocation: Software development

requires careful allocation of resources, including

time, personnel, and technology. With a standard

classification, resources can be allocated based on the

specific needs and priorities of each stage, leading to

more efficient use of available resources.

4. Transparent Decision-Making: Clearly defined stages

of confirmation, approval, and adjustment promote

transparency in decision-making. Stakeholders can

easily understand the status of each activity, the

rationale behind decisions, and the steps taken to

address feedback or changes.

5. Risk Management and Mitigation: Software projects

are prone to risks, including scope creep, technology

challenges, and shifting requirements. A standardized

1 Associate Professor, Department of CSE, RNS Institute of

Technology, Bengaluru, Karnataka, India
2 Professor and Head, Department of CSE, RNS Institute of
Technology, Bengaluru, Karnataka, India
3 Associate Professor, Department of CSE, RNS Institute of

Technology, Bengaluru, Karnataka, India
4 Assistant Professor, Department of CSE(Cy), RNS Institute of

Technology, Bengaluru, Karnataka, India

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4591–4596 | 4592

classification framework allows for systematic risk

assessment at different stages, enabling timely

identification and mitigation of potential issues.

6. Adaptability to Change: The software industry is

characterized by its rapid pace of change. A

standardized classification accommodates changes

and adjustments, ensuring that software development

remains agile and responsive to evolving business

needs and technological advancements.

7. Collaboration and Communication: Effective

collaboration among cross-functional teams is crucial

for successful software development. A standardized

classification provides a common language and

framework for communication, making it easier for

teams to work together seamlessly[3,4]

8. Auditing and Compliance: In regulated industries or

organizations with strict governance requirements, a

standardized classification provides a clear audit trail.

This documentation helps demonstrate compliance

with industry standards, regulations, and internal

policies.

9. Continuous Improvement: The adjustment phase of

the classification encourages a culture of continuous

improvement. Regularly evaluating and fine-tuning

activities based on feedback and lessons learned

contributes to ongoing enhancements in processes

and outcomes.

10. Project Visibility and Reporting: A standardized

classification system facilitates project tracking,

reporting, and status updates. Managers and

stakeholders can gain insights into the progress of

activities, making it easier to make informed

decisions and manage expectations.

11. Reduced Bottlenecks: A standardized process reduces

bottlenecks that can occur when activities are delayed

due to unclear or inconsistent approval procedures.

Well-defined stages ensure that activities progress

smoothly through the development lifecycle.

12. Efficiency and Time Savings: With a standard

classification, teams can avoid redundant discussions

and unnecessary delays. Activities can move through

the confirmation, approval, and adjustment stages

more efficiently, leading to faster software

development cycles.

Overall, a standardized classification in activity model

confirmation, approval, and adjustment addresses the

unique challenges and demands of software development

by providing a structured framework that enhances

communication, quality, and decision-making throughout

the software development process.

3. Defining a standard classification in activity model

confirmation, approval and adjustment. for

software development

In the context of software development, the terms "activity

model confirmation," "approval," and "adjustment" suggest

a process for managing and governing software

development activities[5,6]. It seems like you're trying to

establish a standard classification or framework for these

activities. Here's a possible definition and breakdown:

Activity Model Confirmation, Approval, and

Adjustment Framework:

1. Activity Model Confirmation:

Activity model confirmation involves the initial creation or

design of a software development activity or process. This

stage focuses on outlining the scope, objectives,

requirements, and resources needed for the activity. The

confirmation phase ensures that all stakeholders are

aligned on the intended course of action before proceeding.

Key Steps:

- Identify the purpose and goals of the activity.

- Define the scope and boundaries of the activity.

- Document the requirements and resources needed.

- Engage relevant stakeholders for feedback and

alignment.

- Obtain formal approval or confirmation to proceed.

2. Approval:

The approval phase is where the outlined software

development activity is reviewed by stakeholders and

decision-makers. This review ensures that the proposed

activity aligns with business objectives, complies with

relevant standards, and is feasible within the organization's

resources. Approvals are necessary to move forward with

the activity.

Key Steps:

- Review the activity model for feasibility and

alignment with business goals.

- Assess the potential impact on existing processes and

systems.

- Evaluate resource availability, including personnel

and technology.

- Conduct risk assessment and mitigation planning.

- Obtain approvals from relevant stakeholders or

governing bodies.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4591–4596 | 4593

3. Adjustment:

The adjustment phase involves making modifications or

refinements to the approved activity model based on

feedback, changing circumstances, or new insights.

Adjustments ensure that the activity remains relevant and

effective throughout its execution. This phase may occur

iteratively during the software development lifecycle.

Key Steps:

- Analyze feedback received during the approval

process.

- Identify areas for improvement, optimization, or

correction.

- Make necessary adjustments to the activity model.

- Validate the updated model against requirements and

objectives.

- Communicate changes to stakeholders and obtain any

required re-approvals.

Benefits of the Framework:

- Clarity and Alignment: The framework provides a

structured approach to defining, reviewing, and

modifying software development activities,

promoting clarity and alignment among

stakeholders[7].

- Risk Management: Formal approvals and adjustments

help in identifying and mitigating risks early in the

process, reducing potential disruptions.

- Efficiency: By confirming, approving, and adjusting

activities, you ensure that resources are allocated

efficiently and that development efforts are focused

on high-priority tasks.

- Adaptability: The adjustment phase allows for

flexibility and adaptability, enabling software

development activities to evolve based on changing

requirements and circumstances.

- Documentation: Formal confirmation, approval, and

adjustment processes ensure that decisions are

documented, providing a clear record of the rationale

behind each activity.

Remember that this framework is a generalized approach.

You should tailor it to your organization's specific needs,

industry, and development methodologies. Additionally,

involving relevant stakeholders at each phase is crucial for

its successful implementation.

4. NEED

Defining a standard classification for activity model

confirmation, approval, and adjustment in software

development is essential for several reasons:

1. Consistency and Clarity: A standardized

classification ensures that all stakeholders involved in

software development understand the process and

terminology consistently. This clarity reduces

confusion, misunderstandings, and

miscommunications that can arise when different

teams or individuals have varying interpretations.

2. Efficient Decision-Making: Clear definitions and

classifications facilitate efficient decision- making.

Stakeholders can quickly assess where a specific

activity or process stands in terms of confirmation,

approval, or adjustment. This streamlines the

decision-making process, especially when multiple

activities are ongoing simultaneously.

3. Transparency: A standardized framework promotes

transparency in software development activities.

When the criteria and steps for confirmation,

approval, and adjustment are well- defined,

stakeholders can easily access information about the

status and progress of various activities. This

transparency fosters trust and accountability among

team members.

4. Risk Management: Clearly defined stages for

confirmation, approval, and adjustment help identify

potential risks early in the software development

lifecycle. Each stage provides an opportunity to

assess risks, make informed decisions, and implement

necessary changes to mitigate those risks before they

escalate.

5. Quality Assurance: Standardized processes contribute

to higher-quality software products. Activities that go

through a well-defined confirmation and approval

process are more likely to meet quality standards and

align with business requirements. Adjustments made

based on structured feedback lead to continuous

improvement and refined outcomes.

6. Resource Allocation: By categorizing activities into

confirmation, approval, and adjustment stages,

resource allocation becomes more effective.

Adequate resources can be allocated based on the

priority and criticality of each activity, ensuring that

the right people, tools, and time are dedicated to each

phase.

7. Adaptability and Flexibility: While standardization is

important, the framework can also accommodate

adaptability and flexibility. The adjustment phase

allows for revisions based on evolving circumstances

or feedback, ensuring that software development

remains responsive to changing requirements.

8. Communication and Collaboration: A standardized

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4591–4596 | 4594

classification system enhances communication and

collaboration among cross-functional teams. When

everyone understands the stages of activity

progression, discussions about project status, updates,

and changes become more effective and meaningful.

9. Documentation and Audit Trail: Standardized

confirmation, approval, and adjustment processes

provide a clear documentation trail. This

documentation helps in tracking decisions, justifying

changes, and facilitating audits or compliance

requirements that may arise during or after software

development.

10. Continuous Improvement: By systematically

evaluating and adjusting activities, the framework

promotes a culture of continuous improvement.

Lessons learned from adjustments made can be

incorporated into future activities, leading to

enhanced processes and outcomes over time.

In summary, a standardized classification for activity

model confirmation, approval, and adjustment in software

development is crucial for promoting consistency,

transparency, efficiency, and quality throughout the

development lifecycle. It provides a structured approach to

decision-making, risk management, and collaboration,

ultimately contributing to successful software delivery.

5. Challenges

Defining a standard classification for activity model

confirmation, approval, and adjustment in software

development can be accompanied by several challenges.

These challenges may arise due to the complexity of

software projects, organizational dynamics, and the

evolving nature of technology. Some of the challenges

include[8,9]:

1. Diverse Stakeholders: Software development

involves various stakeholders with differing

perspectives, roles, and priorities. It can be

challenging to align all stakeholders' expectations and

needs when defining a standard classification,

especially if there is a lack of clear communication

and collaboration channels.

2. Complexity of Activities: Software development

activities can vary widely in complexity, size, and

impact. Defining a one-size-fits-all classification may

not adequately capture the nuances of different types

of activities, leading to confusion or misclassification.

3. Evolving Technology: The rapid pace of

technological change means that new tools,

methodologies, and practices emerge frequently. This

can make it challenging to create a static standard

classification that remains relevant over time.

4. Cultural Resistance: Introducing a standardized

classification may face resistance from individuals or

teams who are accustomed to existing processes.

Cultural resistance can hinder the adoption of the new

framework and lead to challenges in implementation.

5. Balancing Flexibility and Control: While

standardization is important, it's crucial to strike a

balance between providing a structured framework

and allowing flexibility to accommodate unique

project requirements and unexpected developments.

6. Lack of Clear Ownership: Assigning ownership of

the classification framework and its enforcement can

be challenging. Without clear ownership, there may

be confusion about who is responsible for

maintaining and updating the framework as needed.

7. Change Management: Implementing a new

classification framework requires change

management efforts to ensure smooth adoption.

Resistance to change and the need for training and

communication can pose challenges during this

process.

8. Adoption and Training: Ensuring that all team

members understand and adopt the new classification

system can be difficult. Proper training and ongoing

support may be necessary to overcome learning

curves and ensure consistent usage.

9. Interdepartmental Coordination: In larger

organizations, different departments or teams may

have their own processes and terminologies.

Coordinating and aligning these diverse practices to

fit into a standardized classification can be a complex

task.

10. Measuring Effectiveness: It can be challenging to

measure the effectiveness of the new classification

framework in terms of improved outcomes, efficiency

gains, and better decision- making. Developing

relevant metrics and gathering data may require

additional effort.

11. Resistance to Adjustments: The adjustment phase

may encounter resistance from stakeholders who are

hesitant to change approved activities. Convincing

stakeholders of the need for adjustments and

obtaining re-approvals can be time-consuming.

12. Overhead and Documentation: Introducing a

standardized classification might add an extra layer of

overhead in terms of documentation and

administrative tasks. Finding ways to streamline and

automate these processes can be challenging.

To overcome these challenges, it's important to involve key

stakeholders early in the process, communicate the benefits

of the standard classification, and emphasize the alignment

of the framework with organizational goals. Flexibility,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4591–4596 | 4595

ongoing feedback loops, and a willingness to adapt the

framework based on real-world experiences can also

contribute to successful implementation.

6. Conclusion

In conclusion, establishing a standard classification

framework for activity model confirmation, approval, and

adjustment in software development is a strategic

imperative that addresses the dynamic and intricate nature

of the software development lifecycle. This comprehensive

framework not only streamlines processes but also fosters

a culture of collaboration, transparency, and continuous

improvement[10]. By providing a structured pathway for

activities to progress through these stages, organizations

can navigate the complexities of software development

with enhanced efficiency, quality assurance, and risk

management. The significance of this standardized

classification becomes even more evident when

considering the multifaceted challenges that software

projects often encounter. From diverse stakeholder

perspectives to the rapid evolution of technology, and from

the need for effective resource allocation to the imperative

of adapting to change, the framework acts as a guiding

light that illuminates a clear and consistent path forward.

Moreover, the framework doesn't just resolve challenges; it

transforms them into opportunities. It empowers teams to

communicate effectively, make informed decisions, and

allocate resources judiciously. It equips organizations to

embrace change and innovation, nurturing an environment

where software development thrives in tandem with

evolving business needs and technological advancements.

Ultimately, the standard classification in activity model

confirmation, approval, and adjustment for software

development transcends mere procedural categorization. It

embodies the collective wisdom of best practices, industry

insights, and organizational values. It is a compass that

directs software development endeavors toward success,

ensuring that each activity is meticulously confirmed,

thoughtfully approved, and dynamically adjusted as

needed. With this framework in place, organizations can

embark on their software development journeys with

clarity, purpose, and the confidence that they are

navigating toward optimal outcomes in an ever-changing

digital landscape.

References:

[1] M. R. Wigan and R. Clarke, "Big Data's Big

Unintended Consequences," in Computer, vol. 46, no.

6, pp. 46-53, June 2013. doi: 10.1109/MC.2013.195

 keywords: {Information management; Data handling;

Data storage systems; Government policies;

Databases; Business; Legal aspects; Data privacy;

policy; privacy; data; social impact; big data; private

data commons},

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=

6527249&isnumber=6527234

[2] Broggi et al., "PROUD—Public Road Urban

Driverless-Car Test," in IEEE Transactions on

Intelligent Transportation Systems, vol. 16, no. 6,

pp. 3508-3519, Dec. 2015.

 doi: 10.1109/TITS.2015.2477556

 keywords: {Autonomous automobiles; Intelligent

systems; Image processing; Data integration; Systems

architecture; Urban areas; Autonomous vehicles;

intelligent systems; image processing; data fusion;

system architecture; Autonomous vehicles; intelligent

systems; image processing; data fusion; system

architecture},

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=

7274741&isnumber=7330243

[3] L. Li, W. -L. Huang, Y. Liu, N. -N. Zheng and F. -Y.

Wang, "Intelligence Testing for Autonomous

Vehicles: A New Approach," in IEEE Transactions

on Intelligent Vehicles, vol. 1, no. 2, pp. 158-166,

June 2016.

 doi: 10.1109/TIV.2016.2608003

 keywords: {Autonomous automobiles; Vehicles;

Testing; Intelligent vehicles; Semantics; Roads;

Prototypes; Autonomous vehicles; intelligence

testing},

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=

7571159&isnumber=7769266

[4] L. Li and D. Wen, "Parallel Systems for Traffic

Control: A Rethinking," in IEEE Transactions on

Intelligent Transportation Systems, vol. 17, no. 4, pp.

1179-1182, April 2016.

 doi: 10.1109/TITS.2015.2494625

 keywords: {Transportation; Optimal control;

Uncertainty; Computational modeling; Traffic

control; Predictive control; Traffic control; parallel

systems; parallel traffic control; Traffic control;

parallel systems; parallel traffic control},

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=

7328734&isnumber=7442200

[5] L. Li, Y. Lin, N. Zheng and F. -Y. Wang, "Parallel

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4591–4596 | 4596

learning: a perspective and a framework," in

IEEE/CAA Journal of Automatica Sinica, vol. 4, no.

3, pp. 389-395, 2017.

 doi: 10.1109/JAS.2017.7510493

 keywords: {Learning systems; Complex systems;

Control systems; Aerospace electronics; Games;

Automation; Data models},

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=

7974888&isnumber=7974885

[6] W. B. Langdon, S. Yoo and M. Harman, "Inferring

Automatic Test Oracles," 2017 IEEE/ACM 10th

International Workshop on Search-Based Software

Testing (SBST), Buenos Aires, Argentina, 2017, pp.

5-6.

 doi: 10.1109/SBST.2017.1

 keywords: {Software; Artificial intelligence;

Software engineering; Software testing;

Programming; Neural networks; SBSE; Multiplicity

computing; deep testing; Search Based Automatic

Oracles},

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=

7967913&isnumber=7967900

[7] Podgurski et al., "Automated support for classifying

software failure reports," 25th International

Conference on Software Engineering, 2003.

Proceedings., Portland, OR, USA, 2003, pp. 465-475.

 doi: 10.1109/ICSE.2003.1201224

 keywords: {Computer crashes; Frequency estimation;

Terminology; Visualization; Humans; Estimation

error; Instruments},

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=

1201224&isnumber=27042

[8] P. Francis, D. Leon, M. Minch and A. Podgurski,

"Tree-based methods for classifying software

failures," 15th International Symposium on Software

Reliability Engineering, Saint-Malo, France, 2004,

pp. 451-462.

 doi: 10.1109/ISSRE.2004.43

 keywords: {Classification tree analysis; Clustering

algorithms; Pattern classification; Iterative

algorithms; Computer science; Software testing; Data

analysis; Data mining; Failure analysis; Information

analysis},

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=

1383139&isnumber=30138

[9] [9]. T. Y. Chen, Jianqiang Feng and T. H.

Tse, "Metamorphic testing of programs on partial

differential equations: a case study," Proceedings

26th Annual International Computer Software and

Applications, Oxford, UK, 2002, pp. 327-333.

 doi: 10.1109/CMPSAC.2002.1045022

 keywords: {Partial differential equations; Computer

aided software engineering; Application software;

Software libraries; Boundary conditions; Software

testing; Software standards; Biomedical engineering;

Mission critical systems; Packaging},

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=

1045022&isnumber=22390

[10] J. Mayer and R. Guderlei, "On Random Testing of

Image Processing Applications," 2006 Sixth

International Conference on Quality Software

(QSIC'06), Beijing, China, 2006, pp. 85-92.

 doi: 10.1109/QSIC.2006.45

 keywords: {Image processing; Automatic testing;

Pixel; Image analysis; Digital images; Gray-scale;

Euclidean distance; Genetic mutations; Software

testing; Software quality; Metamorphic Testing;

Random Testing; test data selection; test evaluation;

testing oracle},

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=

4032272&isnumber=4032251

