
 

 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-679                                                   www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1059–1064  |  1059 

 

Forecasting Stability in Super-Lift Converters Utilizing Averaging 

Technique 

 
 Chamundeeswari V.1, Niraimathi R.2, Neraimathi S.3, Madhumitha S. 4 

 
 

Submitted: 11/03/2024    Revised: 27/04/2024     Accepted: 04/05/2024 

Abstract: This work presents a thorough investigation into DC-DC converters, employing a state-space modelling approach for a 

comprehensive analysis. The study initiates with the establishment of a dynamic state-space representation, capturing the converters' 

behaviour under varying operational conditions. To understand steady-state features and transient responses, a comprehensive DC analysis 

is performed. Utilizing small-signal linearization techniques, the AC analysis leads to the derivation of the transfer function, revealing the 

system's frequency-dependent dynamics. The paper concludes with a meticulous stability assessment, employing established criteria to 

gauge the robustness of the DC-DC converters under diverse operating scenarios.  
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1. Introduction 

DC-DC converters [1-2] are essential in power electronics for 

voltage regulation and energy transfer. This research employs 

advanced methodologies—state-space modeling, DC and AC 

analysis [3], transfer function derivation, and stability 

assessment—to comprehensively explore the dynamic [4] 

behavior of these converters [5]. The state-space [6] representation 

establishes a framework for in-depth analysis under varying 

operational conditions. The initial focus on DC analysis [7]-8] 

unveils steady-state and transient responses critical for practical 

implementation. Transitioning to the AC domain, small-signal 

linearization techniques yield the transfer function, incorporating 

the duty cycle as a significant parameter to reflect its impact on 

converter performance [9]. 

2. Proposed Converter Analysis  

2.1. Negative Lift Converter (NLC) 

Negative Output [10-11] Luo converters are relatively new DC-

DC converters, used in voltage lift technique, is now used in the 

design of DC-DC converters [12], where the output voltage rises 

in arithmetic progression. It improves voltage transfer gain. The 

negative output Luo converter [13-14] gradually increases voltage 

transfer gain in a geometric progression with a simple structure 

[15]. Positive source voltage is converted to negative load voltage. 

In comparison to conventional DC-DC converters, it has higher 

voltage transfer gain, higher efficiency, and lower inductor current 

ripple. Figure 1 depicts the NLC circuit diagram.  

The negative output Luo converter is made up of the following 

components: a DC supply source Vs, an inductor L, capacitors C1 

and C2, freewheeling diodes D1, D2, an n-channel MOSFET 

switch S, and a load. 

 

Fig.1 Negative Lift Converter-circuit diagram 

2.2.  Modes of Operation 

In the modes of operation of NLC, the switch is assumed as ideal 

and NOLC operates in Continuous Conduction Mode (CCM). The 

MOSFET switch can be controlled to step up the input voltage. 

The NLC can be operated in two modes, depending upon whether 

the switch is ON or OFF 

2.3.  Interval I 

The MOSFET switch is turned on during this interval. Figure 2 

depicts the equivalent circuit for mode 1 operation. The current 

flowing through the inductor L1 increases during the ON time, 

while the capacitor C1 charged to Vs. During the ON period KT, 

the current flowing through the inductor increases with a slope of 
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Vs/L1. The load discharges the capacitor C2. Switched models are 

identified over a switching cycle. The linear switched circuit model 

for each state of the switching converter is drawn (e.g., currents 

through inductors and voltages, across capacitors). 

 

 
 

Fig. 2. Mode 1 Operation of NLC 

2.4.  Interval II 

Figure 3 depicts the corresponding circuit of NLC in interval II. 

The MOSFET switch is turned off at interval II. The inductor 

current begins to fall with a slope of - (Vo-Vs)/L1. C1 discharges 

to the load, followed by C2. 

 

 
Fig. 3 Mode II Operation of NLC 

The NLC is examined to find the inductor L, input capacitor C1, 

and output capacitor C2. The converter is analyzed in CCM mode 

to determine the above characteristics. During mode 1, 

 

𝑉𝑠 = 𝐿
𝑑𝑖

𝑑𝑡
      (a) 

During Mode 2, 

𝑉𝑠 − 𝑉𝑜 = −𝐿
𝑑𝑖

𝑑𝑡
     (b) 

The output voltage of the NOSLC is given by the following 

equation 

𝑉𝑜 =  
𝑉𝑠

1−𝐾
                     (c) 

It can also be written as 
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Where Vs is the supply voltage (V), Vo𝑉is the output voltage (V), 

K is the duty cycle (%). 

2.5.  Analysis of NLC with Its State Space Equations  

For the state space analysis [16-17], let vC_1 be the voltage due to 

capacitor C1, vC2 be the voltage due to capacitor C2, iL1 be the 

current due to inductor L1, io be the output current, Vin be the input 

voltage, v_0 is output voltage. State variables of the switching 

converter are identified and. state equations for each switched 

circuit model using Kirchhoff’s voltage and current laws are 

written and portrayed in the following equations. The equations are 

formed from the on-off interval. 

Let Vs = Vin and Vin can be written as, 

 

𝑉𝑖𝑛 = 𝐿
𝑑𝑖𝐿

𝑑𝑡
     (1) 

The current through the inductor L1 is given by, 

𝐶1
𝑑𝑣𝑐1

𝑑𝑡
= 𝑖𝐿1                                                (2) 

The output current in terms of load capacitor C2 and R is     

 given by, 

𝐶2
𝑑𝑣𝑐2

𝑑𝑡
= 

𝑉𝑐2

𝑅
                                    (3) 

The inductor voltage equation is given as, 

𝐿
𝑑𝑖𝐿

𝑑𝑡
= 𝑉𝑐2 − 𝑉𝑐1                              (4) 

The capacitor current through C1 and C2 is given as, 

            𝑖𝐶1 = 𝑖0 − 𝑖𝐿1                                        (5) 

𝑖𝐶2 = 𝑖𝐿1 − 𝑖𝑜                                         (6) 

The rate of change of inductor current is obtained by averaging 

equation (1) and (4) 
ⅆiL

ⅆt
= ⅆvin

L

+ (1 − ⅆ) (vC2−vC1
L

)   (7) 

The equation (7) is perturbed to yield steady-state (DC) and 

dynamic (AC) terms and eliminate the product of any AC terms. 

The perturbed equation (7a) is as follows, 

 

ⅆ(iL+iL̃)

ⅆt
= (D + ⅆ̃)

(vin+viñ)

L
+ (1 − (D + ⅆ̃))((

vC2+vC̃2

L
) −

(
vC1+vC̃1

L
))     (7a) 

By averaging the equation (2) and (5), equation (8) is obtained as, 

2ⅆiL

ⅆt
−

iL

C1
+ (1 − ⅆ)

i0

C1
    (8) 

The above equation is perturbed again to obtain the     steady-state 

(DC) and dynamic (AC) terms and eliminate the product of any 

AC terms. 

 
2(D+ⅆ̃)(iL+iL̃)

C1
−

(iL+iL̃)

C1
+ (1 − (D + ⅆ̃)) (

i0+i0̃

C1
)  (8a) 

The change in output voltage is obtained by the following equation 

(9) by averaging equation (3) and (6) 

 

ⅆVC2
dt

=
ⅆi0

C2
+ (1 − ⅆ)

iL

C2
− (1 − ⅆ)

i0

C2
   (9) 

The above equation is perturbed again to obtain the     steady-state 

(DC) and dynamic (AC) terms and eliminate the product of any 

AC terms. 
ⅆ(vC2+vC̃2)

ⅆt
=

(D+ⅆ̃)(i0+ĩ0)

C2
+ (1 − (D + ⅆ̃)) (

iL+ĩL

C2
) −

(1−(D+ⅆ̃)(i0+i0̃))

C2
      (9a) 

Now, equation (7a) is rewritten, to carry out the DC and AC 

analysis. 

 
ⅆ𝑖𝐿

ⅆ𝑡
+

ⅆ𝑖�̃�

ⅆ𝑡
= 

𝐷𝑣𝑖𝑛

𝐿
+

�̃�𝑣𝑖𝑛

𝐿
+ �̃�𝑣�̃�𝑛

𝐿

+
�̃�𝑣𝑖𝑛

𝐿
+

vC2̃

L
+

vC2 

L
−

vC1 

L
−

vC1 ̃

L
−

DvC2
L

− D̃vC2
L

+ DvC1
L

+ D̃vC1 
L

− ⅆ̃vC2 
L

− ⅆ̃vC1
L

+ ⅆ̃vC1
L

+ ⅆ̃vC1 ̃

L

  (10) 

On DC analysis, equation (10) reveals that the output voltage 

modulation is due primarily to changes in the input voltage, ú₁ that 

is vin, the modulation in the duty cycle, d, and the modulation in 
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the inductor current. From Equation (10), the steady-state or DC 

solution is obtained as, 

𝐷𝑣𝑖𝑛 + vC1 (D − 1) + vC2 (1 − D) = 0  (10a) 

On AC analysis, equation (10), reveals that the steady-state input 

current is equal to the steady-state output voltage. The AC solution 

from Equation (10) is obtained as, 

 
ⅆ𝑖�̃�

ⅆ𝑡
=  

𝐷𝑣𝑖𝑛

𝐿
+

�̃�𝑣𝑖𝑛

𝐿
+ �̃�𝑣�̃�𝑛

𝐿

+
�̃�𝑣�̃�𝑛

𝐿
+

vC2 

L
+

vC2̃

L
−

vC1 

L
−

vC1 ̃

L
−

DvC2
L

− D̃vC2
L

+ DvC1
L

+ D̃vC1 
L

− ⅆ̃vC2 
L

− ⅆ̃vC1
L

+ ⅆ̃vC1
L

+ ⅆ̃vC1 ̃

L

 (10b) 

Equation 10(b) is further simplified to, 

 
ⅆ𝑖�̃�

ⅆ𝑡
=  

𝑣𝑖𝑛

𝐿
(𝐷 + �̃�) + 𝑉𝑖𝑛

𝐿

̃(𝐷 + �̃�) +
vC2 

L
(1 − D) +

vC2̃

L
(1 − D) +

vC1 

L
(D − 1) +

vC1 ̃

L
(D − 1) +

Vc1

L
(ⅆ̃) +

�̃�𝑉𝐶1

𝐿
− ⅆ̃vC2 

L

− ⅆ̃vC2 ̃

L

 (10c) 

 

On taking DC term above equation is given by, 

 
𝐷𝑣𝑖𝑛

𝐿
+

vC1 (D−1)

L
+

vC2 (1−D)

L
= 0   (10d) 

 

Linear term for the above equation is given by, 

 

�̃�𝑣𝑖𝑛

𝐿
+ �̃�𝑣�̃�𝑛

𝐿

+
vC2̃

L
−

vC1 ̃

L
− D̃vC2

L

+ D̃vC1
L

− ⅆ̃vC2 
L

+ ⅆ̃vC1
L

 

D
viñ

L
+ ⅆ̃vin

L

+
vC1̃

L
(D − 1) +

vC2̃

L
(1 − D) − ⅆ̃vC2

L

+ ⅆ̃vC1
L

 (10e) 

These equations result in a set of nonlinear continuous equations. 

A nonlinear continuous equivalent circuit can be drawn from this 

set of nonlinear equation 

Non-Linear term for the above equation is given by, 

 
ⅆ̃Vĩn

L
−

ⅆ̃VC̃2

L
+

ⅆ̃VC̃1

L
     (10f) 

Neglecting DC and Non-linear term from equation (10c), linear 

term equation (10g) is obtained as, 

 
ⅆĩL

ⅆt
= D

vĩn

L
+ ⅆ

ṽin

L
+

vC̃1

L
(D − 1) +

vC̃2

L
(1 − D) − ⅆ̃vC2

L

+ ⅆ̃vC1
L

      (10g) 

The output voltage can be written in terms of state equation terms 

C and B. It is given as follows, 

 

ṽ0 = C̃(SI − Ã)
−1

B̃ṽin    (10h 

 

AC analysis is carried out in equation (8) and it is rewritten as, 
2DiL

C1
+

2ⅆ̃iL

C1
+

2D̃iL

C1
+

2�̃�𝑖�̃�

𝐶1
−

iL

C1
−

iL̃

C1
+

i0

C1
+

i0̃

C1
−

Di0

C1
− D

ĩ0

C1
−

ⅆĩ0

C1
−

ⅆi0

C1

̃
       (11) 

 

Neglecting DC and Non-linear terms the equation (8) becomes, 

taking only linear term, 

 
2ⅆiL̃

C1
+

2D̃iL

C1
+

ĩ0

C1
−

ĩL

C1
−

Dĩ0

C1
−

ⅆĩ0

C1
s    (11a) 

 

In the same way, equation (9) is rewritten as, 

 

ⅆvC2

ⅆt
=

ⅆi0
C2

+ (1 − ⅆ)
iL
C2

− (1 − ⅆ)
i0
C2

 

ⅆvC2

ⅆt
=

ⅆi0

C2
+ (1 − ⅆ)

iL

C2
− (1 − ⅆ)

i0

C2
−

ⅆ(vC2+vC̃2)

ⅆt
=

(D+ⅆ̃)(i0+ĩ0)

C2
+ (1 − (D + ⅆ̃)) (

iL+ĩL

C2
) −

(1−(D+ⅆ̃)(i0+i0̃))

C2
 (12) 

Equation (12) is further simplified to, 

ⅆvC2

ⅆt
+

ⅆṽC2

ⅆt
=

Di0

C2
+ D

ĩ0

C2
+

ⅆĩ0

C2
+

ⅆ̃ĩ0

C2
+

iL

C2
+

iL̃

C2
−

DiL

C2
−

D̃iL

C2
−

ⅆ̃iL

C2
−

ⅆ̃iL

C2
−

i0

C1
+

i0̃

C1
     (12a) 

DC analysis for equation (9) is given as lysis for equation (9) is 

given as, 

0 =
Di0

C2
+

iL

C2
− D

iL

C2
−

i0

C2
, Di0 + iL −  DiL − i0 = 0,D(i0 − iL) +

(iL − İ0) = 0     (12b) 

On AC analysis equation (9) is given by 

ⅆVC2

ⅆt
=

i0

C2
(D + ⅆ̃) +

ĩ0

C2
(D + ⅆ̃) +

iL

C2
(1 − D) −

i0

C2
−

ĩ0

C2
−

ⅆ̃IL

C2
−

�̃��̃�𝐿

𝐶2
      (12c) 

On taking DC term alone, the above equation becomes, 

D(i0 − iL)/C2 + (iL − İ0)/C2 = 0   (12d) 

Linear terms are taken from the above equation and given as, 

 
𝐷𝑖0
𝐶2

+
𝑑𝑖0
𝐶2

+
𝑖𝐿
𝐶2

−
𝐷𝑖𝐿
𝐶2

−
𝑑𝑖𝐿
𝐶2

−
𝑖0
𝐶2

= 0 

𝑖0

𝐶2
(𝐷 − 1) +

𝑖L̃

𝐶2
(1 − 𝐷) +

�̃�𝑖0

𝐶2
−

�̃�𝑖𝐿

𝐶2
   (12e) 

Non-Linear term for the above equation is given by, 

 
𝜕𝑖𝑜

𝐶2
−

𝜕𝑖𝐿

𝐶2
      (12f) 

Neglect DC and Non-linear term then equation (9) becomes, 

i.e, taking only linear term, 

 
𝜕𝑣𝑐2̃

𝐶2
−

𝑖𝑜

𝐶2
(𝐷 − 1) +

𝑖𝐿

𝐶2
(1 − 𝐷) +

𝜕𝑖𝑜

𝐶2
−

𝜕𝑖𝐿

𝐶2
  (12g) 

 

Hence the linear terms derived from equation (7), equation (8), 

equation (9) is given by, 

 

 

   𝐷
𝑉𝑖𝑛

𝐿
+

�̃�𝑉𝑖𝑛

𝐿
+

 𝑉𝑐1̃

𝐿
(𝐷 − 1) +

𝑉𝑐2̃

𝐿
(1 − 𝐷) −

�̃�𝑉𝑐2

𝐿
+

�̃�𝑉𝑐1

𝐿
 (13) 

2 
�̃�𝑖𝐿

𝐶1
+ 2

𝐷𝑖𝐿

𝐶1
+

𝑖0̃

𝐶1
−

𝑖�̃�

𝐶1
−

𝐷�̃�0

𝐶1
−

𝑑�̃�0

𝐶1
   (14) 

𝑖0 

𝐶2
(𝐷 − 1) +

𝑖1

𝐶2
(1 − D) +

�̃�𝑖0

𝐶2
−

�̃�𝑖𝐿

𝐶2
     (15) 

The above equations are converted to matrix form, and obtained 

as, 

 

(

 
 

𝑑𝑖1̃

𝑑𝑡
𝑑𝑣𝑐1̃

𝑑𝑡
𝑑𝑣𝑐2̃

𝑑𝑡 )

 
 

=

(

 
 

0
(𝐷−1)

𝐿

(1−𝐷)

𝐿
(2𝐷−1)

𝑐1
0 0

(1−𝐷)

𝑐2
0 0

)

 
 

(
𝑖�̃�
𝑣𝑐1̃
𝑣𝑐2̃

) + (

𝐷

𝐿

0
0

)    𝑣𝑖�̃�  +
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(

 
 

𝑣𝑐1−𝑣𝑐2

𝐿

2
𝑖𝐿−𝑖0

𝑐1

𝑖0−𝑖𝐿

𝑐2 )

 
 

× (

𝐷

𝐿

0
0

)    𝑣𝑖�̃�  +

(

 
 

𝑣𝑐1−𝑣𝑐2

𝐿

2
𝑖𝐿−𝑖0

𝑐1

𝑖0−𝑖𝐿

𝑐2 )

 
 

×

(

 
 

𝑑𝑖1̃

𝑑𝑡
𝑑𝑣𝑐1̃

𝑑𝑡
𝑑𝑣𝑐2̃

𝑑𝑡 )

 
 

=

[0 0 1] (
𝑖𝐿
𝑣𝑐1
𝑣𝑐2

)       (16) 

Thus A, B, and C are derived from (16). 

 

A =

(

 
 

0
(𝐷−1)

𝐿

(1−𝐷)

𝐿
(2𝐷−1)

𝑐1
0 0

(1−𝐷)

𝑐2
0 0

)

 
 

,𝐵 = (

𝐷

𝐿

0
0

) , 𝐶 =  [0 0 1]  (17) 

The �̃�0namely the output voltage is given by, 

 

�̃�0 = �̃�(𝑆𝐼 − �̃�)−1�̃�𝑉𝑖�̃�     (18) 

of the matrix is to be obtained 

 

𝑆𝐼 = [
𝑆 0 0
0 𝑆 0
0 0 𝑆

];  

(𝑆𝐼 − 𝐴) =

(

 
 
 
 

−

𝑆 −
(𝐷 − 1)

𝐿
−

(1 − 𝐷)

𝐿
(2𝐷 − 1)

𝑐1
𝑆 0

−
(1 − 𝐷)

𝑐2
0 𝑆

)

 
 
 
 

 

(SI − A)−1 =
1

|SI − A|
aⅆj(SI − A) 

|SI − A| = 𝑆(𝑠2) +
(𝐷−1)

𝐿
∗

(2𝐷−1)

𝑐1
× (−𝑠) +

(1−𝐷)

𝐿
×

(𝐷−1)

𝐿
  

 =𝑠3 + 𝑠
(1−𝐷)2

𝐿𝑐1
− 𝑠

(2𝐷−1)

𝑐1

(𝐷−1)

𝐿
 

𝑎𝑑𝑗(𝑆𝐼 − 𝐴) = 𝑐𝑜𝑓𝑎𝑐(𝑆𝐼 − 𝐴)𝑇  

To find the adjoint, the cofactor for the matrix is performed, 

 

cofac(SI − A) =

(

 
 

𝑠2 𝑠
(2𝐷−1)

𝑐1
−𝑠

(1−𝐷)

𝑐2

𝑠
(𝐷−1)

𝐿
𝑠2 +

(1−𝐷)2

𝐿𝑐2

(𝐷−1)2

𝐿𝑐2

−𝑠
(1−𝐷)

𝐿
−

(1−𝐷)(2𝐷−1)

𝐿𝑐1
𝑠2 +

(𝐷−1)(2𝐷−1)

𝐿𝑐1 )

 
 

  

 

aⅆj(SI − A) =

(

 
 

𝑠2 𝑠
(𝐷−1)

𝐿
−𝑠

(1−𝐷)

𝐿

𝑠
(2𝐷−1)

𝑐1
𝑠2 +

(1−𝐷)2

𝐿𝑐2
−

(1−𝐷)(2𝐷−1)

𝐿𝑐1

−𝑠
(1−𝐷)

𝑐2

(𝐷−1)2

𝐿𝑐2
𝑠2 +

(𝐷−1)(2𝐷−1)

𝐿𝑐1 )

 
 

  

 

(SIS1 − A)−1
1

(𝑠3 +
𝑠(1−𝐷)2

𝐿𝑐2
−

𝑠(𝐷−1)(2𝐷−1)

𝐿𝑐1

×

(

 
 
 
 

𝑠2 𝑠
(𝐷 − 1)

𝐿
−𝑠

(1 − 𝐷)

𝐿

𝑠
(2𝐷 − 1)

𝑐1
𝑠2 +

(1 − 𝐷)2

𝐿𝑐2
−

(1 − 𝐷)(2𝐷 − 1)

𝐿𝑐1

−𝑠
(1 − 𝐷)

𝑐2

(𝐷 − 1)2

𝐿𝑐2
𝑠2 +

(𝐷 − 1)(2𝐷 − 1)

𝐿𝑐1 )

 
 
 
 

 

𝑣𝑜

=
[0 0 1]

(𝑠3 +
𝑠(1−𝐷)2

𝐿𝑐2
−

𝑠(𝐷−1)(2𝐷−1)

𝐿𝑐1

×

(

 
 
 
 

𝑠2 𝑠
(𝐷 − 1)

𝐿
−𝑠

(1 − 𝐷)

𝐿

𝑠
(2𝐷 − 1)

𝑐1
𝑠2 +

(1 − 𝐷)2

𝐿𝑐2
−

(1 − 𝐷)(2𝐷 − 1)

𝐿𝑐1

−𝑠
(1 − 𝐷)

𝑐2

(𝐷 − 1)2

𝐿𝑐2
𝑠2 +

(𝐷 − 1)(2𝐷 − 1)

𝐿𝑐1 )

 
 
 
 

 

𝑣𝑜

=
[0 0 1]

(𝑠3 +
𝑠(1−𝐷)2

𝐿𝑐2
−

𝑠(𝐷−1)(2𝐷−1)

𝐿𝑐1

×

(

 
 
 
 

𝑠2 𝑠
(𝐷 − 1)

𝐿
−𝑠

(1 − 𝐷)

𝐿

𝑠
(2𝐷 − 1)

𝑐1
𝑠2 +

(1 − 𝐷)2

𝐿𝑐2
−

(1 − 𝐷)(2𝐷 − 1)

𝐿𝑐1

−𝑠
(1 − 𝐷)

𝑐2

(𝐷 − 1)2

𝐿𝑐2
𝑠2 +

(𝐷 − 1)(2𝐷 − 1)

𝐿𝑐1 )

 
 
 
 

(

𝐷

𝐿
0
0

)𝑣𝑖𝑛 

2.6 Transfer Function   

The transfer function of a system is the ratio of Laplace transform 

of output to the Laplace transform of input where all the initial 

conditions are zero, hence the transfer function is obtained as, 

𝑣0

𝑣𝑖𝑛
=

[0 0 1]

(𝑠3+
𝑠(1−𝐷)2

𝐿𝑐2
−

𝑠(𝐷−1)(2𝐷−1)

𝐿𝑐1

  

(

 
 

𝑠2 𝑠
(𝐷−1)

𝐿
−𝑠

(1−𝐷)

𝐿

𝑠
(2𝐷−1)

𝑐1
𝑠2 +

(1−𝐷)2

𝐿𝑐2
−

(1−𝐷)(2𝐷−1)

𝐿𝑐1

−𝑠
(1−𝐷)

𝑐2

(𝐷−1)2

𝐿𝑐2
𝑠2 +

(𝐷−1)(2𝐷−1)

𝐿𝑐1 )

 
 

(

𝐷

𝐿

0
0

)  

 

[0  0  1]

[
 
 
 
 

𝑆

𝑠2 𝑆(𝐷−1)

𝐿
−

𝑆(1−𝐷)

𝐿

(
2𝐷−1

𝐶1
) 𝑆2 (1−𝐷)2

𝐿𝐶2
−

(1−𝐷)(2𝐷−1)

𝐿𝐶1

−𝑠 (
1−𝐷

𝐶2
) (

(𝐷−1)2

𝐿𝐶2
) 𝑆2 +

(𝐷−1)(2𝐷−1)

𝐿𝐶1 ]
 
 
 
 

  

[−𝑆 (
1−𝐷

𝐶2
)

(𝐷−1)2

𝐿𝐶2 𝑆2 +
(𝐷−1)(2𝐷−1)

𝐿𝐶1
] [

𝐷

𝐿

0
0

] −
𝐷𝑆

𝐿
(
1−𝐷

𝐶2
)  

 Hence, we get transfer function as, 

 

𝑉0

𝑉𝐼𝑁
⇒

𝑡

𝑓
=

−
𝐷𝑆

𝐿
(
1−𝐷

𝐶2
)

𝑆3+𝑆
(1−𝐷)2

𝐿𝐶2
−

𝑆(𝐷−1)(2𝐷−1)

𝐿𝐶1

     (19) 

𝑇𝐹 =>
−

𝐷𝑆

𝐿
(
1−𝐷

𝐶2
)

𝑆3+𝑆
(1−𝐷)2

𝐿𝐶2
−

(𝐷−1)(2𝐷−1)

𝐿𝐶1

  

𝐺(𝑠)𝐿1(𝑠) = 0  

⇒ 1 +

−𝐷𝑠

𝐿
(
1−𝐷

𝐶2
)

𝑠𝑖𝑛3 𝑠(
(1−𝐷)2

𝐿𝐶2
−

(𝐷−1)(2𝐷−1)

𝐿𝐶1
)
= 0  

 

𝑆3 + 𝑆 (
(1−𝐷)2

𝐿𝐶2
−

(𝐷−1)(2𝐷−1)

𝐿𝐶1
)

−  𝐷𝑆

𝐿
(
(1−𝐷)

𝐶2
) = 0   
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𝑆3 + 
𝑆(1−𝐷)2

𝐿𝐶2
−

(𝐷−1)(2𝐷−1)

𝐿𝐶1
−

𝐷𝑆

𝐿

(1−𝐷)

𝐶2
= 0  

 

𝑆3 +
𝑆[1−𝐷2−2𝐷]

𝐿𝐶2
−

𝑆(2𝐷2−𝐷−2𝐷+1)

𝐿𝐶1
−

𝐷𝑆

𝐿𝐶2
+

𝐷2𝑆

𝐿𝐶2
= 0  

 

𝑆3 +
𝑆

𝐿𝐶2
+

𝐷2𝑆

𝐿𝐶2
−

2𝐷𝑆

𝐿𝐶2
−

2𝑆𝑅2

𝐿𝐶1
+

𝑆𝐷

𝐿𝐶1
+

2𝐷𝑆

𝐿𝐶1
−

𝑆

𝐿𝐶1
−

𝐷𝑆

𝐿𝐶2
+

𝐷2𝑆

𝐿𝐶2
= 0  

 

𝑆3 +
2𝐷2𝑆

𝐿𝐶2
−

3𝐷𝑆

𝐿𝐶2
+

𝑆

𝐿𝐶2
−

𝑆

𝐿𝐶1
+

3𝐷𝑆

𝐿𝐶1
−

2𝐷2𝑆

𝐿𝐶1
= 0  

 

𝑆3 + 2𝐷2𝑆 (
1

𝐿𝐶2
−

1

𝐿𝐶1
) + 3𝐷𝑆 [

1

𝐿𝐶1
−

1

𝐿𝐶2
] + 𝑆 [

1

𝐿𝐶2
−

1

𝐿𝐶1
] = 0  

 

𝑆3 + 𝑆 [2𝐷2 (
1

𝐿𝐶2
−

1

𝐿𝐶1
) + 3𝐷 (

1

𝐿𝐶1
−

1

𝐿𝐶2
) + (

1

𝐿𝐶2
−

1

𝐿𝐶1
)] = 0 

       (20) 

Thus, a third order equation is obtained as a transfer function for 

the given circuit, as the number of charging elements present in the 

circuit is 3 and hence it satisfied the relation of order. The output 

voltage change with respect to duty cycle can also be derived in 

the following equations. 

𝑣0 = 𝑐(𝑆𝐼 − 𝐴)̃̃   

 

(𝑆𝐼 − 𝐴)̃−1 =
1

(𝑠3 +
𝑠(1−𝐷)2

𝐿𝑐2
−

𝑠(𝐷−1)(2𝐷−1)

𝐿𝑐1

 

(

 
 

𝑠2 𝑠
(𝐷−1)

𝐿
−𝑠

(1−𝐷)

𝐿

𝑠
(2𝐷−1)

𝑐1
𝑠2 +

(1−𝐷)2

𝐿𝑐2
−

(1−𝐷)(2𝐷−1)

𝐿𝑐1

−𝑠
(1−𝐷)

𝑐2

(𝐷−1)2

𝐿𝑐2
𝑠2 +

(𝐷−1)(2𝐷−1)

𝐿𝑐1 )

 
 

  

 

𝑣𝑜

𝜕
=

[ 0 0 1]

(𝑠3 +
𝑠(1−𝐷)2

𝐿𝑐2
−

𝑠(𝐷−1)(2𝐷−1)

𝐿𝑐1

 

(

 
 

𝑠2 𝑠
(𝐷−1)

𝐿
−𝑠

(1−𝐷)

𝐿

𝑠
(2𝐷−1)

𝑐1
𝑠2 +

(1−𝐷)2

𝐿𝑐2
−

(1−𝐷)(2𝐷−1)

𝐿𝑐1

−𝑠
(1−𝐷)

𝑐2

(𝐷−1)2

𝐿𝑐2
𝑠2 +

(𝐷−1)(2𝐷−1)

𝐿𝑐1 )

 
 

  

=
𝑣𝑜

𝜕
=

[ 0 0 1]

(𝑠3+
𝑠(1−𝐷)2

𝐿𝑐2
−

𝑠(𝐷−1)(2𝐷−1)

𝐿𝑐1

(

 
 

𝑠2 𝑠
(𝐷−1)

𝐿
−𝑠

(1−𝐷)

𝐿

𝑠
(2𝐷−1)

𝑐1
𝑠2 +

(1−𝐷)2

𝐿𝑐2
−

(1−𝐷)(2𝐷−1)

𝐿𝑐1

−𝑠
(1−𝐷)

𝑐2

(𝐷−1)2

𝐿𝑐2
𝑠2 +

(𝐷−1)(2𝐷−1)

𝐿𝑐1 )

 
 

 

=
[𝑠

(1−𝐷)

𝑐2

(𝐷−1)2

𝐿𝑐2
𝑠2 +

(𝐷−1)(2𝐷−1)

𝐿𝑐1
]

(𝑠3 +
𝑠(1−𝐷)2

𝐿𝑐2
−

𝑠(𝐷−1)(2𝐷−1)

𝐿𝑐1

(

𝐷

𝐿
0
0

) 

As a result, the duty cycle transfer function is given by, 

 𝑣0

�̃�
=

(1−𝐷)𝐷𝑆

𝐿𝑐2

(𝑠3+
𝑠(1−𝐷)2

𝐿𝑐2
−

𝑠(𝐷−1)(2𝐷−1)

𝐿𝑐1

     (21) 

In addressing stability, responsiveness, and accuracy issues in an 

open-loop control system, compensation becomes crucial when 

altering system parameters is impractical due to real-world 

constraints. 

 Compensatory elements, often economically added, modify the 

transfer function to enhance performance. Designing a 

compensator, achieved through root locus or frequency response 

plots, aims to make the system stable with desirable transient 

response and minimal steady-state errors. Compensation methods 

include integral for steady-state error elimination, proportional-

integral (PI) for stability with transient responsiveness, and 

proportional-derivative (PD) for improving transient response in 

accurate yet unstable systems. Controller adjustments, using root 

locus or Bode plots, can be implemented in parallel or series with 

the plant to optimize system performance without altering plant 

characteristics. 

For the given transfer function equation, Routh Hurwitz criterion 

method is verified. 

𝑆31 [ 2𝐷2 (
1

𝐿𝐶2
−

1

𝐿𝐶1
) + 3𝐷 (

1

𝐿𝐶1
−

1

𝐿𝐶2
) + (

1

𝐿𝐶2
−

1

𝐿𝐶1
)   ]  

[𝑆2 0 0] 

[𝑆2      3𝑆2] [2𝐷2 (
1

𝐿𝐶2
−

1

𝐿𝐶1
) + 3𝐷 (

1

𝐿𝐶1
−

1

𝐿𝐶2
) + (

1

𝐿𝐶2
−

1

𝐿𝐶1
)]  

 

    2𝐷2 (
1

𝐿𝐶2
−

1

𝐿𝐶1
) + 3𝐷 (

1

𝐿𝐶1
−

1

𝐿𝐶2
) + (

1

𝐿𝐶2
−

1

𝐿𝐶1
) −

3𝑆2 [2𝐷2 (
1

𝐿𝐶2
−

1

𝐿𝐶1
) + 3𝐷 (

1

𝐿𝐶1
−

1

𝐿𝐶2
) + (

1

𝐿𝐶2
−

1

𝐿𝐶1
)]

3𝑆2  

 

𝑆0  − [2𝐷2 (
1

𝐿𝐶2
−

1

𝐿𝐶1
) + 3D(

1

𝐿𝐶1
−

1

𝐿𝐶2
) + (

1

𝐿𝐶2
 −   

1

𝐿𝐶1
)]  

In electrical terms, a sign change in the Routh array [18] suggests 

the existence of poles with positive real parts and this can be 

interpreted as an indication of instability in the electrical system. 

In practical terms, an unstable system can lead to undesirable 

analysis [19-22], oscillations, or even failure in certain cases.  

2.7 Conclusion: 

In summary, the research employs state-space modelling to 

analyse the dynamic behaviour of DC-DC converters. The stability 

analysis utilizes the Routh-Hurwitz criterion applied to the 

characteristic equation derived from the state-space representation. 

With a single sign change indicating one pole in the right-half 

plane, the converters are classified as unstable. This approach 

offers a thorough and professional exploration of the converters' 

behaviour, essential for advancing power electronics and voltage 

regulation. 
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