
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1108–1134  |  1108 

A Scalable Parallel Gene Selection Method Based on Hybrid Bio-

Inspired Metaheuristic Algorithms with Shapley Value Analysis 

Vijaya Lakshmi Alluri*1, Karteeka Pavan Kanadam2, Hymavathi Thottathyl3 

Submitted:11/03/2024       Revised: 26/04/2024        Accepted: 03/05/2024 

Abstract: The development of microarray technology has made a significant contribution to the prediction of various cancer types and 

their subtypes through gene selection. Effective hybrid approaches are currently inadequate for the challenging problem of predicting 

highly discriminative genes in microarrays. Thus, this study proposes a novel approach to selecting parallel gene based on a hybrid bio 

inspired feature selection method. Initially, microarray data is augmented using the Synthetic Minority Oversampling Technique (SMOTE) 

to enhance dataset sizes. Then, the Cooperative based Kernel Shapley Values (CkSV) approach is employed to extract features and 

determine Shapley values. The Hybrid Genetic Dung beetle Optimization (HGDBO) approach was employed to identify the most valuable 

features. Also, the process is executed on the Apache Hadoop Distributed File System for storing large datasets and cost effectiveness. In 

addition, the features are classified using several machine learning methods such as Support Vector Machine (SVM), Naive Bayes (NB), 

Random Forest (RF), and K-nearest neighbour. As a result, the proposed approach is compared to other machine learning based 

classification algorithms. Eleven datasets are used to assess the outcomes of the analysis of the proposed method, which is conducted using 

the Python tool. The results of the simulations show that the proposed strategy outperforms the existing methods. For SVM classifier, 

dataset 1 has an accuracy (0.97), dataset 2 (0.98), dataset3 (0.968), dataset 4 (0.975), dataset 5 (0.973), dataset 6 (0.979), dataset 7 (0.985), 

dataset 8(0.972), dataset 9 (0.973), dataset 10(0.980) and dataset 11(0.979), respectively. 

Keywords: Hybrid Genetic Dung beetle Optimization (HGDBO), Synthetic Minority Oversampling Technique (SMOTE), Cooperative 

based Kernel Shapley Values (CkSV). 

1. Introduction 

Currently, the categorization of microarray datasets is 

known as extensive biological data analysis, which attracts 

significant interest from academics [1]. Molecular biology, 

specifically the diagnosis of cancer, depends heavily on the 

application of microarray technology, which makes it a 

compelling area of study [2]. In addition, Microarray data 

encompasses a wide range of genes that display varying 

degrees of expression within a restricted set of samples [3]. 

The procedure of gene selection from microarray data is of 

utmost significance in elucidating biological characteristics 

[4]. One potent tool for cancer categorization is the use of 

microarrays to obtain gene expression data [5]. The current 

study compares the levels of gene expression in malignant 

tissues to those found in normal tissues in an effort to find 

genes that exhibit either up or down regulation in cancerous 

cells [6].  

Microarray gene expression data used for cancer 

classification often entails analyzing a large number of 

genes from both normal and malignant tissues [7]. The gene 

selection strategy is commonly preferred by researchers for 

cancer classification because of its superior performance in 

comparison to alternative approaches [8]. The 

aforementioned factor plays a pivotal role in effectively 

tackling the difficulties presented by the elevated 

dimensionality, limited sample size, and intrinsic noise 

present in microarray data [9]. In order to accurately 

categorize cancer, it is crucial to find the genes that provide 

the most meaningful data. The procedure of selecting 

microarrays greatly improves their classification 

performance [10]. Both deep learning and machine learning 

models are employed to analyze the chosen feature using 

meta-heuristic methods that derive inspiration from natural 

phenomena [11].  

The Support Vector Machine (SVM) is widely employed by 

researchers for cancer classification tasks, primarily due to 

its superior performance [12]. In certain instances, the 

utilization of several classifiers for classification is observed 

[13]. Adaptive neuro-fuzzy inference system (ANFIS) 

techniques are employed for gene selection in large-scale 

data processing [14]. The process of selecting features 

requires a significant amount of time. Barnacles mating 

optimization is occasionally employed for gene selection, 

but it presents notable limitations when applied to 

microarray datasets that encompass a substantial number of 

genes [15]. Breast and colon cancer classification utilizes 

data mining approaches that operate on gene expression 

profiles [16]. Traditional data mining approaches may 

*1Research Scholar, Department of Computer Science and Engineering, 

Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522510, India. 
2Professor and Head, Department of Computer Applications, 

R.V.R & J.C College of Engineering, Chowdavaram, Andhra Pradesh, 

522019, India. Email: kkp@rvrjc.ac.in 
3Asst. Professor, Department of Computer Applications, R.V.R & J.C 

College of Engineering, Chowdavaram, Andhra Pradesh, 522019, India. 

Email: thottathylhyma@gmail.com 

Corresponding Author Email: Vijayalakshmi9999@gmail.com 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1108–1134  |  1109 

encounter difficulties in properly addressing the curse of 

dimensionality when dealing with high-dimensional data 

[17]. 

Various machine learning algorithms, including logistic 

regression (LR), Ada boost classifier, linear discriminant 

analysis (LDA), random forest (RF), gradient boosting, and 

k-nearest neighbor (KNN) classifier, are utilized to process 

these gene expression data [18]. Numerous studies employ 

genetic algorithms (GAs) to select genes in the context of 

cancer detection. It takes a long time to apply GA because 

there are a lot of genes in the microarray [19]. Each current 

technique has several drawbacks, necessitating the 

development of a new algorithm for processing Microarray 

data [20]. 

1.1 Motivation  

The microarray dataset has a substantial quantity of genes 

exhibiting diverse expression levels, accompanied by a 

imperfect quantity of samples. The process of identifying 

genes using microarray data is an essential component in the 

analysis of biological features. The utilization of microarray 

gene expression data has demonstrated its efficacy as a 

technique for the categorization of cancer. An approach to 

identifying genes that are up-regulated or down-regulated in 

cancer cells involves comparing the levels of gene 

expression between normal and malignant tissues. In the 

context of cancer classification, microarray gene expression 

data frequently encompasses an extensive array of genes 

originating from both benign and malignant entities. 

Bioinformatics relies heavily on high-dimensional data. 

Duplicate and redundant attributes add complexity to high-

dimensional categorization and may reduce classification 

accuracy. The major contributions of the first research 

objective are given below:  

• To leverage Apache Hadoop for parallel execution 

of a hybrid bio-inspired algorithm for optimal gene 

selection 

• To integrate Kernel Shapley value evaluation for 

assessing gene importance within each candidate 

subset during the selection process 

• To achieve a significant reduction in feature 

selection time on large gene expression datasets 

using the parallel computing implementation 

• To attain high classification accuracy, the gene 

subset identified by the parallel hybrid bio-inspired 

feature selection was used with Kernel Shapley 

value evaluation. 

The organization of the paper is structured as follows: 

section 2 presents the existing research based on machine 

learning approaches for parallel gene selection. Section 3 

explains the proposed methodology in detail. Section 4 

presents the findings and analysis. The conclusion and 

potential future directions were presented in Section 5. 

2. Related works 

Some recent works on gene selection using different 

approaches are described as follows.   

To tackle the problem of high-dimensional microarray 

datasets, Ali et al. [21] introduced a hybrid filter-genetic 

feature selection method; this method enhances the accuracy 

of cancer classification. The most relevant features were 

extracted from the cancer microarray datasets using filter 

feature selection processes such information gain, 

information gain ratio, and Chi-squared. To further improve 

the selected features' potential for cancer classification, a 

genetic algorithm was employed. Using four carcinogenic 

microarray datasets, primarily pertaining to breast, lung, 

brain, and central nervous system cancers, the effectiveness 

of the suggested approach was evaluated. The Central 

Nervous System (CNS) cancer dataset was used in the 

evaluation to obtain 93.81% accuracy, 93.8% recall, 

precision, and F-measure via random forest (RF) classifier. 

The class and feature properties of the model had a problem, 

which led to the wrong feature selection.  

Akhavan et al. [22] established an innovative method for 

selecting genes in microarray data, which involves two 

distinct phases. In the first stage of this process, which 

included both healthy and malignant samples, the genes that 

made up the microarray were used as training samples. 

Subsequently, the number of genes was reduced through the 

application of anomaly detection. In order to identify the 

ultimate functional genes, a targeted genetic algorithm was 

used for the genes obtained from the previous phase in the 

second step. Using this method, the experimental findings 

showed that the gene count on all datasets could be reduced 

by at least 99%. The enormous amount of genes present on 

the microarray is the primary cause of the significant time 

expenditure associated with gene selection using 

metaheuristic algorithms. 

To find the most significant genes, Alomari et al. [23] used 

a novel hybrid filter-wrapper method. For filtering purposes, 

this approach employs resilient Minimum Redundancy 

Maximum Relevancy (rMRMR). One method that 

summarizes the procedure for finding smaller groupings of 

genes is the Modified Gray Wolf Optimizer (MGWO). The 

incorporation of novel optimization operators from the 

Teoriya Resheniya Izobretatelskikh Zadatch (TRIZ) 

innovative solution into the existing GWO algorithm was 

done to enhance the diversity of the population. The 

proposed technique is evaluated on nine widely used 

microarray datasets to assess its efficacy. Support Vector 

Machines (SVMs) were employed to carry out classification 

tasks and achieved an accuracy of 0.9586. However, it 

should be noted that SVMs are also faced with the drawback 
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of having a high computational cost when estimating 

inventive solutions. 

It was created by Deng et al. [24] to sort microarray datasets 

into cancer groups. The method is made up of two steps: 

extreme gradient boosting (XGBoost) and a multi-objective 

optimization genetic algorithm (XGBoost-MOGA). 

XGBoost is used for ensemble-based feature selection to 

rank the genes in the first step. At this point, it is possible to 

get rid of genes that aren't linked to the class. This leaves 

only the most important genes to be picked. The second part 

of XGBoost-MOGA uses a genetic algorithm with multiple 

goals to find the best group of genes, focusing on the most 

important gene group. Advanced feature selection methods, 

including the XGBoost-MOGA algorithm, conducted 

thorough testing on thirteen publically accessible 

microarray expression datasets against two popular learning 

classifiers. Based on the CNS dataset, the experiment's 

findings show that XGBoost–MOGA achieves an accuracy 

of 83.33%. The challenge of overfitting could affect the 

model.  

Azadifar et al. [25] introduced a gene selection methodology 

for cancer diagnostics that relies on graph theory. The 

Maximum Clique and Edge Centrality (MCEC) technique 

was integrated with the provided graph network. Genes are 

evaluated and ordered using established and efficient social 

network methods, such as edge centrality and the maximum 

weighted clique criterion, in supervised and unsupervised 

modes. The suggested method aims to make the chosen 

genes more relevant to the target class and less redundant 

within themselves. This method picks a maximum weighted 

clique over and over again for each run. The genes that are 

important are found from the traits that are already present 

in this maximal clique using edge centrality and gene 

relevance. The study uses a variety of datasets with various 

features, including lung cancer, leukemia, SRBCT, prostate 

tumors, and colon. The results demonstrate categorization 

accuracy rates of approximately 88.32%, 92.09%, 83.19%, 

83.67%, and 87.09% for each dataset. The model exhibits 

lower performance and suffers from generalizability issues. 

The overview of issues that arise in the existing system is 

depicted in Table 1. 

Table 1: Existing techniques with their drawbacks 

Author 

name 

and 

Referenc

e 

Techniqu

e used 

Performanc

e 

Disadvantage 

Ali et al. 

[21] 

Hybrid 

filter-

genetic 

feature 

selection 

strategy 

Attain 

93.81% 

accuracy, 

93.8% 

recall, 

precision, 

The model 

possesses an 

issue in 

connection 

with class and 

feature 

and F-

measure by 

RF 

characteristics

, resulting in 

inaccurate 

feature 

selection. 

Akhavan 

et al. [22] 

Two-

phase 

microarra

y data 

gene 

selection 

technique 

Obtain at 

least 99% 

accuracy  

Utilizing GA 

incurs 

significant 

time costs, 

primarily 

because of the 

extensive 

number of 

genes present 

in the 

microarray. 

Alomari 

et al. [23] 

MGWO Attain an 

accuracy of 

0.9586 

Possess the 

computational 

burden in the 

estimation of 

inventive 

solutions. 

Deng et 

al. [24] 

XGBoost-

MOGA 

Produces 

accuracy of 

83.33% in 

CNS dataset 

Prone to 

overfitting 

challenge 

Azadifar 

et al. [25] 

SMCEC Attain 

accuracy of 

about 

92.09% in 

the leukemia 

dataset   

The model 

possesses 

fewer 

performance 

and 

generalizabilit

y issues. 

 

Problem statement: Due to the fact that problems get 

exponentially more difficult as the number of dimensions 

increases, experts have used metaheuristic-based 

optimization methods to solve the gene selection problem a 

lot. A problem that metaheuristic-based algorithms may 

encounter is that, when selecting features, some features 

with little individual influence may be overlooked, even 

though when combined with other features, they may 

improve performance as a whole. Nevertheless, pertinent 

characteristics strongly linked to previously chosen 

characteristics may be ignored. This means that some 

feature selection strategies might not always produce the 

best outcomes. This study attempt aims to create a scalable 

parallel gene selection method using Kernel Shapley Values 

for feature importance assessment and Hybrid Bio-Inspired 

Feature Selection. 

3. Proposed methodology   

Cancer is widely recognized as a significant threat to human 

health, ranking as the second most common cause of death 
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worldwide. Despite advancements in detection methods, 

late-stage diagnosis often proves ineffective in avoiding 

patient fatalities. Thus, it is imperative to develop a robust 

framework capable of reliably predicting early-stage cancer 

diagnoses. Most researchers use the gene selection approach 

in cancer classification due to its appropriate results 

compared to other approaches. It is important for dealing 

with the problems that come up because microarray data has 

a lot of dimensions, a small sample size, and noise. The 

current system has certain limitations, such as challenges 

related to the correlation between class and feature 

attributes, leading to imprecise feature selection. The 

microarray is time-consuming and expensive due to the 

large number of genes it contains. Certain individuals face 

the computational load and the issue of overfitting, leading 

to a decrease in overall performance. This paper introduces 

a scalable parallel gene selection method that utilizes 

Hybrid Bio-Inspired Feature Selection with Kernel Shapley 

Values based Feature Importance evaluation to address 

these issues. The suggested method's block diagram is 

displayed in Figure 1. 

Micro Array 

Gene Data

10-Cross 

fold 

validation

Nine-folds

One-fold

Hadoop Distributed File 

System

Hybrid genetic dung 

beetle optimizer
kernel

Shapley value

Parallel 

best 

feature 

selection

Optimized 

Training 

data

Test data

Evaluate 

performance 

through 

classification

Data 

augmentation

SMOTE

  

Fig 1: Block diagram of the proposed method 

The given dataset will undergo k-fold validation for both 

training and testing purposes. In the context of 10-fold 

cross-validation, it is common practice to allocate 9 folds 

for training purposes and 1 fold for the testing phase. The 

input data augmentation is initially conducted through the 

utilization of the Synthetic Minority Oversampling 

Technique (SMOTE). The “Cooperative based Kernel 

Shapley Values (CkSV)” technique is used to extract 

features from the Microarray data. To estimate Shapley 

values, this study uses a cooperative game-theoretic feature 

extraction approach. The approach known as “Hybrid 

Genetic Dungeon Beetle Optimization (HGDBO)” is 

employed to enhance the quality of the most efficient feature 

retrieved by CkSV. In order to create parallel processing and 

shorten computation times, the two processes mentioned 

above are executed within the “Apache Hadoop distributed 

file system.” This parallel operation concurrently enhances 

scalability. The classifiers, such as Support Vector Machine 

(SVM), Naive Bayes (NB), Random Forest (RF), and K-

nearest neighbors (KNN), utilize the final characteristics for 

classification. In the testing phase, the performance of the 

proposed model is assessed using the 1 folded data. 

Ultimately, the evaluation of the accuracy achieved by each 

classifier across various datasets is conducted. 

3.1 Data augmentation 

Data augmentation is employed to enhance the diversity and 

magnitude of the dataset. Specifically, when the initial 

dataset is limited or lacks diversity, it is crucial for the 

development of efficient machine learning models. Models 

can acquire a broader range of examples by employing data 

augmentation techniques, thereby enhancing their 

performance and enabling them to expand their knowledge 

of previously unseen data. Furthermore, machine learning 

algorithms possess the capability to successfully train in 

order to identify connections and generate accurate 

selections through the efficient enhancement of data. It can 

eventually contribute to better gene selection and 

management. This approach that has been proposed 

analyzes data augmentation methods such as SMOTE. 

3.1.1 Synthetic minority oversampling technique 

(SMOTE) 

The conventional oversampling strategy suggested is the 

SMOTE technique, which is commonly used to address data 

imbalance problems [26]. SMOTE efficiency surpasses the 

random oversampling technique in reducing overfitting by 

including negative data to achieve balanced distributions 

alongside positive data. The fundamental concept is linear 

interpolating using the present negative data and 

neighboring values. The specific stages of SMOTE are as 

follows: 

• Every sample iy in the minority sample classY , 

determines the Euclidean distance amongst the trial 

in the collection and provides the sample’s k  

nearest neighbor represented as 

( )kixi ,....,2,1=  

• The sampling scale is determined by setting the 

sampling rate based on the data imbalance ratio. In 

order to create new data for iy , n  integers are 

chosen at random by their K-nearest neighbors. 

This can be done in the following ways: 

( ) ( )jijnew yxrandyy −+= 1,0              (1) 

Hence nyi ,...,2,1= , and ( )1,0rand denotes a arbitrary 

amount between 0 and 1.  

3.2 Apache Hadoop distributed file system 

HDFS is a powerful tool employed in cancer classification 

analysis to organize and analyze extensive gene activity 

information. The information regarding gene selection can 

be extensive and is commonly obtained through 
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microarrays. Analysis requires the processing and storage of 

gigabytes of data. Normal file systems face difficulties when 

dealing with large datasets. HDFS effectively manages to 

expand datasets by straightforwardly adding supplementary 

data points to the system. Hadoop’s architecture utilizes 

distributed storage to analyze data in parallel across the 

group, resulting in a substantial improvement in analysis 

performance. In HDFS, microarray data from several cancer 

patients is stored. HGDBA processes can be utilized to 

clean, normalize, and feature select the data stored in HDFS. 

By examining patterns of gene activity, machine learning 

algorithms like SVM, RF, NB, and KNN have been used to 

categorize various cancer kinds. The HDFS has the potential 

to serve as a valuable tool for the categorization of cancer 

on a wide scale, utilizing gene data. It offers enhanced 

analytical speed, cost efficiency, and scalability. 

3.3 Feature extraction 

Feature extraction is a method that finds a specific set of 

important qualities in order to reduce the number of 

dimensions in the input. Furthermore, minimizing 

overfitting and cutting down on processing expenses can 

greatly increase the effectiveness of machine learning 

models. The proposed research utilizes a specific method 

known as cooperative based Kernel Shapley Values (CkSV) 

to compute KSVs for feature extraction. It addresses several 

limitations of the fundamental KSV method, such as 

instability and computational complexity. Cooperative 

interactions among features are taken into consideration 

when performing CkSVs, as opposed to focusing just on the 

inputs of individual features. 

3.3.1 Cooperative based Kernel Shapley Values (CkSV) 

In a cooperative game, the Shapley value is used to calculate 

how participants' power is distributed. The application of 

this technique extends to the process of feature extraction, 

whereby the relevance of each attribute is assessed [27]. The 

feature groups are viewed in this technique as essential 

subsets that may contribute to the ideal subset. To ascertain 

the relative relevance of traits while simultaneously 

accounting for complex interactions between components, 

the Shapley value is employed in a methodical and efficient 

manner. The Shapley value indicates by ( )v  and   

denotes the coefficients for 
thi player, where ( ) nv  . 

The Shapley value can be calculated using the following 

formula:  

( ) ( )
( )

( ) ( ) ( )SviSvS

N

SnS
ySv

i

NS

i

−=

−−
= 

 !

!1!
                 (2) 

In order to make simpler the procedure, the measure of 

interconnection is represented as ( )ji,  is determined, 

and then the evaluation  NofS  does not comprise the 

player i . Thus, N  denotes the total number of players. 

( )
( ) ( )



 

=
else

classftfclassft
ji

jij

,0

:|;,1
,              (3) 

Where, ji fandf  denotes the total amount of feature 

classes. The function ( )Si  for feature extraction was 

rewritten using equation (3), which is expressed as follows. 

( ) ( ) ( )










=  

else

S
jiandfclassSt

S Kfi
i

j

,0

2
,0;,,1         (4) 

The challenge is in the evaluation of Shapley values for 

databases characterized by an average number of features, 

denoted as n. Due to the need for two assessments of the 

model, the conventional method of obtaining Shapley 

values is not feasible for models with a reasonable number 

of features. Additionally, a KernelSHAP algorithm, which 

employs a linear regression methodology to calculate the 

Shapley values, will be utilized to address this issue. 

Shapley values of features importance: In the field of 

machine learning, a commonly employed approach involves 

the creation of a prediction model →Ff :  using a 

training set 
trainS . Several K-dimensional feature vectors 

associated with the resulting observed inputs were found 

inside the training set. The feature area indicates F , which 

is expressed as a Cartesian product for separate feature areas

KFFF  ...21
. The probability weight function p is 

established. The purpose is to identify the relative 

contributions of every feature to the calculation of a given 

test data point Fy . In order to quantify the impact of 

features, it is anticipated that a subset of the test point data 

will be selected based on their value. The formula for the 

value coefficient is as follows: 

( )( ) ( ) ( )( ) ( )( )


−=
Fx

xfSxyfxpySv ,,        (5) 

Where y  represents an explanatory variable, x  denotes 

random data,   indicated distribution function, and f

denotes feature space. According to equation (5), the 

Shapley value regarding the 
thk  feature of the game ( )uN,

is as follows: 

( ) ( ) ( )  ( )( ) ( )( )( ) pperxyfkpperxyfxp
K

y kk

Kp Px

k ,,,,
!

1
 −= 

 

      (6) 

Thus, ( )pperk
 denotes the set of every feature preceding 

thk  feature within the permutation ( )Kp  . Then, ( )k  

denotes every possible scenario for 
thk  distinct features and 
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 ( )( ) ( )( )ppervandkpperv kk   indicates that the 

functions ( )xf  are mutually exclusive. In order to 

ascertain an accurate Shapley value, each potential 

cooperation must be evaluated, regardless of the 
thk  

characteristic. Thus, it was challenging to describe ( )sv  

due to the absence of information regarding distribution 

( )xp . In addition, when working with a collection of N  

features, there are 
N2  potential associations, which renders 

the discovery of a precise solution virtually impossible 

unless one interacts with a minor amount of structures. 

Therefore, one may accurately forecast the Shapley values 

by combining random sampling with an approximation 

strategy. The relevance of a feature can be assessed by 

utilizing the estimated Shapley value, as computed in 

equation (7),  

( ) ( )  ( )( ) ( )( )( ) mkmmkm
M

m

k pperxyfkpperxyf
M

y ,,,,
1ˆ

1

 −= 
=

         

(7) 

Where, every sample denotes M , modified random data 

indicates
mx . The technique uses ( )yk̂ to calculate the 

correlation between the predicted value of a particular data 

point y and the 
thk feature. The cooperative game-

theoretic feature extraction technique is used to extract the 

significant feature from a very complex gene appearance 

dataset. This is achieved by employing the kernel Shapley 

value. 

3.4 Feature selection 

To identify the most relevant features in a dataset, a data 

mining technique known as feature selection is employed. 

This approach can potentially reduce training time, improve 

accuracy, and mitigate the influence of irrelevant variables 

on learning models, enhancing their overall performance. 

Hybrid Genetic Dung Beetle Optimization (HGDBO) is a 

novel approach that combines two optimization 

methodologies. One popular evolutionary algorithm that 

takes elements from natural selection is the Genetic 

Algorithm (GA). The GA considers each individual within 

the population as a potential subset of attributes throughout 

the feature selection process. DBOA is a bio-inspired 

system that emulates the exploratory behavior of dung 

beetles. Dung beetles employ a specific navigational 

strategy while approaching dung mounds. This 

characteristic is used by DBOA to determine which feature 

subset in the dataset is best. 

3.4.1 Hybrid genetic dung beetle optimization (HGDBO) 

The utilization of a parallel genetic algorithm (PGA) in a 

global optimization process offers the advantage of 

exhibiting similarities to the genetic evolution observed in 

cells. The proposed approach is a heuristic search strategy 

that utilizes defined replicate operations in a stochastic 

manner to modify the outcomes of functions for binary 

classified strings. The chromosome is divided into several 

pieces called genes [28]. It has been demonstrated that PGA 

is a trustworthy and efficient search technique that requires 

little knowledge of the particular problem in order to 

investigate a wide search space. The work aims to conduct 

classification by imposing constraints on the number of 

characteristics. Eliminating factors that could cause an 

erroneous categorization algorithm streamlines the system. 

This can be done with a genetic algorithm. 

Genetic algorithmic techniques are primarily used to 

computationally address optimization problems, building 

upon simple evolution and genetics principles. A 

chromosome consisting of several genes represents a 

potential solution direction in a PGA. Within the domain of 

solution, an individual might be conceptualized as a 

composite of chromosomes. Initially, a group of N  

chromosomes with a length of L  is established. Next, the 

fitness function for every chromosome in individuals is 

assessed. The process of selective chromosomal merging 

results in the formation of new generations through 

parenting. 

Consequently, the fitness function necessitates the 

calculation of the possibility of selection, specifically the 

probability of a certain chromosome being chosen as a 

parent. Selection probabilities can be determined using the 

PGA technique. Here iy  represents the population’s 
thi

chromosome and ( )iyf represents fitness, and the parallel 

gene selection sp is as follows: 

( )

( )
=

=
N

i

i

i
s

yf

yf
p

1

            (8) 

During the crossover technique, the creation of additional 

offspring occurs through the combination of specific 

parents. A mutation is an erratic, rare alteration in a 

chromosomal gene that prevents the PGA from convergent 

toward locally ideal conditions. The process of applying 

selection, crossover, and mutation in an iterative manner 

persists until a predetermined maximum number of rounds 

is attained and the final requirement is met. 

The best chromosome with a population is preserved for the 

following generation in an elitism version of the 

fundamental PGA, which is provided to enhance its 

performance. As a result, there is less chance that the 

chromosome may be lost due to crossover or mutation, and 

the most effective method can be implemented more 

quickly. After the last iteration, the PGA generates a 

chromosome that indicates the best solution, or the feature 

subset with the highest classification accuracy. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1108–1134  |  1114 

Dung beetle optimization (DBO): One method for swarm 

intelligence optimization is the dung beetle optimizer 

(DBO). This phenomena was impacted by beetle activity, 

which includes rolling balls, dancing, hunting, stealing, and 

reproducing [29]. Additionally, it possesses a substantial 

capacity for optimization and exhibits a rapid rate of 

convergence. It is possible to interpret the rolling dung 

beetle's position as 

( ) ( ) ( )

( )





−=

+−+=+

w

i

iii

Ytyy

ybtygtyty 11 
    (9) 

Where ( )tyi  denotes data regarding 
thi  search agents 

location at 
tht iteration, t  represents the present iteration 

number, and  bandg  represents the constant value of 

range between (0,1). Then,   denotes the coefficient 

assigned a value for either -1 or 1, x denotes variations in 

strong light intensity, and 
wY  indicates the global worst 

location. Selecting the appropriate numbers of two 

parameters is represented as bandg . More specifically, 

1= specifies no deviation while 1−= designates a 

change from the starting path. 

Exploration stages: In order to proceed, search agents must 

decide to relocate themselves when they encounter obstacles 

that impede their progress. After effectively determining an 

alternative trajectory, they may proceed with the motion of 

the object. The current location of the beetle has been 

adjusted and delineated as follows. 

( ) ( ) ( ) ( ) ( )1tan1 −−+=+ tytytyty iiii            (10) 

Thus,   denotes a deflection angle within a range from (0, 

1). The tangent function represents , obtaining a novel 

rolling location that can replicate the moving behaviour. The 

process of boundary selection, which replicates the 

reproductive area where female beetles establish 

characteristics, is described by 

( )( )
( )( )





+=

−=





UbRYUb

LbRYLb

,1min

,1max
                    (11) 

Hence, 
Y   characterizes the present best location,   

maxmax/1 TandTtR −= denotes the maximum amount 

of iteration,  
 UbandLb  indicates lower and upper 

limits for searching area, R determine the dynamic 

variations in the reproducing locations boundary ranges, and 

UbandLb  denotes Lower and upper bounds for 

optimization issues. 

Exploitation stages: The boundary ratio for searching 

location changes gradually, which was described as R . The 

possibility of oscillation between directions can be reduced 

when convergence approaches the optimal location. The 

female beetles choose which of the nearby brood balls to use 

for their face characteristics after settling on a spot. It is 

possible to explain the brood ball’s location at each iteration 

stage as 

( ) ( )( ) ( )( ) −+−+=+ UbtBbLbtBbYtB iii 211      (12) 

Thus, ( )tBi  denotes the location of 
thi  search agents, 

21 bandb represents two independent arbitrary vectors. 

Equation (13), which describes the boundaries of the ideal 

hunting region for little dung beetles, 

( )( )
( )( )





+=

−=

UbRYUb

LbRYLb

bb

bb

,1min

,1max         (13) 

Where, 
bb LbandUb  denotes upper and lower bounds for 

optimal hunting area and 
bY  represents a global optimal 

location. The smaller dung beetle’s location can be changed 

as follows: 

( ) ( ) ( )( ) ( )( )b

i

b

iii UbtyCLbtyCtyty −+−+=+ 211    (14) 

Where 21 CandC  represents a random vector that ranges 

from 0 to 1 and ( )tyi represents position of the 
thi  little 

dung beetle in 
tht  repetition. Because they collect the feces 

balls of other dung beetles, some dung beetles have earned 

the nickname "thieves." The following equation describes 

the thief’s location: 

( ) ( ) ( )( )b

ii

b

i YtyYtyqHYty −+−+=+ 1      (15) 

Where H  represents constant value, q  denotes a random 

vector that is normally distributed, and ( )tyi represents a 

location for 
thi thief in 

tht iteration. To a certain extent, the 

addition of q  can prevent falling to the optimal local 

solution by increasing random instability. Algorithm 1 

depicts the pseudocode of the HGDBO. 

Algorithm 1: HGDBO 

Start 

      Create initial population 

          While 

iterationofnumberimumnumberiteration max_   

                For every chromosome,  

                       Calculate fitness value using 

( )

( )
=

=
N

i

i

i
s

yf

yf
p

1

 

              End for 

                    Crossover 
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                    Mutation 

                End while 

            Output best solution 

End 

         // Evaluate Dung Beetles optimization 

Require: n  denotes the total amount of dung beetle, maxT  

indicates maximum iterations 

                For ni →1  do 

                     Update the search agent position utilizing 

equation (9), 

                  if 
*UbBi  then 

                       
*UbBi   

               end if 

                   if 
*LbBi  then 

                        
*LbBi   

                end if 

         end for 

     Optimal solution 

Return 

3.5 Machine learning methods for classification 

Machine learning has emerged as a potent technique for 

classifying cancer by analyzing gene expression data. The 

proposed study included machine learning classifiers such 

as SVM, NB, RF, and KNN [30]. 

3.5.1 Support vector machine (SVM) 

The supervised learning technology known as the Support 

Vector Machine is used to address classification difficulties. 

The algorithm applies the kernel trick method to transform 

the input data and identifies the appropriate boundary 

between positive and negative samples. The additional 

samples are assigned to the same space and classified into a 

class based on the direction of the distance they fall from the 

established maximal boundary. In addition, it tackles both 

nonlinear and linear classification through the utilization of 

the kernel trick. By employing a kernel, it is possible to 

transform low-dimensional inputs into feature spaces of 

higher dimensions. Particularly, the traditional soft-margin 

SVM can be expressed as, 

( ) 
== =

−=
N

i

iij

N

i

N

j

iji yyKxxSvm
ii 11 1

,
2

1
min 



     (16) 

Thus LiforPandx ii

N

i

i ,...,2,1,00
1

==
=

 ,and 

i  represents the Lagrange multiplier. P indicates penalty 

factor, ( )yyK i ,  denotes the spectral kernel, which is 

shown using radial basis kernels for Gaussian, polynomial, 

and linear functions below: 

( ) ( )
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Eventually, the SVM’s output was determined by, 

( ) ( ) 







+= 

0

,sgn
i

iii byyKxyf            (18) 

Where   represents the weight parameter, training samples 

denotes y ,sgn represents a signum function, and 

( )yyK i , represents a polynomial kernel value that 

quantifies the relationship among input pattern iy . b  

represents the SVM parameter, which is determined at the 

final stage of the training phase. 

3.5.2 Naive Bayes (NB)  

Using Naive Bayes Classifiers is the easiest and most 

effective way to organize. Based on the concept of Bayesian 

networks, this approach can be conceptualized as a possible 

graphical model that depicts a set of random elements and 

their conditional separation. In Bayesian networks, there are 

several effective ways to receive and process input. Because 

the features of the applied data are independent, the Naive 

Bayes approach is used for classification. Every sequence of 

information initially creates multiple opportunities with this 

method. When the new data arrives, the total number of 

possible sequences for each individual is calculated. 

Consequently, sequences are classified based on the number 

of probability sequences. With a strong belief in 

separateness, the Naive Bayes division uses the Bayes 

theory in a straightforward and practicable manner. Thus,

A  data can be recorded with a group 
jG label in the 

following ways: 

( )
( ) ( )

( )ANB

GNBGANB
AGNB

jj

j


=

|
|                (19) 

Thus, A  represents the total amount of data and 
jG  

denotes a group of labels. 

3.5.3 Random forest (RF)  

A random forest is made up of predictable trees organized 

so that each tree in the forest has the same circulation and is 

dependent on randomly selected, independently tested 

vector numbers. The highest possible value of the total 

degradation error is increased as the forest's tree count rises. 

The overall influence of each tree in the forest and their 

interconnections determine which tree exhibits the highest 

frequency of errors. The error rates derived from randomly 

selecting features to isolate each node exhibit more 

resilience in the environment. Internal measurement is used 
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to assess the effectiveness, error rate, and ability to fix 

mistakes within a division. It is applied to show how the 

division responds as the number of elements rises. 

 3.5.4 K-nearest neighbours (KNN) 

The KNN methodology classifies information by 

identifying the nearest occurrences in the characteristic 

space for training purposes. KNN is a machine learning 

algorithm that is commonly used as a simple and direct 

method for data isolation. This methodology employs a 

classification method that gives a category to each concern 

based on the categorization of the majority of its closest 

friends. The whole training set is retained throughout the 

research process. The most straightforward approach for 

KNN, with K=1, is the Neighborhood rule. The database 

sample and the surrounding samples should be appropriately 

segregated. 

Therefore, sample segregation can be determined by 

considering the proximity of neighboring samples when the 

data is uncertain. In order to determine how far away an 

unknown object is from each training set sample, one needs 

only the unknown data and the training set. The training set 

samples closest to the unidentified group have the same 

minimum value range. Therefore, a cluster of the closest 

neighboring data points could be employed to categorize an 

unidentifiable sample. Ultimately, the accuracy of each 

classifier is evaluated using different datasets. 

4. Result and Discussion 

This section explains the suggested model's performance 

evaluation and outcome analysis. The Python tool is used 

for the experimental purposes. Eleven datasets are used in 

the implementation of the proposed parallel selection 

method. The proposed 90% is utilized for training and 10% 

for testing. 

4.1 Dataset Details 

This research examines a few real-world microarray 

datasets with a remarkably high number of characteristics 

(genes) in this section. Specifically, the current study 

considers 11 publicly available datasets. The eleven datasets 

include Colon tumor, Central nervous system (CNS), 

Leukemia, Breast cancer, Lung Cancer, Ovarian Cancer, 

Leukemia_3c, Leukemia_4c, Mixed lineage Leukemia gene 

(MIL), and small round blue cell tumor (SRBCT). Table 2 

provides an overview of 11 datasets [31]. 

Table 2: Overview of 11 datasets. 

Datasets Tot

al  

Gen

es 

Initi

al 

Dat

a’s 

Total 

number of 

data 

(After 

augmenta

tion) 

Total 

amou

nt of 

featu

res 

select

ed 

Clas

ses 

Colon 

tumor 

200

0 

60 1240 1395 2 

Central 

nervous 

system 

712

9 

60 1250 1125 2 

Leukemi

a 

712

9 

72 1240 1116 2 

Breast 

cancer 

244

81 

97 1250 1389 2 

Lung 

Cancer 

125

33 

181 1421 1279 2 

Ovarian 

Cancer 

151

54 

253 1518 1367 2 

Leukemi

a_3c 

712

9 

72 1512 1361 3 

Leukemi

a_4c 

712

9 

72 1440 1296 2 

Lympho

ma 

402

6 

62 1452 1307 3 

MILL 125

82 

72 1512 1361 3 

SRBCT 230

8 

83 1494 1345 2 

 

In many prior experiments, the original dataset was 

randomly divided into two parts: a training set and a test set. 

The next step is to pick genes from the training set and then 

evaluate their quality using the unseen test set. However, 

society today views such an approach as unreliable because 

of the few cases. In an alternative scenario, the proposed 

method would use an external 10-fold cross-validation to 

partition the data. A comparison of different techniques for 

estimating errors in microarray categorization was 

proposed. Large-scale gene expression is analyzed via 

microarray experiments, which produce vast datasets but 

necessitate careful processing to derive useful information. 

In general, microarray data experiment findings offer a 

useful sample of the patterns of gene expression under 

various circumstances. Table 3 shows the system 

configuration. 

Table 3: System configuration 

Processor Intel® Core(TM) i3-3245 

CPU@3.40Ghz 3.40 GHz 

Installed memory(RAM) 4.00 GB (3.83 GB usable) 

System type 64-bit Operating system 

Pen and Touch No pen and Touch Input is 

available for this display 

4.2 Performance Metrics Evaluation 

The performance analysis is assessed to evaluate metrics 

like accuracy, F1-score, precision, recall, true negative rate 

(TNR), and true positive rate (TPR). Additionally, an 
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analysis of the outcomes using other existing techniques can 

be used to estimate the efficiency. 

NPNP

NP

FFTT

TT
Accuracy

+++

+
=            (20) 

PP

P

FT

T
ecision

+
=Pr                        (21) 

NP

P

FT

T
call

+
=Re                       (22) 

ysensitivitprecision

ysensitivitprecision
scoreF

+


=− 21       (23) 

PN

N

FT

T
ySpecificit

+
=              (24) 

Hence, TP  denotes true positive, TN  represents true 

negative, FP  indicates false positive, and FN denotes 

false negative. 

4.3 Comparative analysis with other methods 

This section offers an analysis of the results and a 

comparison between the proposed approach and current 

models using the XG-Boost, Multi-layer perceptron, and 

logistics regression (LR) techniques. 

4.3.1 Performance evaluation for Dataset1 (Colon 

tumor) 

The comparison between the proposed and existing 

approaches for dataset 1 is depicted in Figure 2 (a)-(d). In 

Figure 2(a), the proposed SVM method succeeds with an 

accuracy of 0.97, whereas the existing methods are LR 

(0.94), MLP (0.95), and XG-Boost (0.95). Then, the 

proposed method achieves a precision (0.97), recall (0.975), 

specificity (0.97), and F1-score (0.972). The proposed NB 

approach achieves an accuracy of 0.96 in Figure 2(b). The 

proposed RF approach achieves an accuracy of 0.98 in 

Figure 2(c). The proposed KNN approach achieves an 

accuracy of 0.97 in Figure 2(d). Therefore, the proposed 

method yields superior results. The values of the proposed 

and current approaches for dataset 1 are displayed in Table 

4. 

 

 
(a) SVM 

 

                        (b) NB 

 
(c) RF 

 

(d) KNN 

Fig 2: Performance metrics for Dataset 1 

Table 4: Values of proposed and existing methods for 

dataset1. 

Metri

cs 

SV

M 

NB RF KN

N 

XG-

Boost 

ML

P 

LR 

Accur

acy            

0.9

758 

0.9

677 

0.9

839 

0.9

758 

0.959

7 

0.9

516 

0.9

435 

precis

ion           

0.9

700 

0.9

635 

0.9

882 

0.9

825 

0.963

5 

0.9

453 

0.9

386 

Sensit

ivity         

0.9

757 

0.9

634 

0.9

756 

0.9

634 

0.945

1 

0.9

450 

0.9

331 

Specif

icity         

0.9

756 

0.9

612 

0.9

756 

0.9

634 

0.945

0 

0.9

438 

0.9

320 

F1-

score            

0.9

729 

0.9

610 

0.9

818 

0.9

728 

0.954

3 

0.9

430 

0.9

359 

 

 

(a) SVM      

 

                                                (b) NB 
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(c) RF                                                               

 

 (d) KNN 

Fig 3: Confusion matrix for dataset1 

Figure 3(a)-(d) shows the confusion matrix attained by the 

proposed technique for colon tumor classification. The 

proposed study categorized two classes of colon tumor 

classification: normal and tumor. In figure 3 (a), when 

detecting the normal class, the proposed method recognized 

39 as normal classes and 2 classified as tumor classes. For 

classifying the tumor classes, the proposed method 

recognized 81 as tumor, and one is classified as a normal 

class. In figure 3 (b), when detecting the normal samples, 

the proposed method recognized 38 as normal classes and 2 

classified as tumor classes. For classifying the tumor 

classes, the proposed method recognized 81 as tumor, and 2 

were classified to be normal class. In figure 3 (c), when 

detecting the normal samples, the proposed method 

recognized 38 as normal classes and none classified as 

tumor classes. For classifying the tumor classes, the 

proposed method recognized 83 as tumor, and 2 were 

classified to be normal class. In figure 3 (d), when detecting 

the normal samples, the proposed method recognized 37 as 

normal classes and none classified as tumor classes. For 

classifying the tumor classes, the proposed method 

recognized 83 as tumor, and 3 were classified to be normal 

class. Therefore, the proposed approach allows for more 

accurate gene classification.   

4.3.2 Performance evaluation for Dataset 2 (Central 

nervous system) 

The comparison of proposed and current techniques for 

dataset 2 is displayed in Figure 4(a)–(d). In Figure 4(a), the 

proposed SVM method obtains an accuracy of 0.98, 

whereas the existing methods are LR (0.93), MLP (0.94), 

and XG-Boost (0.96). Then, the proposed method achieves 

a precision (0.985), recall (0.982), specificity (0.982), and 

F1-score (0.984). In Figure 4(b), the proposed NB method 

attains an accuracy of 0.968. In Figure 4(c), the proposed 

RF method succeeds with an accuracy of 0.98. In Figure 

4(d), the proposed KNN method accomplishes an accuracy 

of 0.976. Thus, the proposed method has enhanced 

performance and reduced processing time. Table 5 depicts 

values for dataset 2 for proposed and existing approaches. 

 

(a) SVM 

 

(b) NB 

 

(c) RF                                                              

 

 (d) KNN 

Fig 4: Performance metrics for Dataset 2 
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Table 5: Values for dataset 2 for proposed and existing 

approaches. 

Metri

cs 

SV

M 

NB RF KN

N 

ML

P 

XG-

Boost 

LR 

Accur

acy 

0.9

84 

0.9

68 

0.9

84 

0.9

76 

0.9

44 

0.96 0.93

6 

precis

ion 

0.9

855 

0.9

673 

0.9

839 

0.9

785 

0.9

527 

0.960

3 

0.93

52 

Sensit

ivity 

0.9

827 

0.9

689 

0.9

739 

0.9

741 

0.9

396 

0.962

6 

0.93

68 

Specif

icity 

0.9

826 

0.9

680 

0.9

732 

0.9

740 

0.9

390 

0.962

0 

0.93

60 

F1-

score 

0.9

841 

0.9

681 

0.9

631 

0.9

763 

0.9

461 

0.961

5 

0.93

604 

 

Figure 5(a)-(d) shows the confusion matrix attained by the 

proposed technique for Central nervous system 

classification. In figure 5 (a), when detecting the normal 

class, the proposed method recognized 56 as normal classes 

and none classified as tumor classes. For classifying the 

tumor classes, the proposed method recognized 66 as tumor, 

and 2 were classified to be normal class. In figure 5 (b), 

when detecting the normal samples, the proposed method 

recognized 57 as normal classes and 3 classified as tumor 

classes. For classifying the tumor classes, the proposed 

method recognized 63 as tumor, and one is classified as a 

normal class. In figure 5 (c), when detecting the normal 

samples, the proposed method recognized 57 as normal 

classes and one classified as tumor classes. For classifying 

the tumor classes, the proposed method recognized 65 as 

tumor, and one is classified as a normal class. In figure 5 

(d), when detecting the normal samples, the proposed 

method recognized 55 as normal classes and none classified 

as tumor classes. For classifying the tumor classes, the 

proposed method recognized 66 as tumor, and 3 were 

classified to be normal class.   

 

(a) SVM 

 

(b) NB 

 

(c) RF         

 

                (d) KNN 

Fig 5: Confusion matrix for dataset1 

4.3.3 Performance evaluation for Dataset3 (Breast 

cancer) 

Figure 6 (a)-(d) compares proposed and existing methods 

for dataset 3. In Figure 6(a), the proposed SVM method 

attains an accuracy of 0.96, whereas the existing methods 

are LR (0.92), MLP (0.94), and XG-Boost (0.95). Then, the 

proposed method achieves a precision (0.97), recall (0.967), 

specificity (0.96), and F1-score (0.968). The proposed NB 

approach obtains an accuracy of 0.976 in Figure 6(b). The 

proposed RF approach obtains an accuracy of 0.97 in Figure 

6(c). The proposed KNN approach obtains an accuracy of 

0.968 in Figure 6(d). Therefore, the proposed method was 

identifying essential gene and faster to select the optimal 

features. Table 6 shows the values of proposed and existing 

methods for dataset 3.  
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(a) SVM 

 

(b) NB 

 

(c) RF                                                               

 

 (d) KNN 

Fig 6: Performance metrics for Dataset 3 

Table 6: Values of proposed and existing methods for 

dataset 3. 

Metri

cs 

SV

M 

NB RF KN

N 

ML

P 

XG-

Boost 

LR 

Accur

acy 

0.9

68 

0.9

76 

0.9

76 

0.9

68 

0.9

44 

0.952 0.9

28 

precis

ion 

0.9

705 

0.9

762 

0.9

776 

0.9

687 

0.9

442 

0.951

9 

0.9

293 

Sensit

ivity 

0.9

672 

0.9

757 

0.9

754 

0.9

675 

0.9

437 

0.951

5 

0.9

273 

Specif

icity 

0.9

670 

0.9

754 

0.9

752 

0.9

673 

0.9

435 

0.951

0 

0.9

270 

F1-

score 

0.9

688 

0.9

760 

0.9

765 

0.9

681 

0.9

440 

0.951

9 

0.9

283 

 

 

(a) SVM 

 

 (b) NB 

 

(c) RF 

 

 (d) KNN 

Fig 7: Confusion matrix for dataset3 

Figure 7(a)-(d) shows the confusion matrix attained by the 

proposed technique for Breast cancer classification. In 

Figure 7(a), when selecting the relapse class, the proposed 
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method recognized 57 as relapse classes and none classified 

as non-relapse classes. For classifying the non-relapse 

classes, the proposed method recognized 4 as relapse, and 

64 were classified as non-relapse classes. In figure 7 (b), 

when selecting the relapse samples, the proposed method 

recognized 59 as relapse classes and one classified as non-

relapse classes. For classifying the non-relapse classes, the 

proposed method recognized 63 as non-relapse, and 2 were 

classified as relapse class. In figure 7 (c), when selecting the 

relapse samples, the proposed method recognized 58 as 

relapse classes and none classified as non-relapse classes. 

For classifying the non-relapse classes, the proposed 

method recognized 64 as non-relapse, and 3 were classified 

as relapse classes. In figure 7 (d), when selecting the relapse 

samples, the proposed method recognized 58 as relapse 

classes and none classified as non-relapse classes. For 

classifying the non-relapse classes, the proposed method 

recognized 63 as non-relapse, and 3 were classified as 

relapse class. 

4.3.4 Performance evaluation for Dataset 4 (Leukemia) 

Figure 8 (a)-(d) compares proposed and existing methods 

for dataset 4. In Figure 8(a), the proposed SVM method 

accomplishes an accuracy of 0.97, whereas the existing 

methods are LR (0.93), MLP (0.943), and XG-Boost 

(0.959). Then, the proposed method achieves a precision 

(0.972), recall (0.979), specificity (0.97), and F1-score 

(0.975). Figure 8(b) shows the proposed NB approach with 

an accuracy of 0.983. Figure 8(c) shows the proposed RF 

technique with an accuracy of 0.975. Figure 8(d) shows the 

proposed KNN algorithm with an accuracy of 0.967. So, the 

proposed method is a more precise classification of genes 

related to illness and reduced dimensionality. Table 7 

depicts values for dataset 4 for proposed and existing 

approaches. 

 

(a) SVM 

 

                                   (b) NB 

 

(c) RF                                              

 

 (d) KNN 

Figure 8: Performance metrics for Dataset 4 

Table 7: Values for dataset 4 for proposed and existing 

approaches. 

Metri

cs 

SV

M 

NB RF KN

N 

ML

P 

XG-

Boost 

LR 

Accur

acy 

0.9

758 

0.9

839 

0.9

758 

0.9

677 

0.9

435 

0.959

7 

0.9

355 

precis

ion 

0.9

722 

0.9

833 

0.9

764 

0.9

697 

0.9

506 

0.963

2 

0.9

445 

Sensit

ivity 

0.9

794 

0.9

830 

0.9

735 

0.9

637 

0.9

343 

0.953

9 

0.9

245 

Specif

icity 

0.9

792 

0.9

828 

0.9

733 

0.9

635 

0.9

340 

0.953

5 

0.9

243 

F1-

score 

0.9

758 

0.9

824 

0.9

750 

0.9

667 

0.9

424 

0.958

5 

0.9

344 
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(a) SVM 

                                                           
(b) NB 

 

(c) RF                                                               

 

 (d) KNN 

Figure 9: Confusion matrix for dataset 4 

Figure 9(a)-(d) shows the confusion matrix attained by the 

proposed technique for Leukemia classification. The 

proposed study categorized two classes of gene prediction: 

Acute Lymphocytic Leukemia (ALL) and Acute Myeloid 

Leukemia (AML). In Figure 9(a), when selecting the ALL 

class, the proposed method recognized 51 as ALL classes 

and 3 classified as AML classes. For classifying the AML 

classes, the proposed method recognized 70 as AML, and 

none were classified as ALL classes. In figure 9 (b), when 

selecting the ALL samples, the proposed method recognized 

50 as ALL classes and one classified as AML classes. For 

classifying the AML classes, the proposed method 

recognized 72 as AML, and one is classified as an ALL 

class. In figure 9 (c), when selecting the ALL samples, the 

proposed method recognized 49 as ALL classes and one 

classified as AML classes. For classifying the AML classes, 

the proposed method recognized 72 as AML, and 2 were 

classified as an ALL class. In figure 9 (d), when selecting 

the ALL samples, the proposed method recognized 48 as 

ALL classes and one classified as AML classes. For 

classifying the AML classes, the proposed method 

recognized 72 as AML, and 3 were classified as an ALL 

class. 

4.3.5 Performance evaluation for Dataset 5 

(Leukemia_3c) 

Figure 10 (a)–(d) shows how the proposed and current 

methods for dataset 5 compare to each other. In Figure 

10(a), the proposed SVM method accomplishes an accuracy 

of 0.973, whereas the existing methods are LR (0.92), MLP 

(0.947), and XG-Boost (0.955). Then, the proposed method 

achieves a precision (0.96), recall (0.95), specificity (0.976), 

and F1-score (0.964). The accuracy achieved by the 

proposed NB approach in Figure 10(b) is 0.97. The accuracy 

achieved by the proposed RF technique in Figure 10(c) is 

0.96. The accuracy achieved by the proposed KNN 

approach in Figure 10(d) is 0.98. Thus, the proposed method 

is an effective device that can speed up gene discovery and 

increase precision and effectiveness. Table 8 shows the 

values of proposed and existing methods for dataset 5. 

 

(a) SVM 

 

                                     (b) NB 
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(c) RF                                                               

 

 (d) KNN 

Fig 10: Performance metrics for Dataset 5 

Table 8: Values of proposed and existing methods for 

dataset 5. 

Metri

cs 

SV

M 

NB RF KN

N 

ML

P 

XG-

Boost 

LR 

Accur

acy 

0.9

735 

0.9

735 

0.9

603 

0.9

823 

0.9

47 

0.955

8 

0.9

294 

precis

ion 

0.9

689 

0.9

579 

0.9

261 

0.9

691 

0.9

129 

0.921

6 

0.8

968 

Sensit

ivity 

0.9

592 

0.9

498 

0.9

315 

0.9

812 

0.9

143 

0.925

8 

0.8

913 

Specif

icity 

0.9

767 

0.9

783 

0.9

684 

0.9

866 

0.9

559 

0.964

2 

0.9

392 

F1-

score 

0.9

640 

0.9

538 

0.9

288 

0.9

751 

0.9

136 

0.923

7 

0.8

940 

 

Figure 11(a)-(d) shows the confusion matrix attained by the 

proposed technique for Leukemia_3c classification. The 

proposed study categorized three classes of gene prediction: 

B-cell, T-cell, and Acute Myeloid Leukemia (AML). In 

Figure 11(a), when selecting the B-cell class, the proposed 

method recognized 56 as B-cell classes, 3 classified as T-

cell classes, and none classified as AML classes. For 

classifying the T-cell classes, the proposed method 

recognized 2 as B-cell classes, 68 classified as T-cell 

classes, and one classified as AML classes. In Figure 11(b), 

when selecting the B-cell class, the proposed method 

recognized 57 B-cell classes, 3 classified as T-cell classes, 

and none classified as AML classes. For classifying the T-

cell classes, the proposed method recognized none as B-cell 

classes, 68 classified as T-cell classes, and two classified as 

AML classes. In Figure 11(c), when selecting the B-cell 

class, the proposed method recognized 53 as B-cell classes, 

2 classified as T-cell classes, and none classified as AML 

classes. For classifying the T-cell classes, the proposed 

method recognized two B-cell classes, 69 classified as T-

cell classes, and two classified as AML classes. In Figure 

11(d), when selecting the B-cell class, the proposed method 

recognized 57 B-cell classes, 3 classified as T-cell classes, 

and none classified as AML classes. For classifying the T-

cell classes, the proposed method recognized none as B-cell 

classes, 68 classified as T-cell classes, and two classified as 

AML classes. 

 

(a) SVM 

 

(b) NB 

 

(c) RF                                                               
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 (d) KNN 

Fig 11: Confusion matrix for dataset 5 

4.3.6 Performance evaluation for Dataset 6 

(Leukemia_4c) 

Figure 12 (a)-(d) depicts a comparison of the proposed and 

current approaches for dataset 6. In Figure 12(a), the 

proposed SVM method reaches an accuracy of 0.979, 

whereas the existing methods are LR (0.93), MLP (0.944), 

and XG-Boost (0.951). Then, the proposed method achieves 

a precision (0.93), recall (0.96), specificity (0.98), and F1-

score (0.95). The accuracy of the proposed NB approach in 

Figure 12 (b) is 0.975. The accuracy achieved by the 

proposed RF technique in Figure 12 (c) is 0.97. The 

accuracy achieved by the suggested KNN approach in 

Figure 12 (d) is 0.96. In order to find significant genes, the 

proposed machine learning techniques are more objective 

and concentrate on the data. Table 9 depicts values for 

dataset 6 for proposed and existing approaches. 

 

(a) SVM 

                                                       
(b) NB 

 

(c) RF                                                                

 

 (d) KNN 

Fig 12: Performance metrics for Dataset 6 

Table 9: Values for dataset 6 for proposed and existing 

approaches. 

mod/p

er 

SV

M 

NB RF KN

N 

ML

P 

XG-

Boost 

LR 

Accur

acy 

0.9

79 

0.9

755 

0.9

72 

0.9

685 

0.9

441 

0.951 0.93

71 

precis

ion 

0.9

396 

0.9

079 

0.9

154 

0.9

567 

0.9

275 

0.935

2 

0.91

88 

Sensit

ivity 

0.9

652 

0.9

382 

0.9

559 

0.9

330 

0.9

055 

0.912

8 

0.88

74 

Specif

icity 

0.9

844 

0.9

847 

0.9

803 

0.9

755 

0.9

570 

0.962

0 

0.95

028 

F1-

score 

0.9

522 

0.9

228 

0.9

352 

0.9

447 

0.9

164 

0.923

8 

0.90

28 

 

Figure 13(a)-(d) shows the confusion matrix attained by the 

proposed technique for Leukemia_4c classification. The 

proposed study categorized four classes of gene selection: 

B-cell, T-cell, bone marrow (BM), and peripheral blood 

(PB). In Figure 13(a), when selecting the B-cell class, the 

proposed method recognized 66 as B-cell classes, 2 

classified as T-cell classes, and none classified as BM and 

PB classes. For classifying the T-cell classes, the proposed 

method recognized 2 as B-cell classes, 42 classified as T-

cell classes, and none classified as BM and PB classes. In 

Figure 13(b), when selecting the B-cell class, the proposed 

method recognized 67 as B-cell classes, with none classified 

as T-cell, BM, and PB classes. For classifying the T-cell 
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classes, the proposed method recognized one as B-cell 

classes, 41 classified as T-cell classes, and one classified as 

BM and PB classes. In Figure 13(c), when selecting the B-

cell class, the proposed method recognized 65 as B-cell 

classes, one classified as T-cell classes, none classified as 

BM class, and one classified as PB class. For classifying the 

T-cell classes, the proposed method recognized two as B-

cell classes, 41 classified as T-cell classes, and none 

classified as BM and PB classes. In Figure 13(d), when 

selecting the B-cell class, the proposed method recognized 

64 as B-cell classes, 2 classified as T-cell classes, and none 

classified as BM and PB classes. For classifying the T-cell 

classes, the proposed method recognized 5 as B-cell classes, 

42 as classified as T-cell classes, and one classified as BM 

and PB classes. 

 

(a) SVM 

 

 (b) NB 

 

(c) RF           

 

                                             (d) KNN 

Fig 13: Confusion matrix for dataset 6 

4.3.7 Performance evaluation for Dataset 7 (Lung 

cancer) 

Figure 14 (a)-(d) compares the proposed and existing 

methods for dataset 7. In Figure 14(a), the proposed SVM 

method achieves an accuracy of 0.98, whereas the existing 

methods are LR (0.92), MLP (0.943), and XG-Boost 

(0.950). Then, the proposed method achieves a precision 

(0.97), recall (0.98), specificity (0.989), and F1-score (0.98). 

The proposed NB method in Figure 14(b) has an accuracy 

of 0.96. The proposed RF approach in Figure 14(c) yielded 

an accuracy of 0.971. In Figure 14(d), the accuracy attained 

by the proposed KNN technique is 0.964. Hence, the 

proposed method can assist in the creation of more precise 

and understandable models for tasks like cancer 

classification by choosing a smaller collection of relevant 

genes. Table 10 shows the values of proposed and existing 

methods for dataset 7. 

 

(a) SVM 

 

(b) NB 
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(c) RF                                                               

 

 (d) KNN 

Fig 14: Performance metrics for Dataset 7 

Table 10: Values of proposed and existing methods for 

dataset 7. 

mod/p

er 

SV

M 

NB RF KN

N 

ML

P 

XG-

Boost 

LR 

Accur

acy 

0.9

859 

0.9

648 

0.9

718 

0.9

648 

0.9

437 

0.950

7 

0.9

225 

precis

ion 

0.9

791 

0.9

50 

0.9

60 

0.9

538 

0.9

319 

0.941

6 

0.9

050 

Sensit

ivity 

0.9

895 

0.9

739 

0.9

791 

0.9

682 

0.9

413 

0.946

5 

0.9

257 

Specif

icity 

0.9

893 

0.9

735 

0.9

790 

0.9

681 

0.9

410 

0.946

2 

0.9

254 

F1-

score 

0.9

843 

0.9

623 

0.9

694 

0.9

609 

0.9

366 

0.944

1 

0.9

152 

 

 

(a) SVM 

 

 (b) NB 

 

(c) RF                                                               

 

 (d) KNN 

Fig 15: Confusion matrix for dataset 7 

Figure 15(a)-(d) shows the confusion matrix attained by the 

proposed technique for lung cancer classification. In Figure 

15(a), when detecting the normal class, the proposed 

method recognized 94 as normal classes and none classified 

as cancer classes. For classifying the cancer classes, the 

proposed method recognized 46 as cancer, and 2 were 

classified to be normal class. In Figure 15(b), when 

detecting the normal samples, the proposed method 

recognized 91 as normal classes and none classified as 

cancer classes. For classifying the cancer classes, the 

proposed method recognized 46 as cancer, and 5 were 

classified as normal. In Figure 15(c), when detecting the 

normal samples, the proposed method recognized 92 as 

normal classes and none classified as cancer classes. For 

classifying the cancer classes, the proposed method 

recognized 46 as cancer, and 4 were classified as normal. In 

Figure 15(d), when detecting the normal samples, the 

proposed method recognized 92 as normal classes and one 

classified as cancer classes. For classifying the cancer 

classes, the proposed method recognized 45 as cancer, and 

4 were classified to be normal class. 

4.3.8 Performance evaluation for Dataset 8(Lymphoma) 
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The comparison between proposed and existing approaches 

for dataset 8 is depicted in Figure 16 (a)-(d), utilizing 

metrics such as accuracy, precision, recall, F1-score, and 

specificity. The accuracy achieved by the suggested 

SVM approach in Figure 16 (a) is 0.97, whereas the existing 

methods are LR (0.94), MLP (0.944), and XG-Boost 

(0.949). Then, the proposed method achieves a precision 

(0.92), recall (0.95), specificity (0.97), and F1-score (0.94). 

The accuracy achieved by the proposed NB approach in 

Figure 16(b) is 0.96. The accuracy achieved by the proposed 

RF technique in Figure 16 (c) is 0.963. The accuracy 

achieved by the suggested KNN algorithm in Figure 16(d) 

is 0.97. The proposed algorithms are capable of efficiently 

identifying the most relevant genes and are built to process 

high-dimensional data. Table 11 depicts values for dataset 8 

for proposed and existing approaches. 

 
(a) SVM 

 
     (b) NB 

 

(c) RF                                                               

 

 (d) KNN 

Figure 16: Performance metrics for Dataset 8 

Table 11: Values for dataset 8 for proposed and existing 

approaches. 

Metri

cs 

SV

M 

NB RF KN

N 

ML

P 

XG-

Boost 

LR 

Accur

acy 

0.9

724 

0.9

678 

0.9

632 

0.97

7 

0.9

448 

0.949

4 

0.9

402 

precis

ion 

0.9

281 

0.9

149 

0.8

999 

0.94

26 

0.8

696 

0.883

8 

0.8

565 

Sensit

ivity 

0.9

530 

0.9

498 

0.9

467 

0.95

617 

0.8

933 

0.896

4 

0.8

901 

Specif

icity 

0.9

722 

0.9

695 

0.9

669 

0.97

496 

0.9

387 

0.941

3 

0.9

360 

F1-

score 

0.9

404 

0.9

320 

0.9

227 

0.94

938 

0.8

813 

0.890

1 

0.8

730 

 

 

(a) SVM 

 

 (b) NB 

 

(c) RF                                                               
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 (d) KNN 

Fig 17: Confusion matrix for dataset 8 

Figure 17(a)-(d) shows the confusion matrix attained by the 

proposed technique for Lymphoma classification. The 

proposed study categorized three classes of gene selection: 

Diffuse large B cell lymphoma (DLBCL), Follicular 

lymphoma (FL), and chronic lymphocytic Leukemia (CLL). 

In Figure 17(a), when selecting the DLBCL class, the 

proposed method recognized 20 as DLBCL classes, 2 

classified as FL classes, and none classified as CLL classes. 

For classifying the FL classes, the proposed method 

recognized one as DLBCL classes, 102 classified as FL 

classes, and one classified as CLL classes. In Figure 17(b), 

when selecting the DLBCL class, the proposed method 

recognized 20 DLBCL classes, 3 classified as FL classes 

and none classified as CLL classes. For classifying the FL 

classes, the proposed method recognized one as DLBCL 

classes, 101 classified as FL classes, and one classified as 

CLL classes. In Figure 17(c), when selecting the DLBCL 

class, the proposed method recognized 20 as DLBCL 

classes, 3 classified as FL classes, and none classified as 

CLL classes. For classifying the FL classes, the proposed 

method recognized one as DLBCL classes, 100 classified as 

FL classes, and one classified as CLL classes. In Figure 

17(d), when selecting the DLBCL class, the proposed 

method recognized 20 DLBCL classes, one classified as FL 

classes and none classified as CLL classes. For classifying 

the FL classes, the proposed method recognized one as 

DLBCL classes, 103 classified as FL classes, and one 

classified as CLL classes. 

4.3.9 Performance evaluation for Dataset 9(Mixed 

lineage Leukemia gene (MLL)) 

Figure 18 (a)-(d) compares the proposed and existing 

methods for dataset 9. In Figure 18(a), the proposed SVM 

method achieves an accuracy of 0.973, whereas the existing 

methods are LR (0.94), MLP (0.951), and XG-Boost 

(0.960). Then, the proposed method achieves a precision 

(0.95), recall (0.961), specificity (0.98), and F1-score (0.96). 

In Figure 10(b), the proposed NB method achieves an 

accuracy of 0.97. In Figure 18(c), the proposed RF method 

attains an accuracy of 0.969. In Figure 18(d), the proposed 

KNN method obtains an accuracy of 0.98. So, the proposed 

model may manage the high dimensionality by 

concentrating on the genes that have the greatest impact on 

class separation, lowering the model’s complexity and 

increasing accuracy. Table 12 shows the values of proposed 

and existing methods for dataset 9. 

 

(a) SVM 

 

 (b) NB 

 

(c) RF                                                                         

 

 (d) KNN 

Fig 18: Performance metrics for Dataset 9 

Table 12: Values of proposed and existing methods for 

dataset 9. 

Metri

cs 

SV

M 

NB RF KN

N 

M

LP 

XG-

Boost 

LR 

Accur

acy 

0.9

735 

0.97

79 

0.9

691 

0.9

823 

0.9

514 

0.960

3 

0.94

26 
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precis

ion 

0.9

587 

0.96

68 

0.9

534 

0.9

729 

0.9

302 

0.941

4 

0.91

96 

Sensit

ivity 

0.9

616 

0.96

55 

0.9

536 

0.9

755 

0.9

275 

0.941

45 

0.91

3672 

Speci

ficity 

0.9

804 

0.98

33 

0.9

766 

0.9

868 

0.9

630 

0.969

8 

0.95

6254 

F1-

score 

0.9

601 

0.96

624 

0.9

535 

0.9

742 

0.9

288 

0.941

4 

0.91

6659 

 

(a) SVM 

 
(b) NB 

 
(c) RF                                                               

 

 (d) KNN 

Fig 19: Confusion matrix for dataset 9 

Figure 19(a)-(d) shows the confusion matrix attained by the 

proposed technique for mixed lineage Leukemia gene 

classification. The proposed study categorized three classes 

of gene prediction: Acute Lymphocytic Leukemia (ALL), 

mixed lineage Leukemia gene (MLL), and Acute Myeloid 

Leukemia (AML). In Figure 19(a), when selecting the ALL 

class, the proposed method recognized 51 as ALL classes, 2 

classified as MLL classes, and one classified as AML 

classes. For classifying the MLL classes, the proposed 

method recognized one as ALL, 53 classified as MLL 

classes, and one classified as AML classes. In Figure 19(b), 

when selecting the ALL class, the proposed method 

recognized 51 as ALL classes, 1 classified as MLL classes, 

and none classified as AML classes. For classifying the 

MLL classes, the proposed method recognized one as ALL, 

53 classified as MLL classes, and one classified as AML 

classes. In Figure 19(c), when selecting the ALL class, the 

proposed method recognized 51 as ALL classes and none 

classified as MLL and AML classes. For classifying the 

MLL classes, the proposed method recognized one as ALL, 

55 classified as MLL classes, and two classified as AML 

classes. In Figure 19(d), when selecting the ALL class, the 

proposed method recognized 51 as ALL classes and none 

classified as MLL and AML classes. For classifying the 

MLL classes, the proposed method recognized two as ALL, 

54 classified as MLL classes, and none classified as AML 

classes. 

4.3.10 Performance evaluation for Dataset 10(Ovarian 

cancer) 

Figure 20 (a)-(d) compares the proposed and existing 

methods for dataset 10. In Figure 20(a), the proposed SVM 

method accomplishes an accuracy of 0.980, whereas the 

existing methods are LR (0.94), MLP (0.94), and XG-Boost 

(0.95). Then, the proposed method achieves a precision 

(0.97), recall (0.98), specificity (0.98), and F1-score (0.97). 

In Figure 20(b), the proposed NB method obtains an 

accuracy of 0.973. In Figure 20(c), the proposed RF method 

attains an accuracy of 0.960. In Figure 20(d), the proposed 

KNN method reaches an accuracy of 0.96. Large quantities 

of gene expression data can be effectively analyzed using 

the proposed method because it is a computationally 

efficient and easy-to-build system. Table 13 depicts values 

for dataset 10 for proposed and existing approaches. 

Table 13: Values for dataset 10 for proposed and existing 

approaches. 

Metri

cs 

SV

M 

NB RF KN

N 

ML

P 

XG-

Boost 

LR 

Accur

acy 

0.9

801 

0.97

35 

0.9

603 

0.9

669 

0.94

7 

0.953

6 

0.9

404 

precis

ion 

0.9

778 

0.96

98 

0.9

611 

0.9

666 

0.94

235 

0.948

4 

0.9

347 
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Sensit

ivity 

0.9

806 

0.97

52 

0.9

552 

0.9

637 

0.94

74 

0.955

8 

0.9

419 

Speci

ficity 

0.9

804 

0.97

50 

0.9

550 

0.9

635 

0.94

72 

0.955

4 

0.9

415 

F1-

score 

0.9

792 

0.97

253 

0.9

581 

0.9

651 

0.94

48 

0.952

1 

0.9

383 

 

 

(a) SVM 

 
(b) NB 

 
(c) RF                                                               

 

 (d) KNN 

Fig 20: Performance metrics for Dataset 10 

Figure 21(a)-(d) shows the confusion matrix attained by the 

proposed technique for ovarian cancer classification. In 

Figure 21(a), when detecting the normal class, the proposed 

method recognized 90 as normal classes and one classified 

as cancer classes. For classifying the cancer classes, the 

proposed method recognized 58 as cancer, and 2 were 

classified to be normal class. In Figure 21(b), when 

detecting the normal samples, the proposed method 

recognized 89 as normal classes and one classified as cancer 

classes. For classifying the cancer classes, the proposed 

method recognized 58 as cancer, and 3 were classified to be 

normal class. In Figure 21(c), when detecting the normal 

samples, the proposed method recognized 90 as normal 

classes and 4 classified as cancer classes. For classifying the 

cancer classes, the proposed method recognized 55 as 

cancer, and 2 were classified to be normal class. In Figure 

21(d), when detecting the normal samples, the proposed 

method recognized 90 as normal classes and 3 classified as 

cancer classes. For classifying the cancer classes, the 

proposed method recognized 56 as cancer, and 2 were 

classified to be normal class.    

 
(a) SVM 

 
 (b) NB 

 

(c) RF                                                               
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 (d) KNN 

Figure 21: Confusion matrix for dataset 10 

4.3.11 Performance evaluation for Dataset 11(SRBCT) 

Dataset 11 is used to compare the proposed and current 

procedures in Figure 22(a)–(d). The proposed SVM 

approach achieves an accuracy of 0.97 in Figure 22(a), 

while the current methods include LR (0.93), MLP (0.939), 

and XG-Boost (0.953). The proposed method then yields an 

F1-score of 0.978, recall of 0.984, specificity of 0.98, and 

accuracy of 0.972. The proposed NB approach achieves an 

accuracy of 0.972 in Figure 22(b). The proposed RF 

approach achieves an accuracy of 0.966 in Figure 22(c). The 

proposed KNN approach obtains an accuracy of 0.97 in 

Figure 22(d). The values of the proposed and current 

procedures for dataset 11 are displayed in Table 14. 

 

(a) SVM 

 

 (b) NB 

 

(c) RF                                                               

 

 (d) KNN 

Figure 22: Performance metrics for Dataset 11 

Table 14: Values of proposed and existing methods for 

dataset11. 

Metri

cs 

SV

M 

NB RF KN

N 

ML

P 

XG-

Boost 

LR 

Accur

acy 

0.9

799 

0.9

732 

0.9

664 

0.9

799 

0.9

396 

0.953 0.9

329 

precis

ion 

0.9

722 

0.9

701 

0.9

577 

0.9

851 

0.9

267 

0.943

1 

0.9

189 

Sensit

ivity 

0.9

846 

0.9

701 

0.9

697 

0.9

705 

0.9

446 

0.954

8 

0.9

395 

Specif

icity 

0.9

845 

0.9

701 

0.9

697 

0.9

703 

0.9

443 

0.954

5 

0.9

393 

F1-

score 

0.9

784 

0.9

700 

0.9

637 

0.9

778 

0.9

356 

0.948

9 

0.9

291 

 

(a) SVM 
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(b) NB 

 

(c) RF                                                               

 

 (d) KNN 

Fig 23: Confusion matrix for dataset 11 

Figure 23(a)-(d) shows the confusion matrix attained by the 

proposed technique for SRBCT classification. In Figure 

23(a), when detecting the normal class, the proposed 

method recognized 51 as normal classes and 3 classified as 

cancer classes. For classifying the cancer classes, the 

proposed method recognized 95 as cancer, and none were 

classified to be normal class. In Figure 23(b), when 

detecting the normal samples, the proposed method 

recognized 49 as normal classes and 2 classified as cancer 

classes. For classifying the cancer classes, the proposed 

method recognized 96 as cancer, and 2 were classified to be 

normal class. In Figure 23(c), when detecting the normal 

samples, the proposed method recognized 50 as normal 

classes and 4 classified as cancer classes. For classifying the 

cancer classes, the proposed method recognized 94 as 

cancer, and one is classified to the normal class. In Figure 

23(d), when detecting the normal samples, the proposed 

method recognized 40 as normal classes and none classified 

as cancer classes. For classifying the cancer classes, the 

proposed method recognized 98 as cancer, and 3 were 

classified to be normal class. So, the proposed method 

identifies gene selection more accurately. 

4.4 Discussion 

Data on gene expression has been effectively used for a 

number of applications, especially the classification of 

cancer. The drawbacks of generalizability issues, inaccurate 

feature selection, and over-fitting provide difficulties in the 

creation of efficient classifiers for expression data. 

Overcoming the aforementioned challenges and improving 

a classifier’s predicted accuracy can be accomplished with 

efficiency and effectiveness using gene selection. Initially, 

the data are augmented using the SMOTE model to enhance 

microarray data. Next, features are extracted, and Shapley 

values are calculated using the CkSV technique. The 

HGDBO method was utilized to select the most essential 

features. Moreover, the procedure is run on the Apache 

Hadoop Distributed File System for economical storage of 

big datasets. Furthermore, a variety of machine learning 

techniques, including Support Vector Machine, Naive 

Bayes, Random Forest, and K-nearest neighbor are used to 

classify the characteristics. Then, the real-world microarray 

dataset for the SVM classifier, dataset 1 has an accuracy 

(0.97), dataset 2 (0.98), dataset3 (0.968), dataset 4 (0.975), 

dataset 5 (0.973), dataset 6 (0.979), dataset 7 (0.985), dataset 

8(0.972), dataset 9 (0.973), dataset 10(0.980) and dataset 

11(0.979). Thus, the proposed method produces superior 

outcomes than compared to existing methods. Table 15 

compares the existing work with the proposed method. 

Table 15: Comparison of existing work with the proposed 

method. 

Author name 

and 

Reference 

Technique used Performance 

Ali et al. [21] Hybrid filter-

genetic feature 

selection 

strategy 

Attain 93.81% 

accuracy, 93.8% 

recall, precision, 

and F-measure by 

RF 

Akhavan et al. 

[22] 

Two-phase 

microarray data 

gene selection 

technique 

Obtain at least 

99% accuracy 

Alomari et al. 

[23] 

MGWO Attain an accuracy 

of 0.9586 

Deng et al. 

[24] 

XGBoost-

MOGA 

Produces accuracy 

of 83.33% in CNS 

dataset 

Azadifar et al. 

[25] 

SMCEC Attain accuracy of 

about 92.09% in 

the leukemia 

dataset 
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Proposed SMOTE , 

CkSV, 

HGDBO, GA 

and DBO 

The real-world 

microarray dataset 

for SVM classifier, 

dataset 1 has an 

accuracy (0.97), 

dataset 2 (0.98), 

dataset3 (0.968), 

dataset 4 (0.975), 

dataset 5 (0.973), 

dataset 6 (0.979), 

dataset 7 (0.985), 

dataset 8(0.972), 

dataset 9 (0.973), 

dataset 10(0.980) 

and dataset 

11(0.979). 

5. Conclusion and Future Scope 

The identification of important cancer-related genes has 

drawn the attention of biologists and is important for both 

cancer diagnosis and treatment. The proposed SMOTE 

equalizes the distribution of classes by effectively 

increasing the quantity of data points within the minority 

class. To improve interpretability, the major feature from 

the higher level gene data is extracted using CkSV. Thus, 

the proposed method uses a novel hybrid bio-inspired model 

for gene selection that speeds up the learning procedure, 

referred to as HGDBO, which combines features of GA and 

DBO algorithms. In addition, this study also presented a 

novel machine learning approach that could be used to 

identify significant genes and improve classification 

accuracy using microarray datasets. Experiments for SVM 

classifier, dataset 1 has an accuracy (0.97), dataset 2 (0.98), 

dataset3 (0.968), dataset 4 (0.975), dataset 5 (0.973), dataset 

6 (0.979), dataset 7 (0.985), dataset 8(0.972), dataset 9 

(0.973), dataset 10(0.980) and dataset 11(0.979). 

Additionally, gradient boosting and other boosted algorithm 

families can be tried in future study to increase the model’s 

predicted accuracy. Some distinct boosting algorithms have 

mathematical formulas, including AdaBoost and Gentle 

Boost. Gradient Boosting’s development and extension 

contribute to the criterion-fitting process. 
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