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Abstract: Nowadays, the Intrusion Detection System (IDS) is one of the most important application of security in mobile networks, and it 

is considered a significant method for exposing attacks and applying security measures to networks. For this reason, various types of IDS 

approaches have been established in conventional research that focus on recognizing intrusions from datasets with the help of a 

classification issue. However, conventional techniques are limited in identifying malicious attacks due to the issue of overfitting. To 

overcome this issue, the Osprey Optimization Algorithm with Bidirectional Gated Recurrent Unit (OOA-BiGRU) is proposed in this 

research for IDS classification. The OOA selects the set of best features by updating positions based on the chasing and attack behavior. 

The weights are assigned by a self-attention mechanism which enables the BiGRU to adopt attack patterns and enhance the classification 

accuracy. Various datasets such as CICIDS-2018, CICIDS-2017, UNSW-NB15 and NSL-KDD are preprocessed by label encoding and 

min-max normalization to convert categorical feature into integer format and normalize the features. The Synthetic Minority Over-sampling 

Technique (SMOTE) is the oversampling technique employed for balancing the dataset. The accuracy, precision, recall and f1-score are 

taken as parameters to estimate the model’s performance. The OOA-BIGRU achieves the accuracies of 99.86%, 98.64%, 99.72% and 

99.83% respectively on NSL-KDD, UNSW-NB15, CICIDS-2017 and CICIDS-2018 datasets, which is superior when compared to existing 

methods. 

Keywords: Bidirectional Gated Recurrent Unit, Label Encoding, Intrusion Detection System, Min-max Normalization, Osprey 

Optimization Algorithm, SMOTE 

1. Introduction 

IDS are created to address complexity difficulty, supplying 

a way of keeping track of network web traffic coupled with 

recognizing prospective safety and security dangers [1]. As 

computer system networks continue to expand in 

complexity and dimension, the need for efficient security 

and safety measures is increasingly important [2]. IDS is 

identified as network IDS (NIDS) with host IDS (HIDS); 

NIDS covers web traffic vulnerable to attack when the 

HIDS system is hosted on any type of other network 

equipment [3-4]. These systems examine network web 

traffic along with recognizing possible safety dangers such 

as malware, network breaches, and also rejection of solution 

strikes [5]. However, the increasing sophistication and 

variety of network website traffic have made it difficult to 

accurately identify network website traffic using 

conventional rule-based IDS systems [6]. Machine learning 

(ML) methods to overcome these constraints have been 

extensively adopted in IDS for network website traffic types 

[7]. ML approaches are thoroughly made use of, to develop 

network breach discovery systems as a result of their 

capacity to comprehend brand-new breaches [8]. 

ML-based IDS systems offer several advantages over 

conventional policy-based systems, including higher 

accuracy and better scalability, along with greater resilience 

to developing network threats [9].  ML-based IDS is tested 

by security and safety experts to maintain one of the most 

current attack methods. It is also prepared due to the 

complexity of modern computer system networks and the 

frequent cyber threats [10]. Deep learning (DL) is a sub-

field of ML that consists of multiple hidden layers that excel 

at solving problems with big data [11]. DL has indeed 

recently advanced intrusion detection, showing detection 

functions with elevated accuracy rates for intrusion 

detection [12]. Supervised learning focuses on prediction, 

while unsupervised learning explores data patterns that rely 

on training information with correct results [13]. 

Unsupervised detection is a strategy that relies on unlabeled 

information, which implies that the design has not 

previously understood the effects [14]. It is time-consuming 

and requires a sufficient amount of information to obtain 

high prediction accuracy [15]. The existing approaches are 

unable to recognize malicious attacks because of overfitting 

issues in intrusion detection. To overcome this issue, the 

OOA with Bi-GRU is proposed for IDS classification in this 

research. The major contributions are listed as follows; 

• The OOA-BIGRU is proposed in this research for 

classifying IDS and mitigating the overfitting issues.  

• The OOA selects a set of the best relevant features by 
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updating positions based on the chasing and attack 

behavior.  

• The GRU delivers a better balance between efficiency 

and managing long-term dependencies, and the 

capability to focus on appropriate data in network 

traffic, also aiding for reduced overfitting. 

The structure of this research is as follows: Section 2 

analyzes the literature review, Section 3 expands the 

proposed method, Section 4 presents the results and 

discussion, Section 5 presents the current conclusion with 

future work, finally concluded with references. 

2. Literature Review 

This section discusses the recent literature review based on 

Machine Learning (ML) and Deep Learning (DL) 

techniques for IDS for classifying traffic into multiple 

classes. 

Thirimanne et al. [16] presented a real-time intrusion 

detection system (RT-IDS) based on a deep neural network 

(DNN). Data pre-processing steps included feature scaling, 

categorical data encoding using one-hot encoding, and 

feature selection excluding 13 content features. The 

machine learning (ML) pipeline with sequential 

components was developed for data encoding and scaling 

before feeding real-time data to the DNN model. The RT-

IDS near the gateway router provided network protection 

for the entire organization, and personal network protection 

when deployed on a single host. However, the performance 

of the developed method was different depending on the 

specific characteristics of the network traffic and the types 

of intrusions encountered. 

Aljehane et al. [17] presented the golden jackal optimization 

algorithm (GJOA) with DL-assisted IDS for network 

security (NS). GJOA is utilized for feature selection which 

simulated the hunting behavior of golden jackals to select an 

optimal subset of features. The attention-based Bidirectional 

Long Short Term Memory (Bi-LSTM) model for ID 

enhanced the system’s ability for recognizing and 

classifying the intrusions efficiently. Automating feature 

selection and extraction through deep learning reduced the 

need for manual intervention, thereby improving efficiency 

in intrusion detection. Nonetheless, the GJOADL-IDSNS 

technique faced challenges in dealing with highly dynamic 

and evolving cyber threats due to the static nature of feature 

selection methods. 

Eljialy et al. [18] developed a novel framework for an 

intrusion detection system using multiple feature selection 

methods based on DL. The multiple-feature selection 

procedure was developed followed by classification. The 

software-defined networking (SDN) dataset was used for 

training and testing in the developed model. This model 

applied the multiple-feature selection approach for selecting 

the high-scoring features from a set of features. The multiple 

classification algorithms were applied to candidate datasets 

for building the models. The proposed model also exhibited 

considerable enhancement in the detection of attacks with 

high accuracy and low positive rates. Nevertheless, the 

developed model focused on selecting high-scoring 

features, but still missed relevant crucial features that 

affected the overall model’s performance. 

Devendiran and Turukmane [19] suggested the deep 

learning-based network intrusion detection system using a 

chaotic optimization strategy. The data cleansing and M-

squared normalization were used for pre-processing the data 

to make balanced datasets from unbalanced datasets by the 

Extended Synthetic Sampling Technique. After balancing, 

features of datasets were taken out by using kernel-assisted 

principal component analysis, the optimal features were 

selected by the Chaotic Honey Badger optimization 

(CHBO) algorithm. After all required features had been 

extracted, the attacks were classified by the gated attention 

dual long short-term memory (Dugat-LSTM). However, the 

developed approach utilized the CHBO for feature selection 

that attained limitations in computational complexity and 

scalability, potentially affecting the efficiency and 

applicability to large-scale networks. 

Bakro et al. [20] developed an IG-CS-PSO with an ML 

classifier in the cloud for IDS. Initially, the pre-processing 

phase was established by encoding numerical values and 

numerical scaling data. To identify and categorize various 

kinds of attacks, the Random Forest (RF) was employed. 

This approach evaluated a subset of an optimal feature that 

not only decreased the performance of the approach, but 

also contained features that highly associated with the data 

and target variable. However, the developed technique had 

some significant features that were bypassed, causing 

overfitting. 

Sharma and Singh [21] presented a Feed-Forward Deep 

Neural Network (FFDNN) approach by utilizing a filter-

based feature selection for cloud IDS. The FS goal was to 

identify and choose the greater appropriate attribute subsets 

from the score of feature importance for training the 

presented approach. The FFDNN approach performed 

effectively without the usage of FS. Still, the training of 

FFDNN dealt with noisy and high-dimensional features was 

challenging to interpret due to the class imbalance and 

difficulty in selecting relevant patterns. 

3. Proposed Methodology 

In this research, the OOA-BiGRU is proposed for IDS 

classification, and four datasets are considered to assess the 

proposed method’s performance. Label encoding and min-

max normalization are employed for pre-processing to 

convert the categorical feature into integer format, as well 

as normalize the features. The OOA is used for selecting the 
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best set of features by using the chasing and attack behavior. 

Lastly, the selected features are provided as input to BiGRU, 

in which the weights are assigned by self-attention 

mechanism, enabling the BiGRU to adopt attack patterns 

and enhance the classification accuracy. Fig. 1 describes the 

workflow of the proposed methodology. 

 

Fig. 1. Workflow of the proposed method 

3.1. Dataset Collection 

In this research, four diverse datasets: CICIDS-2018, 

CICIDS-2017, UNSW-NB15 and NSL-KDD are employed 

for the detection of intrusions. The brief explanation of 

datasets is described as below: 

➢ CICIDS-2018: This dataset includes the network 

traffic and log files of each machine from the victim 

side, along with 80 network traffic features extracted 

from the captured traffic using CICFlowMeter-V3. 

This dataset also includes 7 diverse attack situations 

such as DoS, Brute-force, Heartbleed, Botnet, DDoS, 

Web attacks, and Infiltration [22]. 

➢ CICIDS-2017: This data includes benign and 

common attacks in the cyber intrusion field, and 

contains 78 features belonging to various classes. This 

dataset contains 9 different classes, brute force FTP, 

brute force SSH, DoS, heartbleed, web attacks, 

infiltration, botnet, normal, and DDoS attacks [23].  

➢ UNSW-NB15: This dataset is developed by the IXIA 

PerfectStorm tool in the Cyber Range Lab of the 

Australian Centre for Cyber Security (ACCS). It is 

developed to generate a hybrid of real modern normal 

activities and synthetic contemporary attack 

behaviors. It contains 47 features and 10 classes like 

Shellcode, Exploits, Backdoors, Generic, Fuzzers, 

Reconnaissance, Analysis, DoS, Worms and normal 

[24]. 

➢ NSL-KDD: This dataset is one of the most popular 

datasets, and is used in the evaluation of IDS 

frameworks. Also, it is an enhanced version of KDD99 

that eliminates the duplicated and redundant data from 

training and testing sets. It is comprised of 41 features 

and 5 classes namely, Normal, User to Root (U2R), 

Denial of Service (DoS), Probe, and Remote to Local 

(R2L) [25]. 

3.2. Pre-processing 

The collected four datasets are pre-processed over pre-

processing approaches such as label encoding, min-max 

normalization and SMOTE. Label encoding is used to 

convert the categorical feature into numerical 

representations, also assigning a unique integer label to 

every category within in feature. The resulting numeric 

labels allow learning models to work with categorical data, 

as most algorithms operate on numerical inputs. 

The dataset has features in different scales, for example, one 

feature ranges from 0-100 and another feature ranges from 

0-1000. By applying min-max normalization, all features 

are converted into a common scale that avoids certain 

features dominating others because of their large scale [26]. 

The converted integer features have various scales; hence 

normalized to a specific range. Here, the min-max 

normalization is used to normalize feature values in the 

scale of 0 and 1 which is mathematically given in (1). 

𝑥𝑖
′ =

𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                          (1) 

Where, 𝑥𝑖
′ is a normalized feature, 𝑥𝑖 is an actual feature, 

𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  are the minimum and maximum number of 

features. After normalization, SMOTE is applied to address 

the class imbalance. It generates synthetic samples for the 

minority class by interpolating between existing instances 

[27]. SMOTE selects a random instance and generates new 

samples by connecting it with its 𝑘 nearest neighbors in the 

feature space. The synthetic samples are then added to the 

training dataset, effectively increasing the representation of 

the minority class. 

3.3. Feature Selection 

The preprocessed functions have some non-important 

properties such as highly relevant functions, and loud 

features for the type of IDS to be removed. Here, an 

optimization formula is used to choose the best attributes 

among the possible combinations of functional areas 

minimizing meaningless attributes from preprocessed 

functions. The osprey's approach to finding fish and 

bringing the fish to the best place to eat them are all 

effective, with all-natural actions that form the basis for a 

brand-new optimization formula. Through optimization, 

Osprey helps reduce false positive alerts generated by IDS. 

By fine-tuning detection parameters and thresholds, the 

algorithm improves the accuracy of intrusion detection 

while reducing unnecessary alerts that increase security. 

Finding fish and bringing them to the best place to feed are 

all intelligent natural processes that form the basis of a 

brand-new optimization formula. OOA is a population-

based technique that provides an optimal solution based on 

the search power of its population participants in a problem-

solving area through an iterative process. The initiation of 

OOA is explained first, followed by the process of 

optimizing the organization of ospreys in both stages of 

travel and exploitation based on the simulation of all-natural 

osprey habits. At the start of the OOA application, setting 
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ospreys in the search area automatically use (2). 

𝑥𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟𝑖,𝑗 ∙ (𝑢𝑏𝑗 − 𝑙𝑏𝑗), 𝑖 = 1,2, … , 𝑁 𝑎𝑛𝑑  𝑗 =

1,2, … ,𝑚(2) 

Where, 𝑋 is the populace matrix of osprey’s areas, 𝑋𝑖 is the 

𝑖𝑡ℎ osprey (a prospect option) 𝑥𝑖𝑗  is its 𝑗𝑡ℎ measurement. 𝑁 

is the numerous ospreys, 𝑚 is the variety of trouble 

variables, 𝑟𝑖.𝑗 are arbitrary numbers in the period [0,1]. 𝑙𝑏𝑗, 

and 𝑢𝑏𝑗 are the lower bound and upper bound of the j th 

problem variable. Because each osprey is a potential 

problem, each osprey represents an unbiased feature review. 

For the unbiased aspect of the problem, the reviewed values 

are implied using a vector according to (3). 

𝐹 =

[
 
 
 
 
𝐹1
⋮
𝐹𝑖
⋮
𝐹𝑁]
 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)
⋮

𝐹(𝑋2)  
⋮

𝐹(𝑋𝑁) ]
 
 
 
 

𝑁×1

 

  (3) 

Where, 𝐹 is the vector of unbiased feature values and Fi is 

the unbiased feature value for the 𝑖𝑡ℎ osprey. The validated 

values for the unbiased aspect are the primary requirements 

for evaluating the high quality of prospective services. 

Consequently, the best value obtained for the unbiased 

feature represents the best chance solution, and the worst 

value obtained for the unbiased feature indicates the worst 

chance service. Considering that the placement of ospreys 

in the search area has been improved with each version, the 

more useful opportunity service should be additionally 

improved in each model. 

3.3.1. Phase 1 – Position identification and hunting the 

fish (exploration) 

Initially, fish under the sea is found, thanks to the solid 

vision of Ospreys who are great hunters. After sensing the 

location of the fish, they attack and go under the sea in 

search of the fish. The initial stage of population 

development in OOA is modeled on the simulation of these 

natural processes of osprey. Modeling osprey attacks on fish 

results in substantial changes in osprey composition in the 

search area, increasing the ability to determine the optimal 

location of OOA and departure from regional optima. Each 

osprey is defined using a fish collection (4). 

𝐹𝑃𝑖 = {𝑋𝑘|𝑘 ∈ {1,2, … , 𝑁} ⋀𝐹𝑘 < 𝐹𝑖} ∪ {𝑋𝑏𝑒𝑠𝑡}   (4) 

Where, 𝐹𝑃𝑖  is the collection of fish locations for the 𝑖𝑡ℎ 

osprey, and Xbest is the most effective chance option (the 

most effective osprey). The osprey instinctively recognizes 

these fish and attacks them. Based on the simulation of the 

osprey's activity in the direction of the fish, a new system 

for the matching osprey is numerically calculated in (5-6). 

If this location improves the value of the unbiased feature, 

it replaces the previous location of the osprey according to 

(7). 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟𝑖,𝑗 ∙ (𝑆𝐹𝑖,𝑗 − 𝐼𝑖,𝑗 ∙ 𝑥𝑖,𝑗)   (5) 

𝑥𝑖,𝑗
𝑝1
=

{
 

 𝑥𝑖,𝑗
𝑝1
, 𝑙𝑏𝑗 ≤ 𝑥𝑖,𝑗

𝑝1
≤ 𝑢𝑏𝑗;

𝑙𝑏𝑗 , 𝑥𝑖,𝑗
𝑝1
< 𝑙𝑏𝑗;

𝑢𝑏𝑗 , 𝑥𝑖,𝑗
𝑝1
> 𝑢𝑏𝑗

   (6) 

𝑋𝑖 = {
𝑋𝑖
𝑝1 , 𝐹𝑖

𝑃1 < 𝐹𝑖; 

𝑋𝑖 , 𝑒𝑙𝑠𝑒
    (7) 

Where, 𝑋𝑖
𝑃1 is the new position of 𝑖𝑡ℎ osprey based on initial 

phase of OOA, 𝑥𝑖,𝑗
𝑃1 is its 𝑗𝑡ℎ dimension, 𝐹𝑖

𝑃1 is value of the 

objective function, 𝑆𝐹𝑖 is the selected fish for 𝑖𝑡ℎ osprey, 

𝑆𝐹𝑖,𝑗 is its 𝑗𝑡ℎ dimension, 𝑟𝑖,𝑗 are random numbers in the 

interval [0,1], and 𝐼𝑖𝑗  are random numbers from the set 

{1,2}. 

3.3.2. Phase 2 – Carrying the fish to the suitable position 

(exploitation) 

After hunting a fish, the osprey drags it to a suitable (and 

non-threatening) setting to consume it there. The subsequent 

stage of population optimization in OOA is designed based 

on the simulation of these natural habits of the fish. 

Modeling to bring the fish into a suitable setting results in 

small changes in osprey placement in the search chamber. 

This leads to an increase in the exploitative power of OOA 

in regional search, and is included in the direction of better 

solutions. In the OOA style, a brand-new spontaneous 

employment opportunity for each of the people is calculated 

as an ideal system for consuming fish is mathematically 

represented in (8-9) to initially adopt these natural habits. 

Then, if the value of the neutral feature is raised in this brand 

new system, it replaces Osprey's previous system which fits 

according to (10). 

𝑥𝑖,𝑗
𝑝1 = 𝑥𝑖,𝑗 +

𝑙𝑏𝑗+𝑟∙(𝑢𝑏𝑗−𝑙𝑏𝑗)

𝑡
, 𝑖 = 1,2, … , 𝑁, 𝑗 =

1,2, … ,𝑚, 𝑡 = 1,2, … , 𝑇   (8) 

𝑥𝑖,𝑗
𝑝2
=

{
 

 𝑥𝑖,𝑗
𝑝2
, 𝑙𝑏𝑗 ≤ 𝑥𝑖,𝑗

𝑝2
≤ 𝑢𝑏𝑗;

𝑙𝑏𝑗 , 𝑥𝑖,𝑗
𝑝2
< 𝑙𝑏𝑗;

𝑢𝑏𝑗 , 𝑥𝑖,𝑗
𝑝2
> 𝑢𝑏𝑗

   (9) 

𝑋𝑖 = {
𝑋𝑖
𝑝2 , 𝐹𝑖

𝑃2 < 𝐹𝑖; 

𝑋𝑖 , 𝑒𝑙𝑠𝑒
   (10) 

Where, 𝑋𝑖
𝑃2 is the novel location of 𝑖𝑡ℎ osprey based on the 

second phase of OOA, 𝑥𝑖,𝑗
𝑃2 is its 𝑗𝑡ℎ dimension, 𝐹𝑖

𝑃2 is its 

unbiased feature worth 𝑟𝑖𝑗  are random numbers in time [0,1], 

𝑡 is iteration counter of the algorithm, 𝑇 is the total number 

of iterations. The flowchart of OOA is represented in Fig. 2. 
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Fig. 2. Flowchart of OOA algorithm 

The OOA fitness function is classifier accuracy and the 

number of selected features. Therefore, the fitness function 

of the individual solution is mathematically expressed in 

(11), 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛾 × 𝐸𝑅 + (1 − 𝛾) ×
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 

 (11) 

Where, the 𝐸𝑅 is an error rate that denotes classifier error 

which utilizes selected features and it is estimated as an 

incorrect classification percentage into the number of 

classifiers in the range of [0, 1]. Further, 𝛾 is a weighting 

factor used for managing the importance of subset length 

and classifier quality. The selected features are provided as 

input to the classification of IDS. 

3.4. Classification 

The selected feature by the OOA algorithm is used for IDS 

classification by using Bi-GRU which classifies the network 

traffic into multiple classes. In contrast to long-short-term 

memory (LSTM), GRU simplifies the security device, 

reduces network parameters, and is much less likely to 

generate overfitting. In addition, GRU achieves better 

results with homogeneous models, and so GRU builds a 

network architecture. At existing GRU has been extensively 

utilized. GRU consists of an upgrade gateway, together with 

a reset entrance which establishes the retention coupled with 

disposing of information specifically. The GRU memory 

device incorporates the neglecting entrance 𝑓 as well as 

input entrance 𝑖 from the LSTM to the upgrade gateway 𝑧 

that not only remembers important functions amongst them, 

but also solves the lengthy dependency problem. However, 

these facilities are as easy as LSTM. At time 𝑛, the specific 

computational handling to yield the secret layer of the input 

𝑋𝑛 GRU effect ℎ𝑛 is numerically specified in (12). 

𝑍𝑛 = 𝜎(𝑊𝑧 ∙ [ℎ𝑛−1, 𝑥𝑛])

𝑟𝑛 = 𝜎(𝑊𝑟 ∙ [ℎ𝑛−1, 𝑥𝑛])

ℎ̃𝑛 = tanh(𝑊 ∙ [𝑟𝑛 ∗ ℎ𝑛−1, 𝑥𝑛])

ℎ𝑛 = (1 − 𝑧𝑛) ∗ ℎ𝑛−1 + 𝑧𝑛 ∗ ℎ̃𝑛

  (12) 

A conventional RNN uses prior information based on a 

previewed input sequence, but does not consider 

conforming information. According to the issues of RNN, 

the BiRNN method remembers the above information and 

the subsequent information. The output is then combined 

with a homogeneous resulting layer, and the bidirectional 

context data is recorded for the feature array. The BiGRU 

strategy is achieved by trading hidden layer neurons from 

BiRNN with GRU memory systems. At this time, the 

BiGRU effect is the hidden layer of ℎ𝑛, the computation 

procedure is mathematically expressed in (13-15). 

ℎ⃗ 𝑛 = 𝜎(𝑊𝑥ℎ⃗⃗ 𝑥𝑛 +𝑊ℎ⃗⃗ ℎ⃗⃗ ℎ𝑛−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑏ℎ⃗⃗ )  (13) 

ℎ𝑛
′ = 𝜎(𝑊𝑥ℎ⃗⃗⃖𝑥𝑛 +𝑊ℎ⃗⃗⃖ℎ⃗⃗⃖ℎ𝑛−1

′ + 𝑏ℎ⃗⃗⃖)   (14) 

ℎ𝑛 = ℎ⃗ ⨁ℎ𝑛
′     (15) 

Where, 𝑊 indicates the weight matrix connecting both 

layers, 𝑏 stands for the bias vectors, 𝜎 as well as 𝑡𝑎𝑛ℎ refer 

to the activation feature. ℎ𝑛⃗⃗ ⃗⃗   and ℎ𝑛⃖⃗ ⃗⃗⃗ are represented as 

positive and negative outputs of GRU, while ⊕ signifies 

element-wise. To reduce the overfitting in BiGRU, dropout 

regularization is effectively applied, and a dropout 

regularization strategy is often used in neural networks to 

randomly drop out a fraction in the system to avoid 

overfitting during training. A hierarchical model is created 

and a BiGRU layer is added with dropout specified as 0.2 

and input dropout and dropout repeated. During training, 

20% of the input units and 20% of the iteration units are 

randomly set to zero at each update to help prevent 

overfitting. 

4. Experimental Results and Discussion 

The proposed model is simulated in python 3.8 with the 

system configurations of intel i7, RAM 16GB and Windows 

10 operating system. The assessment parameters like 

accuracy, precision, recall and f1-score are taken to estimate 

model performance. The mathematical formula is given in 

(16-19), 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
          (16) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (17) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                       (18) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                  (19) 

Where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 denote True Positive, True 

Negative, False Positive and False Negative, respectively. 

4.1. Performance Analysis 
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The performance evaluation of OOA-BIGRU is analyzed by 

NSL-KDD, UNSW-NB15, CICIDS-2017 and CICIDS-

2018. In IDS, malicious attack identification is difficult due 

to overfitting issues. The OOA is used to select a set of best 

features by updating individual positions based on chasing 

and attack behavior. The BiGRU produces a balance 

between efficiency, handling long-term dependencies and 

the ability to focus on suitable data in network traffic. The 

proposed OOA-BiGRU approaches attained better 

performance in every class of each dataset. 

Table 1. OOA-BiGRU performance for NSL-KDD dataset 

Classes Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Probe 99.80 99.90 99.90 99.86 

DoS 99.84 99.95 99.94 99.92 

U2R 99.87 99.85 99.83 99.80 

R2L 99.88 99.82 99.73 99.75 

Normal 99.91 99.86 99.84 99.86 

Average 99.86 99.87 99.84 99.83 

 

Table 1 displays the OOA-BiGRU performance for the 

NSL-KDD dataset. The different results in terms of 5 

classes as Probe, DoS, U2R, R2L and normal are taken 

based on metrics like precision, recall and f1-score for 

analyzing the performance of the proposed method. The 

average result of OOA-BIGRU accomplishes a precision of 

99.87%, accuracy of 99.86%, recall of 99.84%, and f1-score 

of 99.83%. 

Table 2. OOA-BiGRU performance for UNSW-NB15 

dataset 

Classes 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

Shellcode 98.41 98.31 97.31 97.31 

Exploits 98.56 98.15 98.27 98.27 

Backdoors 98.46 98.42 96.41 96.41 

Generic 98.53 98.34 97.05 97.05 

Fuzzers 98.37 98.19 97.29 97.29 

Reconnaissance 98.39 98.54 97.45 97.02 

Analysis 98.42 98.51 97.16 97.14 

DoS 98.47 98.41 98.25 98.25 

Worms 98.64 98.36 97.37 97.37 

Normal 98.55 98.55 98.38 98.38 

Average 98.48 98.37 97.49 97.44 

 

Table 2 demonstrates the OOA-BiGRU performance for 

UNSW-NB15 dataset. The different results in terms of 10 

classes such as Shellcode, Exploits, Backdoors, Generic, 

Fuzzers, Reconnaissance, Analysis, DoS, Worms and 

normal are taken based on metrics like precision, accuracy, 

recall and f1-score. The average result of OOA-BIGRU 

accomplishes precision of 99.01%, accuracy of 98.48%, 

recall of 99.49% and f1-score of 99.44%. 

Table 3. OOA-BiGRU performance for CICIDS-2017 

dataset 

Classes 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

BruteForceFTP 99.74 99.74 99.76 99.79 

BruteForceSSH 99.45 99.82 99.66 99.66 

DoS 99.67 99.67 99.77 99.48 

Web Attack 99.59 99.75 99.68 99.79 

Infiltration 99.68 99.54 99.65 99.55 

Heartbleed 99.45 99.72 99.78 99.76 

Botnet 99.67 99.58 99.57 99.79 

DDoS 99.78 99.73 99.69 99.65 

Normal 99.92 99.89 99.88 99.86 

Average 99.66 99.71 99.71 99.7 

 

Table 3 displays the OOA-BIGRU performance for the 

CICIDS-2017 dataset. The different results in terms of 9 

classes of BruteForceFTP, BruteForceSSH, DoS, Web 

Attack, Infiltration, Heartbleed, Botnet, DDoS and normal 

are assessed in terms of metrics of precision, recall and f1-

score. The average result of OOA-BIGRU accomplishes 

precision at 99.71%, recall at 99.71%, accuracy at 99.66% 

and f1-score at 99.70%. 

Table 4. OOA-BiGRU performance for CICIDS-2018 

dataset 

Classes 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

BruteForce 99.83 99.81 99.87 99.62 

Infiltration 99.79 99.74 99.74 99.64 

Botnet 99.75 99.78 99.76 99.76 

Heartbleed 99.64 99.84 99.84 99.74 

DoS 99.84 99.79 99.68 99.65 

DDoS 99.79 99.83 99.83 99.83 

Web 

Attack 
99.64 99.86 99.85 99.65 

Normal 99.47 99.96 99.91 99.91 

Average 99.71 99.82 99.81 99.72 

 

Table 4 exhibits the OOA-BIGRU performance for the 

CICIDS-2018 dataset. The different result in terms of 8 
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classes such as Brute-force, Infiltration, Botnet, Heartbleed, 

DoS, DDoS, Web attacks and normal are considered with 

respect to metrics of accuracy, precision, recall and f1-score. 

The average result of OOA-BIGRU accomplishes precision 

at 99.82%, accuracy at 99.71%, recall at 99.81% and f1-

score at 99.72%. Table 5 displays the OOA-BIGRU 

performance with state-of-art methods for all datasets such 

as NSL-KDD, UNSW-NB15, CICIDS-2017 and CICIDS-

2018. The RSO with RNN, LSTM, GRU and SAGRU 

performances are assessed and compared with that of OOA-

BIGRU. The OOA-BIGRU accomplishes 99.86% accuracy, 

99.84% precision, 99.83% recall and 99.81% f1-score for 

the NSL-KDD dataset. The OOA-BIGRU accomplishes 

98.64% accuracy, 98.37% precision, 97.49% recall, and 

97.44% f1-score for UNSW-NB15 dataset. The OOA-

BIGRU accomplishes 99.74% accuracy, 99.71% precision, 

99.71% recall and 99.70% f1-score for the CICIDS-2017 

dataset. The OOA-BIGRU accomplishes 99.83% accuracy, 

99.82% precision, 99.81% recall, and 99.72% f1-score for 

the CICIDS-2018 dataset. 

Table 5. OOA-BiGRU performance with state-of-art 

methods 

Dataset 
Metho

d 

Accurac

y (%) 

Precisio

n (%) 

Recal

l (%) 

F1-

scor

e 

(%) 

NSL-

KDD 

RNN 92.65 92.61 92.54 
92.6

5 

LSTM 94.51 94.32 94.64 
94.2

5 

GRU 96.54 96.74 96.81 
96.5

3 

BiGR

U 
97.89 97.41 97.43 

97.3

5 

OOA-

BiGR

U 

99.9 99.86 99.84 
99.8

2 

UNSW-

NB15 

RNN 92.94 92.84 92.67 
92.5

9 

LSTM 94.25 94.23 94.24 
94.1

9 

GRU 95.44 95.65 95.34 
95.5

1 

BiGR

U 
97.64 97.67 97.59 

97.3

2 

OOA-

BiGR

U 

98.71 98.65 98.42 
98.3

7 

CICIDS

-2017 

RNN 93.84 93.75 93.51 
93.4

5 

LSTM 95.89 95.87 95.74 
95.6

5 

GRU 97.53 97.49 97.45 
97.3

2 

BiGR

U 
98.34 98.32 98.36 

98.2

7 

OOA-

BiGR

U 

99.85 99.74 99.72 
99.8

2 

CICIDS

-2018 

RNN 93.45 93.41 93.36 
93.4

1 

LSTM 95.51 95.45 95.41 
95.3

4 

GRU 96.74 96.41 96.34 
96.2

6 

BiGR

U 
98.68 98.61 98.53 

98.4

1 

OOA-

BiGR

U 

99.94 99.85 99.83 
99.8

6 

 

4.2. Comparative Analysis 

The proposed model is analyzed comparatively with the 

existing techniques such as RT-IDS-DNN [16], GJOADL-

IDSNS [17], CHBO-LSTM [19], and FFDNN [21]. The 

accuracy, precision, recall and f1-score are taken as the 

evaluation parameters used to estimate the model’s 

performance. Table 6 indicates the comparative analysis for 

NSL-KDD, UNSW-NB15, CICIDS-2017, and CICIDS-

2018 datasets. 

Table 6. Comparative Analysis 

Dataset Method 
Accura

cy (%) 

Precisi

on (%) 

Reca

ll 

(%) 

F1-

scor

e 

(%) 

NSL-

KDD 

RT-IDS-

DNN 

[16] 

97.1 96 99.1 97.6 

GJOAD

L-

IDSNS 

[17] 

99.81 99.76 
99.8

1 

99.7

9 

CHBO-

LSTM 

[19] 

97.5 95.7 99 96.7 

FFDNN 

[21] 
90.88 93.58 

96.5

4 

95.0

4 

OOA-

BiGRU 
99.86 99.84 

99.8

3 

99.8

1 

UNSW

-NB15 

RT-IDS-

DNN 

[16] 

86.9 88.1 88.1 88.1 

GJOAD

L-

IDSNS 

[17] 

85.55 86.24 
85.5

5 

85.6

1 

OOA-

BiGRU 
98.64 98.37 

97.4

9 

97.4

4 

CICID

S-2017 

GJOAD

L-

IDSNS 

[17] 

99.7 99.68 99.7 
99.6

9 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1184–1192  |  1191 

CHBO-

LSTM 

[19] 

99.63 99.64 
99.6

3 

99.6

3 

OOA-

BiGRU 
99.72 99.71 

99.7

1 
99.7 

CICID

S-2018 

CHBO-

LSTM 

[19] 

99.78 99.77 
99.7

8 
99.7 

FFDNN 

[21] 
83.57 89.87 

92.5

7 
91.2 

OOA-

BiGRU 
99.83 99.82 

99.8

1 

99.7

2 

 

4.3. Discussion 

The existing IDS techniques such as RT-IDS-DNN [16] are 

differed depending on the specific characteristics of the 

network traffic and the types of intrusions encountered. The 

GJOADL-IDSNS [17] face challenges in dealing with 

highly dynamic and evolving cyber threats due to the static 

nature of feature selection methods. CHBO-LSTM [19] 

attain limitations in computational complexity and 

scalability that potentially also affect the efficiency and 

applicability of large-scale networks. FFDNN [21] faces 

noisy and high-dimensional features, making it challenging 

to interpret due to the class imbalance and difficulty in 

selecting relevant patterns. To overcome these drawbacks, 

OOA-BIGRU is proposed in this research to provide 

balance among efficacy, handling long-term dependencies 

and ability to focus on appropriate features to reduce 

overfitting. 

5. Conclusion 

In this research, the OOA-BiGRU is proposed for 

classifying IDS and mitigating the class imbalance issues. 

The OOA selects a set of best relevant features by updating 

its positions based on its chasing and attack behavior. The 

GRU offers a preferable balance between efficacy, 

managing long-term dependencies, and the ability to focus 

on appropriate data in network traffic. Less attention is 

provided when the attack traffic is based on the majority 

class, and as the high attention is provided when the 

minority class is attained. In BiGRU, regularization is 

assigned by dropout which allows to adopt of attack patterns 

and enhances the classification accuracy. The OOA-BiGRU 

accomplishes 99.86%, 98.64%, 99.72% and 99.83% for 

NSL-KDD, UNSW-NB15, CICIDS-2017 and CICIDS-

2018 datasets, correspondingly. In the future, the improved 

or hybrid optimization algorithm can be employed in IDS to 

improve the feature selection to improve detection accuracy. 
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