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Abstract: Wireless Sensor Networks (WSNs) provides an efficient approach for remote monitoring and management of the system, 

especially in adverse environments. Such WSN networks are comprised of sensor nodes for sensing and transmitting the collected 

information to the Base Station (BS) for certain applications over the internet. Hence, the energy level of the sensor nodes is depleted 

with time during the data transmission, which affects the entire communication and the lifetime of the WSNs. Hence, the dead nodes are 

required to be localized for persistent communication as well as enhancing the lifetime of the network. Hence, the Olfactory Apis Search 

(OAS)  optimization enabled optimal node localization is developed in the research that utilizes the information-sharing characteristics of 

apis, and olfactory sensing characteristics of both vespid and coleopteran for determining the location of the dead nodes that are required 

to be replaced with new nodes. The developed optimization determines the unknown location of the dead nodes with information on the 

exact location of the anchor nodes. Further, effective Cluster Head (CH) selection and routing are performed to attain efficient data 

transmission between the sensor nodes and the BS. The performance of the developed OAS optimization enabled node localization is 

measured in terms of  RMSE as 0.573, RSSI -48.226 dBm at the 50th  round for the simulation area 100x100m2, and  RMSE as 0.587 

and RSSI as -53.19dBm for the simulation area 200x200 m2. 

Keywords:  Wireless sensor networks, Node localization, Cluster head, routing, base station. 

1. Introduction 

WSNs are utilized for remotely monitoring the processes 

and forwarding the collected data to a central location for 

analyzing the process for extensive applications. WSN 

offers the merits of technological developments for 

satisfying sophisticated communication as well as the 

needs and specifications of computer technologies. 

Additionally, WSN is the most reliable and practical 

technology for real-time applications [1] [2]. WSN 

comprises randomly distributed tiny sensor nodes to 

monitor and gather data regarding the environment to 

acquire the necessary information [3][4]. By choosing the 

best location for the sink node, the energy consumption of 

the network is reduced which eventually increases the 

network’s lifetime. Therefore, it can be inferred that the 

position of the sink node and the distribution of nodes have 

an impact on the energy of WSNs [5]. Additionally, node 

localization is needed to notify the incident’s origin and 

help with routing, sensor queries, and network coverage 

problems [6][7]. Hence, node localization is one of the 

important factors that must be considered for the WSN to 

Localization schemes are categorized into anchor-based or 

anchor-free, centralized or distributed, GPS-enabled or 

GPS-free, stationary or mobile sensor node-based,fine-

grained or coarse-grained, range-based, or range-free 

models. The known position of nodes supports locating the 

unknown node positions in an anchor-based scheme 

[11].Conversely, anchor free scheme determines the node’s 

relative position rather than the absolute position [12]. In a 

centralized scheme [13], the position of nodes is computed 

by the sink node, which transfers the information to other 

network nodes. Sensors in a distributed scheme, assess 

each position independently and communicate with anchor 

nodes directly [14][15]. Despite this, the network 

administrator has no control over the sink node position, as 

modifying the position to minimize the rates of energy 

consumption is a difficult undertaking [16]. Multiple 

works are established as an optimization theme to be 

resolved by metaheuristic algorithms to address the 

localization of sink nodes[17]. Further, these approaches 

have attained success in handling the challenging 

optimization issues associated with different 

domains[18],[19]. Different optimizations such as ant 

colony optimization (ACO) [20], particle swarm 

optimization (PSO) [21], and so on are utilized for node 

localization. Further, metaheuristic algorithms possess 

excellent robustness, high nonlinearity in resolving the 

issues associated with various conditions, and possessing 
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the merits of broad applicability, as well as easy alteration 

[22,23,24] [25].  However, there is still an enormous gap 

that insists on the need for exploring efficient metaheuristic 

algorithms for node localization [26]. Conventionally, 

most of the approaches are concentrated on employing the 

space distance constraint in conjunction with single 

objective optimization to resolve the localization issues of 

sensor nodes. Additionally, these techniques have 

significantly improved in terms of computational time as 

well as accuracy. However, because of the ranging errors, 

the single-objective function lags in addressing the primary 

factor affecting the geometric topology constraint. Hence, 

the problem insists on modeling the node localization as a 

multi-objective optimization problem for solving the 

constraints [27]. Range-based localization requires 

distance between sensor nodes to evaluate the position of 

the node followed by utilizing geometrical procedures such 

as multilateration and angulation, to calculate the node 

location. Additionally, range-free localization techniques 

require topological for evaluating the node localization. 

However, the range-based algorithms are not cost-efficient, 

the algorithms are more accurate than range-free 

algorithms [28]. Some range-based schemes involve 

Angle-of-Arrival (AoA) [29], Time Difference of Arrival 

(TDoA) [30],  Time of Arrival (ToA) [31], Received 

Signal Strength Indicator (RSSI) [32][33][34] and acoustic 

energy [35]. The key objective of the research is to 

develop optimal node localization for enhancing the 

lifetime and energy efficiency of the WSN. Hence, in this 

research, the position of unknown nodes is determined 

with the known position of anchor nodes utilizing the OAS 

optimization. Further, the OAS optimization localizes the 

dead nodes concerning the localization error and remaining 

energy in the nodes. Hence, the dead nodes are replaced 

with the new nodes and the clustering is performed in 

which the CHs collect the data from the corresponding 

cluster members and utilize the efficient adaptive 

incorporated FABC and Beetle-based routing for 

transmitting the data to the BS. 

• Olfactory Apis Search optimization (OAS): The 

proposed OAS optimization is developed by integrating 

the information-sharing characteristics of apis, and 

olfactory sensing characteristics of both vespid and 

coleopteran to reach the best solution. The algorithm offers 

the merits of high convergence speed, reduces exploitation 

and exploration problems, and lesser complexity for 

reaching the best solution. 

• OAS optimization enabled optimal node localization: 

The significance of the research relies on developing the 

optimal node localization based on position estimation 

utilizing the OAS optimization concerning the 

multiobjective function, localization error, and remaining 

energy constraints for enhancing the lifetime and energy 

efficiency of the WSN nodes. 

• The arrangement of the article involves: Section 2 

describes the overview of recent works on node 

localization, and Sections 3, and 4  provide an 

interpretation of the detailed procedures associated with 

OAS optimization enabled optimal node localization, 

Section 5  involves the results analysis. Finally, Section 6 

serves as the conclusion of the research. 

2. Literature review 

In this section, a review of the related works is made, 

which assists the researchers in formulating noteworthy 

contributions. Sheetal N. Ghorpade et al.[27]presented an 

optimal sensor node localization technique utilizing grey 

wolf optimization(GWO)in which the optimization is 

employed for optimizing the localization error. The 

distance and topological constraints are involved in the 

objective functions. Multi-objective GWO was utilized for 

determining the optimal solution and the technique 

attained high efficacy in localization of the unidentified 

node as well as minimizing the anchor nodes. However, 

the technique has a low convergence speed that limits the 

performance.Yedida Venkata lakshmi et al.[2]contributed 

a chan algorithm and hybrid PSO for node localization. 

The node localization problem is represented as a 

maximum probability distribution function, 2D and 3D 

coordinates related to the unknown nodes are determined 

utilizing the TDoA integrated with the Chan algorithm. 

The method offers high localization accuracy utilizing the 

two-hybrid localization PSO as well as reducing the error 

value to a minimal distance. However, the method works 

well in the case of small areas and large node densities. 

S. Umamaheswari.[15]presented a hybrid Optimization 

method for energy efficiency that addressed the issues 

associated with node localization. The hybrid optimization 

method utilized the PSO for achieving optimal localization 

of nodes and GWO was utilized for obtaining the shortest 

path for energy-efficient data transmission. The method 

incorporated the cloud module for enhancing the 

characteristics of energy management. Additionally, the 

method minimized packet loss, and route failures, and 

enhanced the network lifetime. However, the computation 

cost was the drawback that evolved with the hybrid 

optimization. 

Pudi Sekhar et al.[7]developed a group teaching 

optimization algorithm(GTOA) that addressed the node 

localization issues. The method in which the coordinate 

points of the unknown nodes are found with the GTOA 

evaluates the position of nodes with the anchor nodes. The 

GTOA employs the Euclidean distance for evaluating the 

fitness function that computes the nodes' localization. 

Further, time synchronization as well as scheduling 

strategies can be integrated to boost the efficacy of the 
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approach in the future. 

Rong Tan et al.[4]presented a distance mapping algorithm 

that determines the node position utilizing the distance and 

estimation matrix with the linear transforming function. 

The localization can be determined effectively with the 

integration of a genetic algorithm (GA), that offers high 

accuracy and low energy consumption. However, the 

method found difficulty in determining the node location 

due to the lack of a preset trajectory. Hence, the method 

can be enhanced by integrating path planning and 

predicting strategies in the future. 

Essam H. Houssein et al.[26]developed a Harris Hawks 

optimization (HHO) enabled localization in which the 

Primis shortest path approach was utilized to reconfigure 

the network by creating effective data transmission lines. 

Additionally, the approach demonstrated a reduction in 

topology construction time when compared to other 

equivalents that formed the advantage of the model. 

Visalakshi Annepu and A. Rajesh.[23] developed an 

artificial bee colony(ABC) algorithm for localization, in 

which the approach optimized the flying height over the 

localization accuracy and then expressed the localization as 

the least square optimization problem utilizing the optimal 

height. The least-square localization was determined to be 

a better alternative for the RSSI that reduced the 

localization error. 

Jianpo Li et al.[20] developed an enhanced parallel 

compact CSO (PCCSO)for hop node localization. The 

PCCSO offered the merits of enhancing the local search 

along with saving memory space. The PCCSO was 

adopted over DV-Hop localization in WSN and offered 

high localization accuracy along with the merits of less 

localization error, memory saving, and reduced time 

complexity compared to other algorithms concerning the 

DV-Hop. 

2.1. Challenges 

• The DMA method found difficulty in determining the 

node location due to the lack of a preset trajectory that 

required integrating path planning and predicting strategies 

in the future [4]. 

• The method had limited performance due to the lack of 

time synchronization as well as scheduling techniques that 

require development in the future [7]. 

• The group teaching optimization method in which the 

high computation cost is due to the hybrid optimization 

that limited the performance of the model [15]. 

• If the network size differs, the parameters involving the 

number of sensor neighbors served by the sink node, 

residual energy, and the distance between the sensor nodes 

will vary correspondingly in the HHO-based method [26]. 

• Optimization attempts to determine an optimal solution 

concerning all the controlling parameters is a complex task 

and requires exhaustive calculations which insists on the 

need for developing an optimization with reduced 

complexity in the future [34]. 

3. Problem statement 

The major challenge exists in RSS-based localization as 

the signal level indicator to estimate the distance of the 

dead nodes localization in the WSN is a complex task. 

Further, improving the localization accuracy is of 

paramount significance to decrease the effects of noisy 

distance measurements. Hence the proposed optimal node 

localization overcame the challenges by utilizing the OAS  

optimization for determining the location of the dead nodes 

concerning the multi-objective function designed using the 

localization error, RSS, and remaining energy in the nodes. 

The RSS evaluation that follows the log-normal channel 

model is expressed as, 

( )  X
d

d
dPLPdRSS

o

R
ooTR +−−= 10log10)(

                                   

(1) 

where X denotes the noise in RSS, which is a zero mean 

Gaussian random variable, ( )odPL is the signal power 

loss, Rd is the distance between the unknown and the 

anchor node. 

4. Design of optimal node localization utilizing the OAS 

optimization and multi-objective function in WSN 

In the existing approaches, node localization is a 

challenging task to attain effective data transmission in the 

WSN. Hence, the developed method overcame the above 

challenge by developing an optimal algorithm for node 

localization. Initially, the nodes employed in the sensing 

environment collect the data related to the sensing 

environment and transmit the data among the different 

nodes in the network. During the transmission, the energy 

level of the nodes is depleted leading to node failure, 

which needs to be replaced using a new node. Thus, the 

newly placed node is localized concerning the anchor 

nodes built with the GPS. Further, the network nodes are 

split into clusters taking into account the number of 

network nodes. The nodes that receive the data record a 

minimal hop count and forward the message to the next 

node. Now, the hop size is calculated and the minimal hop 

count is evaluated. Then, the distance between the selected 

anchor node and the unknown node is determined. Hence 

the CH selection is utilized for determining the node with 

maximum energy that can be determined based on the 

OAS optimization and multi-objective function. Finally, 

the optimal location of the unknown node is located 

utilizing the OAS optimization algorithm concerning the 
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Multi-objective function designed using the localization 

error and remaining energy in the nodes. Further, the 

adaptive incorporated Fractional artificial bee colony 

algorithm (FABC)-based routing and Beetle-based routing 

perform the routing based on the intra-cluster distances for 

delivering the data packets via the CH to the BS for 

different applications. The proposed methodology for 

optimal node localization is represented schematically in 

Figure 1. 

 

Fig.1. The proposed methodology for optimal node 

localization 

4.1. Establishing the sensor network and anchor 

selection 

Initially, the sensor nodes are deployed in the sensing 

environment to collect the data related to the specific 

phenomenon. During the process of data transmission, a 

few nodes lose energy over time due to battery depletion, 

and hence, new nodes are deployed for persistent data 

transmission. Let us assume that the WSN comprises the 

X  anchor nodes and Y transmitter nodes or unknown 

nodes deployed in the sensing environment. Further, the 

space distance and geometric topology constraints are 

satisfied by the coordinates to form the unique topology of 

the OAS optimization-enabled optimal node localization 

model. 

4.2. Distance evaluation 

The nodes that transmit the data, record a minimal hop 

count and forward the message to the next node. The 

model involves a multi-objective function for determining 

the coordinates of the Y transmitter utilizing the anchor 

node's information. Initially, the ranging distance between 

the transmitter node and the anchor node is determined by 

the transmitter node utilizing the RSSI as well as the 

received signals from the anchor node. Additionally, every 

anchor node evaluates the distance from all the adjacent 

unknown nodes. The inter-node ranging distance id
is 

evaluated as follows: 

auauau rdI +=
     

(2) 

where aud
 is the actual distance between the anchor node 

a and the unknown node u , aur
is the ranging error. 

( ) ( )22
uauaau mmlld −+−=

   
(3) 

where ( )aa ml ,  and ( )uu ml , are the coordinate positions of 

anchor node a  and unknown node u respectively. The 

expected distance aud  between the anchor node and the 

unknown node is  

( ) ( )

( ) ( ) 

















−+−

−+−
=

otherwisemmll

nodeanchorisaifmmll
d

uaua

uaua
au

,

,

22

22

 

             (4) 

The ranging error aur
 is the difference between the 

expected distance and the actual distance that can be 

formulated as, 

 auauau ddr −=
                                                                   

(5)
                 (5)                                                                                                                                            

4.3. Determination of hop count and hop size 

The nodes keep track of the hop counts during the 

transmission of data that ranges from the least number of 

hops to each anchor. Every anchor node floods the whole 

network with the global position and specifically, all nodes 

acquire the minimum number of hops with every anchor 

node. The hop size sH is evaluated with the anchor node 

as follows, 

( ) ( )


 −+−

=

min

22

h

mmll
H

uaua
s

                                    

(6) 

 

where the minimum number of hop count is denoted as  

mh . Further, the selected anchor node’s hop size is 

enhanced by the correlation factor  as follows, 

minh

dd auau −=

        

(7) 

 The correlation factor is employed to enhance the 

selected anchor node’s hop size by integrating the factor 

with the previous hop size. Hence, the renovated distance 

D , between the unknown node  and the selected anchor 

node  is evaluated as follows, 

( ) min*hHD s +=
   

(8) 

4.4. Position estimation utilizing the OAS optimization 

for optimally replacing the dead node with a new active 

node  

  The main intention of the proposed work relies on 

developing the optimal node localization based on position 
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estimation utilizing the OAS optimization concerning the 

multiobjective function, localization error, and remaining 

energy constraints. The proposed OAS optimization is 

developed by integrating the information-sharing 

characteristics of apis and olfactory sensing characteristics 

of vespids and coleopterans to reach the best solution. The 

developed OAS optimization offers the advantages of high 

convergence speed, reduces the exploitation and 

exploration problems, lesser complexity involved in the 

design, and the ability to resolve the optimization issue in 

less time. 

4.4.1. Inspiration 

The information-sharing behavior of apis is often used to 

solve optimization problems related to efficient routing. 

The major advantages involve the utilization of an efficient 

search only around the best solution of the previous 

iteration to improve the exploitation along with high 

convergence speed. The apis comprise three groups 

involving the employer, onlooker, and scout. The potential 

solutions to an optimization problem are indicated as 

nectars, food sources [36]. Employer explores the existing 

solutions, and provides the information of neighborhood 

nectar source in the memory with a designated dance area 

in the hive; the onlooker acquires the information of the 

solution from the employers and selects one of the 

solutions; the scout is responsible for finding new solution 

nearer to the search space. Additionally, searching for the 

solution is enhanced by coleopterans that make predictions 

based on the sense received from the directions and move 

towards that direction [37]. Further, the vespids utilize the 

olfactory learning and photographic memory ability to 

memorize its hives boosting the efficiency of the search 

process for reaching the best solution [38]. 

Mathematical explanation of the OAS Optimization: The 

different stages involved in the OAS optimizer are 

explained as follows. 

I. Representation of Solution: The solution of the OAS 

optimizer is initialized as S  which comprises the best 

position of the nodes. 

 1+= tUS                                                                    (9)                      

Phase I: Scout Phase: In the scout phase, the search agent 

searches for new access to the solution and locates the 

presence of the solution. 

 Case (i) 15.0  GandKif  

In this case, the adaptive parameter is greater than 0.5 and 

the alertness index G is greater than 1, in which the search 

agent searches beyond the search space. If the search agent 

finds the solution, then it will exploit the solution. 

 where  
Cj

kt
K

−

−
=  , in which j  and k are upper and 

lower bands respectively, t represent the iterations and C

denote the center boundary, K is an adaptive parameter. 

The search agent searches for the solution in the nearby 

surroundings. Here the search agent continuously searches 

for the solution until it gets the best solution. 

( ) ( ) ( ) tUtUGtUU ggt −−=+ .1    (10)

    

Where   ( )bRG 12 −=  where R lies in the range  1,0  

R2=  

( )tU g represents the global best position and ( )tU denotes 

the position at the 
tht iteration. 

II. Exploitation phase: The best solutions in the current 

population are significant for enhancing the convergence 

performance. The best solutions explored in the previous 

phase are employed to direct the movement of the current 

population and after getting the best solution, the search 

agent starts exploitation. 

Case(ii) 15.0  GandKif  

In this case, the adaptive parameter is less than or equal to 

0.5 and the search agent exploits the solution based on the 

global best solution as well as the personal best solution.  

( ) ( )t
t
pt

t
gtt UUUUUU −+−+= −−

+
1

2
1

11       (11) 

  

                          where 
tg

tg

UU

UU

+

−
=1 ;

tp

tp

UU

UU

+

−
=2  

where 1−t  denotes the previous iteration of t . 

III. Sensing phase: The search agent utilizes the sensing 

ability and moves towards the clockwise or anticlockwise 

direction where the strength of the solution sensing is high. 

Case (iii) ifandKif 5.0 1 KQp  

In this case, the adaptive parameter is greater than 1. As 

the distance between the search agent and the solution 

changes that has the corresponding change in the search 

agent’s direction.  

where    
( ) 

( )  ( ) 21
2

2

−+
=

tt

t
p

UFUF

UF
Q       (12) 

( ) ( )( )21
1 zEzEsignqUU ttt −−=+      (13) 

where 1z
and 2z

indicates the clockwise and anticlockwise 

values respectively. E represents the direction of the 
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search. 

qbUz tt 11
1

−− −=        (14)

  

qbUz tt 11
2

−− +=      (15) 

  Where  
1−tb is the sensing distance of the 

solution at ( )tht 1− iteration.  

where 
( )
( )1,

1,

erand

erand
q =      (16) 

where   q  is a unit vector, ( )rand  indicates the random 

orientation of the search agent, which ( )1,e  is a matrix of 

1e dimensions. 

1
1

−= tt       (17) 

where 1 is a constant that determines the decay speed of 

the search step. 

IV. Final phase: Additionally, the searching ability of the 

search agent increases with the distance from the solution 

and the memory ability of the search agent boosts the 

exploitation speed of acquiring the solution. The distance 

between the search agent and the solution is determined by 

using the following equation. 

Case(iv)   KQifandKifelse p  5.0  

In this case, 

( ) itgtt UUUU  +−+=+1     (18) 

 denotes the randomization parameter, i  is a vector of 

random noise, and  indicates the stinging ability of the 

search agent. 

21

0
svt

e
+−=       (19) 

 where  v  denotes the experience of the solution and s

indicates the distance between the solution and the search 

agent. 

( ) 11 .1 −+ +−= t
c

t
c

t vvv      (20) 

 where c  represents the flight length.  

( ) ( ) ( )






 −+−
=

−

−−−−−

otherwisev

vfitvfitifvvv
v

t

ttttt
t

;

;1

2

21211     (21)     

tsc  =       (22) 

      
tv indicates the experience of the solution at 

tht

iteration,  is a memory matrix. 

2,1 −− tt represents the iterations at the previous and 

previous of previous iteration respectively. 

( ) itg
sv

tt UUeUU
t

 +−+=
+−

+

21

01    (23) 

Thus from the above hybrid methods improved search 

accuracy, exploitation speed as well as adaptability of path 

planning are obtained. 

III. Fitness Re-evaluation: After performing the update 

rule, the fitness of updated solutions is measured thereby 

revealing the best solution. 

IV. Termination: The iteration terminates by validating the 

condition and declaring the global best solution for 

updating the system. 

The flowchart for the OAS optimization is depicted in 

Figure 2. 

 

Fig. 2.Flowchart for the OAS optimization 

4.5. Cluster head selection and routing 

The CH selection and routing are performed utilizing the 

adaptive incorporated FABC-based routing and 

coleopteran-based routing. The optimal node localization 

is performed that extends the network lifetime for 

communication. Further, the CH selection and routing are 

performed for data transmission by determining the 

optimal CHs based on energy-related constraints like 

energy, delay, and distance.  The clustering process 

acquires the energy utilization of the sensor nodes and the 

cluster nodes transfer the sensed data to their 

corresponding CH. The key purpose of the optimization 

methods in routing is to minimize the intra-cluster 

distances between CHs and the cluster members for 

efficient routing of the data packets. 
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4.6. Fractional Artificial Bee Colony routing and 

Beetle-based routing 

The extension of traditional mathematics known as 

Fractional calculus(FC), makes use of the irreversibility 

and intrinsic memory attribute of FC to allow for the 

dynamic renewal of individuals through an evolutionary 

process. Additionally, the FABC algorithm is a stochastic 

algorithm motivated by the intelligent foraging 

characteristics of apis . To enhance the search for solutions 

in the predefined search space, ABC is altered with the 

mathematical concept, of fractional calculus. Hence, the 

integrated concepts can update the neighbor solution by 

utilizing the previous solution, and offer th advantage of 

decreasing the exploitation and exploration issues that the 

preceding solution in FABC provides the benefit of 

effective utilization of global information and is updated 

for each iteration. The multiple objectives utilizing the 

localization error and remaining energy in the nodes are 

embedded into the FABC algorithm. 

5.1 Experimental setup 

The proposed approach is simulated in the MATLAB tool 

with the simulation area of 100x100 and 200x200 

operating in Windows 10, with 8 GB RAM for evaluating 

the performance.  

5.2 Evaluation metrics 

The metrics utilized for measuring the efficacy of the 

developed node localization approach are explained as 

follows 

i)Root Mean Square Error (RMSE): RMSE is the 

difference between the population values predicted by the 

developed OAS optimization method and the actual values 

observed. 

M

ww

RMSE

M

i

ii
=

−

= 1

2
ˆ

    (24)

 where M  denotes the total number of available data 

points, iw is the actual observations, and the estimated 

prediction is denoted as  iŵ . 

ii)Received Signal Strength Indicator (RSSI): RSSI is the 

average of the squared magnitude of test samples in the 

linear scale and is evaluated as follows, 

( ) ( )( )














+= 
=

M

i

ii fPfS
M

RSSI

1

22
10

1
log10    (25) 

where the received samples quadrature as well as the in-

phase components, are represented as ( )fSi  and ( )fPi

respectively, the total number of available samples is 

represented as M  for individual RSSI, and the RSSI is 

measured in terms of dBm units. 

5.3.Performance evaluation  

i)Performance evaluation for the simulation area 100 x 

100: 

The developed OAS-enabled node localization reaches the 

RMSE  of 0.508 for the population of 10 and 0.495 for the 

population of 50 in the 25th round. The RMSE of the 

developed node localization is steadily improved from the 

initial population when the population size is increased in 

the simulation area  of 100x100 which is depicted in 

Figure 3 a) 

The RSSI  of the developed method for the 25 rounds is 

depicted in Figure 3 b) in which the signal strength is 

steadily improved as the population increases from 10 to 

50. The RSSI obtained by the developed approach is -

47.673 dBm for the population of 10 and -47.032 dBm for 

the population of 50 respectively in the 25th round. 

For the 50th round, the developed OAS-enabled node 

localization reaches the RMSE of 0.577 for the population 

of 10 and 0.539 for the population of 50 respectively. The 

RMSE of the developed node localization is steadily 

decreased from the initial population when the population 

size is increased from 10 to 50 in the simulation area  

100x100 which is depicted in Figure 3 c) 

The RSSI  of the developed method for the rounds up to 50  

is depicted in Figure 3 d). For the 50th  round, RSSI is -

48.315 dBm for the population of  10 and -48.057 dBm for 

the population of 50 respectively, which shows that the 

signal strength is steadily improved as the population 

increases from 10 to 50. 

 

a)RMSE for 25 rounds 

 

b)RSSI for 25 rounds 
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c)RMSE for 50 rounds 

 

d)RSSI for 50 rounds 

Fig.3. Performance evaluation for the developed method at 

a simulation area of 100 x 100 a)RMSE for 25 rounds 

b)RSSI for 25 rounds c)RMSE for 50 rounds d)RSSI for 

50 rounds 

ii) Performance evaluation for the simulation area of 200 x 

200  

The developed approach attains the RMSE of 0.548 for the 

population of 10 and 0.513 for the population of 50 in the 

25th  round. The RMSE of the developed approach is 

steadily decreased from the initial population when the 

population size is increased in the simulation area of 200 x 

200 which is revealed in Figure 4 a).  

The RSSI for the corresponding rounds up to 25 is 

depicted in Figure 4 b), in which the signal strength is 

steadily enhanced as the population varies from 10 to 50. 

At round 25, the RSSI for the developed approach is -

53.903 dBm for the population of 10 and -53.578 dBm for 

the population of 50 respectively. 

The developed OAS-enabled node localization achieves an 

RMSE of 0.638 for the population of 10 at the 50th round 

and 0.608  for the population of 50 at the 50th round. The 

RMSE of the developed OAS-enabled node localization is 

steadily reduced from the initial population when the 

population size is increased which is demonstrated in 

Figure 4 c).  

The corresponding RSSI for the rounds up to 50 is 

revealed in Figure 4 d), in which the signal strength is 

steadily improved from the population of 10 to 50. At 

round 50, the RSSI for the developed OAS-enabled node 

localization reaches -54.664 dBm for population 10 and -

53.331 dBm for population 50 respectively. 

 

 

a)RMSE for 25 rounds 

 

b)RSSI for 25 rounds 

 

c) RMSE for 50 rounds 

 

d)RSSI for 50 rounds 

Fig.4. Performance evaluation for the developed method at 

a simulation area of 200x200 

a)RMSE for 25 rounds b)RSSI for 25 rounds c)RMSE for 

50 rounds d)RSSI for 50 rounds 

5.4 Comparative evaluation 

The performance of the proposed OAS optimization-

enabled node localization is compared with the other 

traditional methods for node localization. The traditional 

methods involve Ant colony optimization(ACO)-

localization [39], Fractional Artificial bee colony (FABC) - 

localization [40], Clustering routing-based LEACH- 

localization [36], Particle swarm optimization-based 

clustering (PSO-WZ)-localization[40], Artificial bee 

colony optimization(ABC)- localization [41], Chicken 

swarm optimization (CSO)- localization [42], Felis bee 

optimization-localization, Beetle optimization-

localization[38], Wasp optimization-localization for 25 to 

50 rounds in terms of the RMSE and the RSSI metrics. 

i) Comparative evaluation for the simulation area of 100 x 

100:   

The developed OAS optimization enabled node 

localization attains the RMSE at round 25 is 0.507 which 

is decreased by 20.811% over existing ACO- localization 

technique, 16.564% over FABC- localization,16.247% 

over Clustering routing-based LEACH- localization, 

16.010% over PSO-WZ-localization, 15.319% over ABC- 

localization, 11.785% over CSO- localization, 11.487 % 

over Felis bee optimization-localization, 16.043% over 

Beetle optimization-localization, 1.271 %  over Wasp 

optimization-localization. The developed OAS 
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optimization enabled node localization attains the RSSI at 

round 25 is -47.342dBm which shows 2.891% 

improvement over existing ACO- localization technique, 

2.821% over FABC- localization, 2.804% over Clustering 

routing-based LEACH- localization,2.679 % over PSO-

WZ-localization, 1.951% over ABC- localization, 1.909% 

over CSO- localization, 1.232% over Felis bee 

optimization-localization, 0.249% over Beetle 

optimization-localization, 0.213% over Wasp 

optimization-localization. Additionally, the developed 

method attains the RMSE at round 50  is 0.573 which is 

decreased by 31.134% over existing ACO- localization 

technique, 24.911% over FABC- localization, 22.903% 

over Clustering routing-based LEACH- localization, 

22.857 % over PSO-WZ-localization, 21.940% over ABC- 

localization, 20.048% over CSO- localization, 19.457% 

over Felis bee optimization-localization, 25.580% over 

Beetle optimization-localization, 1.941%  over Wasp 

optimization-localization. The developed attains the RSSI 

at round 50  is -48.226 dBm which shows 1.281% 

improvement over existing ACO- localization technique, 

0.964% over FABC- localization, 0.736 % over Clustering 

routing-based LEACH- localization, 0.713 % over PSO-

WZ-localization, 0.554% over ABC- localization, 0.280 % 

over CSO- localization, 0.230 % over Felis bee 

optimization-localization, 0.299% over Beetle 

optimization-localization, 0.265% over Wasp 

optimization-localization. The comparative analysis for the 

simulation area of 100 x 100 is depicted in Figure 5, which 

shows the developed method is superior in performance 

compared with other traditional methods. 

 

 

a)RMSE for 25 rounds 

 

b)RSSI for 25 rounds 

 

 

c) RMSE for 50 rounds 

 

d)RSSI for 50 rounds 

Fig. 5: Comparative analysis of the developed method for 

the simulation area 100 x100 

 a) RMSE for 25 rounds b) RSSI for 25 rounds c) RMSE 

for 50 rounds d) RSSI for 50 rounds 

ii) Comparative evaluation for the simulation area 200 x 

200:   

The developed OAS optimization enabled node 

localization attains the RMSE at round 25 is 0.535 which 

is decreased by 24.202% over existing ACO- localization 

technique, 23.114% over FABC- localization, 22.445 % 

over Clustering routing-based LEACH- localization, 

21.328% over PSO-WZ-localization, 19.203 % over ABC- 

localization, 15.718% over CSO- localization, 13.913% 

over Felis bee optimization-localization,17.241% over 

Beetle optimization-localization. The developed OAS 

optimization enabled node localization attains the RSSI at 

round 25 is -52.822dBm which shows 2.504% 

improvement over existing ACO- localization technique, 

1.744 % over FABC- localization, 1.704% over Clustering 

routing-based LEACH- localization, 1.553% over PSO-

WZ-localization, 1.510% over ABC- localization, 1.452% 

over CSO- localization, 0.697% over Felis bee 

optimization-localization, 0.144% over Beetle 

optimization-localization, 0.024% over Wasp 

optimization-localization. Additionally, the developed 

method attains the RMSE at round 50  is 0.587 which is 

decreased by 19.968% over existing ACO- localization 

technique, 18.883% over FABC- localization, 17.494% 

over Clustering routing-based LEACH- localization, 

16.764% over PSO-WZ-localization, 16.124% over ABC- 

localization, 14.743 % over CSO- localization,14.590% 

over Felis bee optimization-localization, 17.482% over 

Beetle optimization-localization, 1.998%  over Wasp 

optimization-localization. The developed attains the RSSI 

at round 50  is -53.190 dBm which shows 2.201 % 

improvement over existing ACO- localization technique, 

1.674 % over FABC- localization, 1.620 % over Clustering 

routing-based LEACH- localization, 1.553% over PSO-
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WZ-localization, 1.425% over ABC- localization, 1.359% 

over CSO- localization, 1.355% over Felis bee 

optimization-localization, 0.499% over Beetle 

optimization-localization, 0.153% over Wasp 

optimization-localization. The comparative analysis for the 

simulation area of 200 x 200 is depicted in Figure 6, which 

shows the developed method is superior in performance 

compared with other traditional methods 

 

 

a)RMSE for 25 rounds 

 

b)RSSI for 25 rounds 

 

c) RMSE for 50 rounds 

 

d)RSSI for 50 rounds 

Fig. 6: Comparative analysis of the developed method for 

the simulation area 200 x200 a) RMSE for 25 rounds b) 

RSSI for 25 rounds c) RMSE for 50 rounds d) RSSI for 50 

rounds 

5.5. Comparative discussion 

The performance of the developed approach is examined 

with the other traditional techniques for the simulation area 

of 100 x 100 and 200 x 200 is depicted in Table 1. The 

traditional methods utilized for comparative analysis had 

some limitations, in which the LEACH-based localization 

protocol found challenges such as random selection of 

CHs, uneven distribution of CHs, single-hop 

communication between CHs and BS, excessive energy 

consumption, and easy node death [36]. The ACO-enabled 

localization was found with limitations as the method does 

not maintain the network connectivity, increases power 

consumption, and requires more deployment cost [39]. The 

double path routing with FABC has not attained the 

potentiality as the nodes are scattered in big intervals 

concerning the energy and hence finding of multi-path to 

transmit the data was found to be a complex task [40]. 

Additionally, the CSO- localization required dynamic 

adjustment of the population in each group to update their 

velocity in a structured way [42]. The PSO-WZ technique 

utilizes a conventional method for aligning the particle 

within the boundary and requires tuning the model to adapt 

within the network [41]. However, the ABC optimization-

based localization, in which the signal strength evaluated 

at the receiver is affected by the shadowing effect, and 

hence the evaluated distance concerning the RSS is found 

to be erroneous [37]. The beetle optimization enabled node 

localization had limitations with the randomness of node 

distribution, which made calculating the position a difficult 

process [38]. However, the OAS optimization enabled 

node localization approach overcame the drawbacks in the 

conventional techniques by employing the OAS 

optimization that evaluated the position of the dead nodes 

and replaced those nodes with new nodes that maintained 

the lifetime and energy efficiency of the network. 

Additionally, the method utilized an efficient routing 

mechanism that ensured effective data transmission 

between the nodes. From Table 1, it is evident that the 

developed approach contributed to low RMSE and high 

RSSI compared with other traditional methods. 

Table 1.Compaartive discussion for the OAS optimization enabled node localization. 

Methods Simulation area 100x100 Simulation area 200x200 

25 rounds 50 rounds 25 rounds 50 rounds 

RMSE RSSI(dBm) RMSE RSSI(dBm) RMSE RSSI(dBm) RMSE RSSI(dBm) 

ACO- localization 0.612 -48.710 0.752 -48.844 0.664 -55.17 0.704 -54.361 

 FABC- localization 0.591 -48.677 0.716 -48.692 0.658 -54.761 0.697 -54.08 

Clustering routing-based 

LEACH- localization 0.589 -48.669 0.704 -48.581 0.655 -54.74 0.689 -54.051 

PSO-WZ- localization 0.588 -48.610 0.704 -48.57 0.649 -54.659 0.685 -54.016 

ABC- localization 0.584 -48.266 0.699 -48.494 0.637 -54.635 0.681 -53.948 
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CSOlocalization 0.567 -48.246 0.688 -48.361 0.619 -54.604 0.673 -53.913 

Felis bee optimizatin-

localization 0.565 -47.925 0.685 -48.338 0.609 -54.198 0.672 -53.911 

Beetle optimizatin-

localization 0.588 -47.460 0.72 -48.37 0.627 -53.9 0.689 -53.455 

Wasp optimizatin-

localization 0.513 -47.443 0.584 -48.354 0.535 -53.835 0.598 -53.271 

Proposed OAS optimizatin 

enabled node localizatin 0.507 -47.342 0.573 -48.226 0.535 -53.822 0.587 -53.19 

6. Conclusion 

In this research, OAS optimization is utilized for optimal 

node localization in WSN, which minimizes the 

localization error and enhances the energy efficiency in the 

WSN, resulting in reducing the cost and providing efficient 

routing for effective data transmission. The developed 

approach evaluated the location of unknown nodes with 

the known position of anchor nodes utilizing the OAS 

optimization. Further, the OAS optimization localizes the 

dead nodes concerning the localization error and remaining 

energy. Hence the dead nodes are replaced with the new 

nodes and the clustering is performed with the efficient 

adaptive incorporated FABC and Beetle-based routing for 

transmitting the data to the BS. The developed OAS 

optimization enabled node localization method attains 

RMSE of 0.573, RSSI of -48.226 dBm for the simulation 

area 100x100 and RMSE of 0.587, RSSI of -53.19 dBm 

for the simulation area 200x200.The experimental 

outcomes demonstrate that the developed method 

surpasses the traditional approaches by substantially 

minimizing the localization error and enhancing the 

lifetime and energy efficiency of the WSN.Further the 

energy efficiency of the developed approach can be 

enhanced by incorporating other advanced optimization 

approaches in the future. 
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