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Abstract: Epileptic seizure is a nerve-wracking chronicle disease that occurs in older patients as well as middle-aged people, which is 

necessary to predict the disease sometimes it may cause serious health issues and lead to death in rare cases. Even though there are more 

methods for Epileptic seizure prediction, the computational efficiency and accurate results for prediction are very low. Hence a feasible 

deep learning (DL) based Felidae Canis tracking algorithm with a deep convolutional neural network and long short-term memory 

(FCTA-CSTM) model for predicting epileptic seizure is proposed. The electroencephalography (EEG) signals are used in this research 

for effective prediction. The FCTA-CSTM model employed with optimization mechanism, FACTA is the combination of three nature-

inspired optimizers that intend to select the most suitable feature to train the model and improve the convergence speed as well as 

increase the potential of the model. Besides the model, CSTM trains effectively and accurately predict the disease which avails patients 

for early diagnosis. The performance of the model can be analyzed using accuracy, sensitivity, and specificity metrics and achieved 

95.35%, 94.76%, and 95.94% respectively compared to other state-of-the-art methods. 

Keywords: Epileptic seizure, electroencephalography signals, Felidae Canis tracking algorithm, deep convolutional neural network and 

long short-term memory,deep learning. 

1. Introduction 

Epilepsy is a kind of chronic nerve disorder that is 

characterized by the phenomenal evolution of spontaneous 

seizures [1] [2]. Seizures are also determined as sudden 

uncontrollable electrical disruption in human brain cells 

that changes the behavior, action, and emotional state of 

humans [3]. Moreover, this disease affects all age groups 

people, and more probably middle-aged and old people 

were affected by this disease also reduced their eternity life 

span of humans [4]. So the early detection of this disease is 

very important to reduce the mortality rate, thus emerging 

an advanced prediction process for epileptic seizure and 

thus improving human life. The seizures were normally 

classified into three primary types namely generalized, 

focal, and unidentified seizures. The epileptic seizures 

were predicted using EEG signals, which were composed 

of certain significant physiological and pathological 

information, for better analysis and prediction [5-11] [12]. 

According to the dependencies of the several methods, the 

EEG signals are divided into two types namely, 

intracranial EEG (iEEG) and scalp EEG (sEEG). Due to 

the continuous increment of signal processing and other 

convenient AI methods, recent predicting researchers have 

chosen EEG signals for effective prediction performance 

[13].  

In general, the EEG is used to measure the electrical 

impulse from the brain by placing multiple metal 

electrodes on the scalp [14] [4]. EEG signals are 

considered an important diagnostic tool as well as used for 

predicting epileptic seizures [15, 16]. It is noted that the 

patterns in EEG signals are normal when a seizure is not 

diagnosed and change when a seizure is diagnosed [4]. 

Significantly, the EEG patterns are highly classified into 

four states such as ictal, pre-ictal, post-ictal, and inter-ictal 

state [17]. The ictal state is known for initial onsets and 

ends with an epileptic seizure on the other hand, the post-

ictal starts while the seizure has ended and continues for a 

short period of time. Also, the pre-ictal occurs more or less 

60 to 90 minutes before the inter-ictal state [3].  Moreover, 

it is important to classify the two states of EEG patterns 

which include ictal and pre-ictal for advanced prediction 

[15, 17, 18] [8]. However, the EEG signals vary from 

patient to patient, and quite difficult to forecast the disease 

also requires more time, some of the techniques employ a 

supervised learning model for prediction.  

This era highly utilized deep learning (DL) and machine 

learning (ML) techniques to solve complex problems. 

Usually, these techniques collaborate with pre-processing 

techniques and feature extraction processes, and the 

selection process plays a vital role in solving anticipating 

problems with great efficiency. Using ML and DL 

techniques, the EEG signals were efficiently decomposed 
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into several frequency bands and extracts common spatial 

patterns (CSP) therefore the type of seizures was classified 

using some of the techniques like CNN, LSTM, DNN, and 

so on. The generative adversarial networks (GAN) model 

highly reduces the impacts on imbalanced issues that occur 

during the prediction process [19] [20]. The neural 

network (NN) model was mostly utilized in prediction, 

detection, classification, and other problems [24-29], in 

which the hidden layers are quite feasible to undergo 

different processes for different problems. One-

dimensional CNN (1D-CNN) is another DL-based method 

that effectively detects epileptic seizures using EEG 

signal-based data. The BiLSTM is the other model for 

predicting the disease, later binary single-dimensional 

convolutional neural network (BSDCNN) model was 

established and achieved minimum accuracy [12]. 

However, these models literally gone through some 

limitations during the prediction like over-fitting issues, 

not a robust prediction, time-consuming, and so on. 

This research overcame several existing drawbacks and 

developed a hybrid-based model, FCTA-CSTM for 

epileptic seizure prediction. Here, EEG signals are taken as 

an input which is decomposed into alpha, beta, delta, theta, 

and gamma frequency sub-bands, therefore predicting the 

disease effectively using the FCTA-CSTM model. The 

proposed FCTA-CSTM model holds the FCTA optimizer 

and CSTA method that drives effective disease prediction. 

Moreover, the FACTA optimizer was developed to select 

the suitable parameter to train the model. Using this 

optimizer increases the efficiency as well as convergence 

speed of the model that highly determined for accurate 

prediction. Besides, the CSTM model predicts epileptic 

seizures with higher accuracy which avail patients for early 

diagnosis. The contribution is discussed briefly in the 

below context. 

• Felidae Canis tracking algorithm (FCTA) optimizer for 

feature selection and training the model: The FCTA 

optimizer holds the behaviour of three significant 

optimizers, which optimally selects beneficial features to 

train the mode. Hence reduce local optimal issues and 

increase its convergence efficiency for accurate prediction. 

• Convolutional neural network and long short-term 

memory (CSTM) model: The hybrid model is embedded 

with deep CNN and LSTM model, in which, the deep 

CNN model extract the important features where, the 

LSTM model captures long-term dependencies for 

prediction. Therefore decrease the overall loss and 

provides high accuracy for better prediction. 

• Felidae Canis tracking algorithm with deep 

convolutional neural network and long short-term memory 

(FCTA-CSTM) for epileptic seizure prediction: The 

FCTA-CSTM model further reduce over-fitting issues, 

time complexity and cost effective during training. Hence 

the FCTA-CSTM model efficiently predicts epileptic 

seizure and provides significant results.  

• This paper is organized in the following manner: A 

review of multiple literature and its challenges are 

occupied in section 2. The next section 3 is established 

with the proposed methodology and the result placed in 

section 4. At last, the conclusion is deployed in section 5. 

2. Literature Review 

B. Jaishankar, et al [27] introduced an optimal model for 

predicting epileptic seizure, an Adaptive Genetic auto-

encoder (aADGA) embedded with a genetic algorithm 

(GA) which highly optimizes the hyperparameters from 

the model and comprises the time for computation. Even 

though the model was highly challenged with complex 

datasets and required maximum computational cost to 

achieve the prediction process. Imene jemal, et al [28] 

utilized a DL model, a deep neural network (DNN) for 

epileptic seizure prediction which corresponds to providing 

pertinent features using layer-wise propagation and thus 

leads to accurate prediction. However, the model cannot be 

deployed in real-world applications and also dealt with 

over-fitting problems due to many number of deep 

networks. 

Bhaskar Kapoor, et al [3] introduced the hybrid model, 

AdaBoost, random forest (RF), and the decision tree (DT) 

model for prediction, in which the hybrid seek optimizer 

fuses the hybrid models to appropriate predicted values. 

This model was highly feasible and reliable for the 

practical approach. However, the prediction performance 

of this model required more time, and was also quite 

challenging to pay attention to every single hybrid model. 

Kuldeep Singh, et al [2] came up with a spectral feature-

based two-layer LSTM model for high prediction using the 

EEG signals. More or less, the time taken for prediction 

required 30 sec and achieved better accuracy, which was 

capable of solving the vanishing gradient problem. 

Nevertheless, the model has computational complexity due 

to multiple hidden layers. 

Xin Xu, et al [13] deployed a gradient boosting decision 

tree (GBDT) model, which is one of the ML-based models 

that highly avoids class imbalance issues and the EEG 

signals were de-noised using CEEMD and wavelet that aid 

for effective prediction. However, the model cannot handle 

the annotation that relies upon the seizures and thus 

provides an impact on the model. Fatma E. Ibrahim, et al 

[29] focused on developing a CNN model, which utilized 

thirteen layers and several residual learning blocks for 

effortless prediction of an epileptic seizure. Meanwhile, 

the developed model performed using spectrogram images 

limits some processes during prediction and also requires 

high computational expenses. 
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Rowan Ihab Halawa, et al [14] developed a modern DL 

method, 1D CNN for epileptic seizure prediction. In 

addition, the model demanded a wavelet-based pre-

processing approach that highly reduces unwanted 

background noises for effective prediction. Somehow, the 

wavelet approach has shift sensitivity and sometimes lacks 

important information during noise reduction. Ranjan Jana, 

et al [4] deployed a CNN model for prediction, in which 

the features are extracted automatically and determine high 

prediction with maximum accuracy. However, the EEG 

signal patterns varied at independent seizure prediction, so 

the process of prediction was quite challenging. 

2.1 Challenges of Existing Methods 

The limitations and the challenges of the existing methods 

are summarized below; 

• The aADGA model was not efficient enough to perform 

using complex datasets and required maximum 

computational cost to achieve the prediction process [27] 

• The DNN model cannot be deployed in real-world 

applications and also dealt with over-fitting problems due 

to many number of deep neural layers [28] 

• The hybrid model of AdaBoost, random forest (RF), and 

the decision tree (DT) for prediction required more time 

and also quite challenging to pay attention to every single 

hybrid model [3] 

• The GBDT model cannot handle the annotation relies 

upon the seizures and thus provides impacts on predicting 

the seizures using the deployed model [13] 

• In the CNN model, the EEG signal patterns varied at 

independent seizure prediction, so the process of prediction 

was quite challenging for many researchers [4]. 

3. Methodology for epileptic seizure prediction 

The research focused on to develop an ensemble model to 

overcome the limitations of previous methods such as 

computational complexity, over-fitting issues and other 

challenges for predicting epileptic seizure disease. The 

proposed ensemble deep learning based FCTA-CSTM 

model is contributed to predict epileptic seizure and 

provides better performances. In this work adopts two 

datasets namely the CHB-MIT scalp EEG database [30] 

and the UCI dataset [31] that are deployed to train the 

model effectively for epileptic seizure prediction. The 

input EEG signals are prone to noises and lower amplitude 

hence the input signals are subjected to pre-processing for 

eliminating the unwanted noises present in the signal. The 

processed signals are decomposed into alpha, beta, delta, 

theta, and gamma frequency bands, which are then 

subjected to the feature extraction using (a) Time domain 

(b) Frequency/Spectral domain (c) Time-Frequency 

domain (d) Decomposition domain, and (e) Deep features. 

The extracted features establish the feature vector which is 

then subjected to the optimized feature selection procedure 

for selecting the optimized frequency sub-bands. Thus, 

established feature vector that avails training CSTM 

classifier, which is designed for predicting epileptic 

seizures. The prediction model is developed through 

hybridizing the deep CNN and LSTM models where the 

model is trained using hybridizing the behaviour of three 

nature inspired optimizers thus providing high prediction 

accuracy with low computational expenses and the 

framework of the proposed model is given in Figure 1. 

 

Fig. 1: Framework of proposed model 

3.1 Input signals 

The electrical impulse of the brain cells congregates using 

the EEG signals, which involves high-level prediction with 

the help of several informatics representations from the 

signals, and very particular, it holds relevant data of the 

nerve disorder, epileptic seizure disease.  Here, two 

available datasets namely the CHB-MIT scalp EEG 

database and the UCI dataset are utilized. The input signals 

are represented as, 

 
ni ddddd NNNNZ ,...,,...,,

21
=

    (1) 

where dZ represents the datasets with many signals  
ndN , 

which undergo effective training in the model. 

a) CHB-MIT scalp EEG database description [30]: The 

CHB-MIT scalp EEG database consists of a collection of 

multiple EEG signal-based data, which is proclaimed with 

twenty-two pediatric subjects and intractable seizures are 

accompanied. Also, the onset and ends of 182 seizures are 

interpreted. 

b) UCI dataset [31]: The UCI dataset, epileptic seizure 

recognition was sorted by pre-processing and reshaping the 
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commonly used dataset featured for epileptic seizure 

detection 

3.2 Pre-processing of input signals 

The pre-processing step is the initial step to predict the 

epileptic seizure in which, the EEG signals are headed to 

the pre-processing filter to evacuate some unwanted 

artifacts from the EEG signals, therefore providing high 

accuracy to the FCTA-CSTM model. In this work, a band-

pass filter is taken for the noise reduction process. 

Significantly, the frequency bands of the EEG signals 

range from 0.25 to 25 Hz where the rest is removed to 

make high progress for the prediction model. The pre-

processed time series data can be represented as ( )jS . 

3.2.1 Frequency bands 

The frequency bands of EEG signals produce multiple sub-

bands for evaluating the inner nodal data, which involves 

delta, theta, alpha, beta, and gamma for high prediction. 

The significant characteristics of each sub-band vary 

according to the epileptic seizures that highly represent the 

alterations in both functional and behavioral features of 

complex epileptic patients [32] [2]. However, the 

frequency of respective sub-bands of delta ranges from 0.5 

to 4 Hz, theta ranges from 4 to 8 Hz, alpha ranges from 8 

to 12 Hz, beta ranges from 12 to 30 Hz, whereas gamma 

ranges from 30 to 100 Hz.  

3.3 Feature Extraction Process 

The feature extraction process is highly known for 

extracting distinct features from the input. Here, each sub-

band of EEG signals from the pre-processed phase is 

deployed to aid in designating various stages of epileptic 

seizure and therefore acts as a descriptor for prediction. In 

this research, the extraction of beneficial features from 

each sub-band takes place with five different methods such 

as time domain, frequency or spectral domain, time-

frequency domain, decomposition domain, and finally 

deep features to extract the key features from each sub-

band that is subjected to develop and train the FCTA-

CSTM model. 

3.3.1 Time domain-based feature extraction 

The time domain technique is determined to extract 

features from different aspects of time and henceforth 

separate extraneous signals from each sub-band of EEG 

signals, which is necessary for predicting epileptic 

seizures. Moreover, the extraction of features using the 

time domain technique employed several constrained 

techniques that include Correlation Dimension Feature, 

Detrended Fluctuation Analysis, Hjorth Features, and 

Hurst Exponent Feature which are explained below. 

a) Correlation Dimension Feature  

Correlation dimension (CD) is one of the geometric 

measures that evaluate dynamic complexity also 

approximates the dimensional phase space and is more 

often enumerated from the time series data from the single 

vector. The CD can be defined in the following equation 

[33], where, the time series data ( )jS  is taken as an input. 

The below-mentioned equation (2), ( )qc represents the 

correlation integral with the radial distance q around every 

reference point. 

( ) qqcc
q

d ln/lnlim
0→

=

     (2) 

b) Detrended Fluctuation Analysis 

Detrended fluctuation analysis [34] is one of the time 

domain methods prioritized for extracting the features of 

sub-bands of EEG signals. Here, the sub-bands are 

computed with the help of scaling components that highly 

index the long-range power-law correlation placed in non-

stationary signals. At first, the sequence of the time series 

data ( )jS  is computed as follows,  

( )  
=

=−=

l

j

j nlSSlk

1

,...,1,      (3) 

The next step is to divide ( )lk  into  tsnnts / , where n

represents the length of time series data and ts is the 

considered time scale. However, the series length is not a 

multiple of the time scale, whereas the small part of the 

sum sequences remains at the end. Thereby repeating the 

process from one end to the other end, produce tsn2

segments. The third step is to eliminate the local trends 

from the segments, which can be defined in the below 

equation. 

( ) ( ) ( )lflklk est −=      (4) 

Here, ef represents the fitting polynomial in segment e , 

the linear, cubic, quadratic, and other polynomials are used 

in the fitting process. However, the fourth step is to take an 

overall average of each segment thereby taking the square 

root to produce a fluctuation function, which is determined 

as follows. 

( ) ( )

2/1
2

1

2

2

1

















= 
=

tsn

e

ts
ts

eX
n

tsX     (5) 

From the above equation, ( )tsX  is the fluctuation function, 

which 
( )eX ts

2

can be evaluated using the below equation. 

( ) ( ) ( ) 
=

+−==

ts

l

tsstts ltsek
ts

lkeX

1

222 1
1

  (6) 
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c) Hjorth Feature 

Hijorth features or parameters are the important features, 

which represent the statistical features of the indicators and 

are more probably used in various signal processing tasks 

in time series data. Also quite necessary for EEG signal 

analysis and there were three features involved in Hijorth 

are complexity, activity, and mobility. The activity feature 

of Hjroth ( )hjA  can be defined as the signal power of the 

function, which is evaluated using the below equation. 

( )( )jSA
Shj
2=        (7) 

Whereas, the mobility feature of the Hjroth ( )hjM  is the 

square root ratio of the first derivative variance to that of 

signal variance, which is represented as follows, 

( )

( )( )jS

dj

jdS

M

S

S

hj 2

2



 










=     (8) 

The complexity feature ( )hjC  can be expressed by the 

switch state of frequency in the EEG signals and can be 

evaluated as follows 

( )

( )( )jSM

dj

jdS
M

C
hj

hj

hj












=     (9) 

d) Hurst Exponent Feature 

The Hurst exponent feature is meant to evaluate the 

existence of extinct long-range dependence in the time 

series data and can be computed as follows. 

( )
( )

cmpH

ser

cun
exhu Yx

xu

xd
vG =








=    (10) 

where, exv indicated the contemplated value, ( )xdcun

denotes the cumulative derivative from mean value ( )x

whereas, ( )xuser denotes the first time series with SD   

and Y is the constant value with the hurst component 

cmpH . The feature extraction performance of the time 

domain feature can be denoted as tmD . 

3.3.2 Frequency domain-based feature extraction 

The frequency domain is mostly utilized to analyze the 

spectral features from each sub-band of the EEG signals 

and extracted using some important parameters that 

include band power and spectral entropy are discussed 

below. 

a) Band power 

The power band of EEG signals is highly demonstrated by 

the mean power metric in the signals with specific band 

frequency. This technique highly reduces the computation 

complexity and provides further improvements in 

prediction, the band power can be represented as bdO . 

b) Spectral Entropy 

The term entropy means disorder, however, spectral 

entropy is the method to calculate the quantity of 

irregularity in the EEG spectrum as well as disorder, which 

is expressed in the below equation. 

( )
( )=

0
0

0
1

ln

f
psd

psdsf
fB

fBz    (11) 

here, psdB
is the power spectral density and 0f denotes the 

frequency component of each sub-bands. The output of 

frequency domain extraction can be denoted as 

sfbdfd zOD =  

3.3.3. Time-frequency domain-based feature extraction 

In the time-frequency domain, the discrete wavelet 

transform (DWT) technique is deployed to extract features 

from the EEG signals. More frequently, the DWT utilized 

time series signals, in which the signals are decomposed or 

separated as a discrete wavelet form and can be denoted as 

follows [35], 

( ) ( )= djjjSP jiDWT s

*
,             (12) 

here,  represents the wavelet function, where ZjZi  , . 

The overall results  

3.3.4 Decomposition domain-based feature extraction 

In the decomposition domain features carry three different 

functions required to extract the EEG signals such as 

mean, phase frequency detector (PFD), and standard 

deviation. 

a) Mean: The ratio of total average time instances to the 

total number of instances tI  of EEG signals that are 

expressed as follows. 


=

=
tI

j

jt

m

SI

1

1
      (13) 

b) Phase frequency detector (PFD): The PFD can be 

evaluated by transforming the fractal dimension of EEG 

signals into multiple binary sequences with the length sl

and the resulting binary sequence provides a number of 

sign changes S  , the FD can be denoted as follows. 















+
+

=

Sl

l
l

l

s

s
s

s
PFD

4.0
loglog

log

1010

10   (14) 
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c) Standard deviation (SD): The variation in each time 

series of EEG signals concerning the mean. The SD is 

defined as, 

( )
=

−
−

=

sI

j

mj
s

S S
I

1

2

1

1
     (15) 

The extracted features of the decomposition domain can be 

denoted as SPFDmxgD = . 

3.3.5 Deep features based feature extraction 

Using statistical features such as mean, SD, variance, 

medium, Skewness, kurtosis, geometric mean, sum-

minimum, and sum-maximum are determined to extract 

the features from the signals. Here mean m  is defined for 

taking an average of time instances in EEG signals 

whereas, the SD S  measures each time instance in the 

EEG signals. Variance is the square of SD, which is 

denoted as 2
S

 . The median is utilized to find the center 

value of the EEG signals which is denoted as med . On the 

other hand, skewness is implemented to find the total 

disproportion among the random variables in the 

probability distribution that is denoted as skw
and Kurtosis 

can be expressed in terms of peaked distribution of random 

variables with the sub-bands of the EEG signals which is 

denoted as kru
. The geometric mean is the other statistical 

feature, that can be defined as the average value that 

specifies the central tendency by evaluating the product of 

the values and can be denoted as geo . The minimum and 

the maximum functions find the max and min values 

where the sum of both min and max functions are 

subtracted to have significant signals which are denoted as 

summin and summax
. The above-mentioned statistical 

features are an aid for high improvement in speed training 

and effective visualization that will help to reduce over-

fitting issues. The deep features-based feature extraction 

can be represented as

sumsumgeokruskwmedSSmfD maxmin2 =

. 

The overall extraction of semantic features from each sub-

band of the EEG signals for epileptic seizure prediction is 

denoted as xfE  highly symbolizing the model prediction 

accuracy, further developed for better performance. 

3.4 Felidae Canis Tracking Algorithm  

The FCTA optimization technique contributes to feature 

selection and CSTM training process in which, the 

characteristics of three optimization algorithms such as 

seeking and tracking character, community group, and 

path-finding behaviors are taken from cat swarm optimizer 

[36, 37], coyote optimizer [38], and leopard optimizer [39] 

that indicates Felis Catus, Canis Latrans, and Panthera 

Pardus for this experiment. In this FCTA optimizer, the 

community group behavior depends on the social 

organization condition effectively denotes number of 

solution among the group. However, the seeking and 

tracking behavior is one of the important character plays a 

role of finding the best suitable solutions by memorizing 

the position and move further to track other global solution 

from the search space that aids to select the best solution 

among the group. At last, the behavior, path-finding 

employed to determine the path which is modelled with 

zig-zag patterns for finding the missing community group 

and thus provides an effective solution to select the best 

feature from the search space and highly trains the model’s 

parameter to achieve better prediction for epileptic seizure. 

Using the FCTA optimizer provides speed computational 

efficiency and also reduces over-fitting issues and thus 

remains a resilient model for prediction. 

Inspiration 

The combination of existing behaviors such as seeking and 

tracking character, community group, and path-finding are 

taken to find the best solution to train the model. However, 

the community group is the population-based algorithm 

that depends on maintaining the group to search for the 

best suitable solution. The seeking and tracking are 

inspired by the resting and tracing behavior, which is quite 

spontaneous to seek the best solution in the search space 

whereas, the path-finding character is taken from the snow 

leopard behavior that simultaneously finds the missing 

community group and thus enhances the performance for 

better prediction. 

a) Initialization: At first, the population of solutions is 

specified in the form of a matrix, which is the initial step to 

identify the best solution among the community group and 

represented as, 























=

N

i

b

b

b

b





1

      (16) 

In the above equation, b represents the population of the 

solution, ib denotes the thi position of the solution, and Nb

represents the total number of solutions in the community 

group. 

b) Fitness evaluation: The fitness of the solution can be 

determined by the accuracy metric in which, the random 

solutions and the corresponding solution of the maximal 

classifier, the accuracy of the solution is declared as the 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1296–1307  |  1302 

best suitable solution at each iteration that is defined as, 

( ) ( )( )t
acc

t bJbfit max=     (17) 

c) Condition strategy: To define a problem, several 

conditions are evolved to evaluate and identify the best 

suitable solution and therefore train the model and provide 

high accuracy. In this section, two cases are implemented 

to find a suitable solution which is described in the below 

context. 

Case 1: Following Phase: ( ) ( )1− tt bFbF : Here, ( )tbF  

represents the fitness of the solution at t iteration and 

( )1−tbF  denotes the fitness of the solution at 1−t  iteration. 

Considering the solutions are found inside the community 

group, where the whole group instinct to search for the 

suitable solution. In this case, the solution among the 

community group should be to update its current state or 

position in order to remain in the community group. Now, 

the behavior of seeking and tracking plays an important 

role in updating the position of each solution from the 

group. However, the behavior intended to seek the best 

suitable solution simultaneously traces the leading one 

among the group. Therefore, the combination aids in 

overcoming the local optimal issues and thus updates its 

position to increase the converging ability. The updated 

position of the solution can be represented as 

  ( ) ( )







 −
+−++

+
=+

22

2
1

1 tcult
tgt

ttt bba
bbab

Wb
b  (18) 

In the above equation, cultb
represented as the medium 

social condition of all solutions in the community group, 

1a denoted as the seeking factor that belongs to ( )1,0  

whereas, 2a indicates the seeking range of the solution and 

gb represents the global best position. In addition, tW  

indicated as velocity at iteration t , which can be evaluated 

as follows 

( )tgtt bbUaWW −+= − 131      (19) 

where, 1−tW is the velocity at iteration 1−t , 3a denotes the 

influence factor with respect to the circumference 1U

covered by the solution. 

Case 2: Path-finding phase: 
( ) ( )1− tt bFbFIf

: This 

condition shows that the position of the solution is not 

greater than or equal to its precious iterated value. During 

iteration, the solution has a probability of being struck at 

any point of unoptimal position, and therefore the position 

of the solution must be updated on the basis of the cultural 

tendency of the community group. Sometimes, this 

condition leads to obtaining a worse solution, hence the 

solution utilized its experience in finding the position by 

exchanging the information and identifying the path to 

console with the community group. Moreover, this 

behavior improves the quality of the solution, develops its 

exploration ability, and more probably increases the 

cultural tendency of the community group. The improved 

equation is,  

( ) ( ) ( )( )  ( ) ( ) 
2

sin 2121 tculttgtrandttt
t

t
bbabbabbFbFLbbUb

b
−+−++−−+

=+      (20) 

where, 2U represents the memory factor of the solution, L

denotes the path-finding character of the solution with the 

fitness function of the current solution ( )tbF  and a random 

solution ( )randbF . Here, the condition for terminating this 

procedure is maxtt  , that the total iteration ends with its 

best suitable solution. The FCTA optimizer is necessary 

for identifying the best suitable solution that exaggerates 

the model training process with the best-selected features. 

In addition, the FCTA optimizer reduces over-fitting and 

local optimal issues thus providing better accuracy 

performance for prediction. The flow chart of the FCTA 

optimizer is shown in Figure 2. 

 

Fig. 2: Flowchart of FCTA optimizer 

3.5 Feature selection 

The selection procedures involved in choosing the 

significant feature for effective training of the FCTA-

CSTM model. Here, FCTA is employed to select the 

optimal feature from various parameters, highly exploited 

with two conditional phases, which include the following 

and path-finding phase of optimization. Therefore, select 

significant feature to train the model and reduced 

computational complexity as well as improves the 

exploration ability of the model. The selected feature can 

be denoted as sfp
. 

3.6 Hybrid CSTM model for epileptic seizure 

prediction 

The CSTM is the hybrid of the deep CNN and LSTM 

model which contains multiple hidden layers that usually 

predict the occurrence of epileptic seizures using EEG 
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signals [40]. Here, two-dimensional (2D) convolution, 

rectified linear unit (ReLU), and max-pooling layers are 

comprised in the CSTM model. However, in this 

experiment, three 2D convolutional layers, three ReLU 

layers, and two max-pooling layers are implemented which 

is shown in Figure 3. The selected features of the EEG 

signals are the feature vectors of 2D convolution with the 

size ( )1,1,7015 . The 2D convolution subsequently contains 

kernels to train the model with the size ( )32,1,7015 and thus 

generate a feature map. The further process includes the 

ReLU function which concentrates on securing the growth 

of high exponential and therefore minimizes the 

computational expenses that can be expressed as, 

( ) ( )sfLUsf PPf ,0max
Re

=     (21) 

The max-pooling layer evaluates the maximum pooled 

features from the map and certainly increases the accuracy 

percentage by means of reducing its dimensionality and 

therefore increases the learning speed, and the size of the 

max-pool ( )32,1,7015 . Following this, the reshaped features 

with size ( )64,7015 are fed into the LSTM [41] layer that 

captures global and local information from long and short 

terms of feature vectors which is composed of significant 

gate features such as input gate, output gate, memory state, 

and forget gate. These gate features avail better prediction 

with low computational expenses, where the size of the 

LSTM layer is ( )100 . The flatten layer of this model 

effectively reduces the dimensionality of the features to 

enhance the prediction. On the other hand, the dense layer 

captures complex patterns from the previous layer and 

provides further improvements in prediction. The output of 

the CSTM is taken from the softmax layer that highly 

predicts the presence of epileptic seizures. The complete 

architecture of the CSTM model is depicted in Figure 3. 

 

Fig. 3: Architecture of CSTM model 

4. Results 

The performance and the comparative results of epileptic 

seizure prediction using the FCTA-CSTM model is 

provided in this section. At the same time, the discussion 

of existing methods is also detailed to prove the efficiency 

of the FCTA-CSTM model. 

4.1 Experimental setup 

The developed model is implemented using Python tool in 

Windows version 11 OS with RAM 16 GB, ROM 100 GB 

and CPU-1.7 Ghz.  

4.2 Performance Metrics 

To validate the performance of the proposed FCTA-CSTM 

model, several metrics such as accuracy, sensitivity, and 

specificity are measured to demonstrate the performance as 

well as the comparison between the proposed and the 

existing models. 

a) Accuracy: This metric can stated as the ratio of correct 

predicted value with total predicted value, which is 

denoted as, 

asisaeie

aeie
acc

NFPFNTPT

NTPT
J

+++

+
=             (22) 

b) Sensitivity: Sensitivity results demonstrate the correct 

positive outcome and can be expressed as, 

as

ie
sen

NFofnumber

PT
J =     (23) 

c) Specificity: Specificity is to identify the number of 

incorrect test results occurred and can be determined as, 

as

ae
spc

NFofnumber

NT
J =      (24) 

Here, NFandPFNTPT sisaeie ,,, represents true positive, 

true negative, false positive, and false negative 

respectively. 

4.3 Performance Analysis 

The prediction performance of the FCTA –CSTM model is 

analyzed using the above-mentioned metrics with a 

constant training percentage of 90 and provides reasonable 

and accurate performance values, therefore proving the 

proposed model is highly efficient and effective in 

predicting epileptic seizures. Moreover, the model reduces 

the computational cost and increases computation speed 

for effective prediction. 

4.3.1 Performance analysis using TP 

The prediction performance of the FCTA –CSTM model 

can be analyzed using varying epochs 100, 200, 300, 400, 

and 500 with constant TP 90. Here, the average accuracy 

performance of the FCTA –CSTM model with epoch 100 

is 86.64%, and with maximum epoch 500, the accuracy is 

95.35%. However, the sensitivity value with minimum 

epoch 100 is 86.33% whereas with maximum epoch, the 

sensitivity is 94.76%. Along with this, the specificity value 

with min epoch is 86.94% and with max epoch is 95.94% 
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respectively, which is depicted in Table 1. This analysis 

shows high prediction performance accompanied by 

several metric measurements and thus carries the 

advantage of reducing computational complexity and other 

computational expenses therefore improving the potential 

of the FCTA –CSTM model. 

 

Table 1: Performance analysis using TP-90 

TP-90 

 Accuracy 

% 

Sensitivity 

% 

Specificity 

% 

FCTA-CSTM at 

Epoch = 100 86.64 86.33 86.94 

FCTA-CSTM at 

Epoch = 200 88.60 88.38 88.83 

FCTA-CSTM at 

Epoch = 300 91.82 90.87 92.77 

FCTA-CSTM at 

Epoch = 400 93.17 92.77 93.57 

FCTA-CSTM at 

Epoch = 500 95.35 94.76 95.94 

4.4 Comparative Analysis 

The comparative measures with the FCTA-CSTM model 

and the existing models such as GBDT [8], 2L-LSTM [2], 

CNN [29], Felis Catus CSTM (FCSTM), Canis Latrans 

CSTM (C2STM), and Panthera Pardus CSTM (PCSTM) 

models are compared using the above-mentioned metrics 

with the constant training percentage 90. This analysis 

exaggerates that the proposed FCTA-CSTM model is 

suitable for predicting epileptic seizure 

4.4.1 Comparative Analysis using TP 

The comparison of the FCTA-CSTM model with above 

mentioned existing models plays a role in this analysis, 

which is shown in Figure 4. This section shows the 

improved performance of the FCTA-CSTM model with 

the above-mentioned metrics. The improved accuracy 

percentage of the FCTA-CSTM model with the existing 

methods is 10.11%, 13.60%, 5.57%, 6.81%, 8.67%, and 

9.95%. The improved sensitivity is 11.08%, 11.77%, 

5.97%, 7.18%, 9.25%, and 7.03% whereas, the improved 

specificity is 9.14%, 15.40%, 5.17%, 6.46%, 8.09%, and 

12.84% respectively. The performance of the proposed 

model is highly increased than the other existing models 

hence the FCTA-CSTM model achieved a high success 

rate of epileptic seizure prediction with increased accuracy. 

In addition to its accuracy, the model effectively learns 

from the previous stage of the entire process and thus 

decreases the computation expenses as well as does not 

require high memory. 

 

a) Accuracy 

 

b) Sensitivity 

 

c) Specificity 

 

Fig. 4: Comparative Analysis using TP-90 

4.5 Comparative Discussion 

The complete analysis of the existing versus the proposed 

illustrates that the FCTA-CSTM model is quite manifest 

for predicting epileptic seizures using EEG signals. The 

accuracy percentage of the existing is 85.71%, 82.39%, 

90.04%, 88.85%, 87.09%, and 85.86% but the FCTA-

CSTM model is 95.35% which is quite high 

comparatively. Although, the sensitivity is 84.25%, 

83.60%, 89.10%, 87.96%, 85.99%, and 88.09% and 

specificity is 87.17%, 81.17%, 90.98%, 89.75%, 88.18%, 

and 83.63%. But for the proposed FCTA-CSTM model 

94.76% and 95.94% respectively. Besides, the FCTA-

CSTM model is more viable for predicting epileptic 

seizure disease and therefore rescues people from 

dangerous life threads due to this disease. Moreover, the 

model has a high tendency to solve complex problems 

using its adaptable techniques used in pre-processing, 

feature extraction, and optimization which highly increase 

the convergence speed as well as reduce the local optimal 

issues. Therefore the model can effectively increase its 

performance accuracy, be more reliable, provide robust 

prediction, and gain more attention than the existing 

models. 

Table 2: Comparative discussion table 

TP-90 

 Accuracy 

% 

Sensitivity 

% 

Specificity 

% 

GBDT 85.71 84.25 87.17 

2L-LSTM 82.39 83.60 81.17 

CNN 90.04 89.10 90.98 

FCSTM 88.85 87.96 89.75 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1296–1307  |  1305 

C2STM 87.09 85.99 88.18 

PCSTM 85.86 88.09 83.63 

FCTA-CSTM 95.35 94.76 95.94 

5. Conclusion 

The chronicle disease of epileptic seizure is highly 

predicted using the proposed FCTA-CSTM model, which 

intends to lower the mortality rate by predicting its 

presence. The previous methods are highly complicated 

also require more computational efficiencies as well and 

the accurate results for prediction are very low. However, 

the FCTA-CSTM overcomes several limitations by using 

multiple techniques to pre-process, feature extract, and 

select the features, therefore providing great prediction. 

Here, EEG signals are utilized, which undergo certain 

processes, where, the features are selected using a newly 

developed optimizer, FCTA is the combination of three 

nature-inspired optimizers that intend to select the best 

suitable feature to train the model and improve the 

convergence speed as well as increase the potential of the 

model. Besides, the CSTM model ensemble with CNN and 

LSTM trains effectively and efficiently for accurate 

prediction of epileptic seizure, which avails for early 

diagnosis. Moreover, the performance of the FCTA-CSTM 

model can be analyzed using accuracy, sensitivity, and 

specificity metrics and achieved 95.35%, 94.76%, and 

95.94% respectively compared to other state-of-the-art 

methods. In the future, this method will be implemented in 

real-time applications and various domains. 
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