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Abstract: Models of populations are helpful tools for investigating populations in which intraspecific interactions account for the vast bulk 

of the variation in the population dynamics. These models are predicated on the assumption that we can learn about a species' dynamics 

simply by observing it. The growth dynamics of a homogeneous population is often described using first-order differential equations (both 

linear and nonlinear). Second, the paper attempts to develop a second-order differential equation model of single-species population growth 

that is consistent with Newtonian mechanics, and third, it attempts to investigate the stochastic stability of the population system to consider 

environmental fluctuation in the system. In this study, we provide a second-order differential equation model of a single species' population 

expansion that is consistent with Newtonian physics and evolutionary theory. Clark tested the validity of this hypothesis by collecting 

observational data from the bighorn sheep and mule deer populations in the American West and Southwest. As a result of the stochastic 

stability of the deterministic model, it is more probable that the model will be right even when the random environment changes somewhat. 

Keywords: Single-species, Second-order differential equation model, stochastic stability, intraspecific interaction, age distribution, 

population model, living organism. 

1. Introduction 

A population model, as the name implies, is a model that 

describes the population – humans, animals, bacteria, or 

any living organism in general – more precisely, a 

population model describes the changes in population size 

and age distribution that occur because of the population's 

interaction with the environment, within itself, or with 

other organisms. Population models based on a single 

species are useful tools for studying populations in which 

most of the dynamics is governed by intraspecific 

interactions. In addition, single-species models supply 

many of the building blocks that are utilized in 

multispecies models, which is very essential. These 

models assume that we can learn about a species' 

dynamics just by studying it (see [1, 2]). These models are 

best suited for populations that have little contact with 

other species. But even data on encounters, we can see 

flow chart of fishery model. 

 

Fig 1. Flow chart outlining the steps in advice giving 

involved in the proposed method, with the input of the of 

the ecosystem modeling to the single species advice 

highlighted. (frontiersin.org) 

          The growth dynamics of a homogeneous population 

is usually based on first order (linear and non-linear) 

differential equations. It is represented as a logistics 

differential equation. The logistic differential equation is 

represented as  

                                
𝑑𝑁

𝑑𝑡
= 𝑟 𝑁 (1 −

𝑁

𝐾
) 

It describes the situation where a population grows 

proportionally to its size but stops growing when it 

reaches the size of K (the carrying capacity) and other 

symbol is as r, is the linear growth rate, and N is 

population size. (See [1, 7, 8]). Below are showing 

graphical examples which are based on the logistic 

differential equation and show the growth of the 
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population. In this figure represent alpha = 1/k and  𝑁 =

𝑁0 . 

 

Fig 2. How variation in logistic growth parameters 

influence the dynamics. (See [14]) 

Fig 2 is showing 𝐾  as an attractor because 𝑁   moving 

toward 𝐾. After this, people have tried to figure out how 

to model population growth with second-order differential 

equations in the Newtonian Mechanics line [5, 6]. There 

is a controversy about the utility of second-order 

differential equation modeling as any higher-order 

differential equation can be reduced to a system of first-

order differential equations [9]. However, as emphasized 

by Clark [5], if birth and death rates depend on historical 

effects along with present conditions, derivatives of 

higher order become interesting and realistic. For 

instance, we may consider a situation where the growth 

rate depends not on the present magnitude of the 

population, but on the magnitude at an earlier time not 

very far from the present. In such a case of short time-lag, 

we arrive at a second order-equation of population growth 

as in the case of a colony of files [4]. Following Clark [5], 

here we shall consider a second-order differential 

equation model of a single-species population exposed to 

the environment. We shall extend it to the form of a 

stochastic differential equation to take account of the 

effect of the randomly fluctuation and stability of the 

system, along with the study of the validity of the results 

for some ecological systems. 

2. Deterministic Model equation is used to determine 

the population of a single species: 

Let us consider a population whose size 𝑁 is increasing 

with time at a rate of 𝑑𝑁 𝑑𝑡⁄ . In analogy with Newton’s 

laws of motion, we assume that the population will 

continue to change at a particular rate until some force (for 

instance, scarcity of food) causes the rate to change [6]. 

The growth rate is a change due to either quantitative or 

qualitative changes in resources or in the physical 

environment [6]. The pattern of change in growth rates 

𝑑𝑁 𝑑𝑡⁄  (i.e., the second order logarithmic derivative of 

population size) is a basic property of species. As 

emphasized by Ginzberg [6], the interpretation of 

ecological processes must be different depending on 

whether one follows the case of focusing on the 

acceleration rather than on the speed of a particle (system) 

in Newtonian Mechanics [12]. This view was defended by 

Ginzberg [6]. By considering a green hydra population 

placed in an environment with food. This results in the 

decline of the growth rate, and the variable of interest is 

the rate of change of the specific growth rate, that is, the 

acceleration: 

𝑑

𝑑𝑡
(
1

𝑁

𝑑𝑁

𝑑𝑡
) =

𝑑2

𝑑𝑡2
(𝑙𝑛𝑁)                                        (1) 

So, in analogy with the Newtonian equation of motion, we 

assume the dynamics of population growth to be governed 

by the equation. 

𝑑2

𝑑𝑡2
(𝑙𝑛 𝑁) = 𝐹 (

𝑑 𝐼𝑛 𝑁

𝑑𝑡
, ln  𝑁 , 𝑃, 𝑄)                  (2) 

Where 𝐹 is the function consisting of the forces acting on 

the population size 𝑁 or ln𝑁 and 𝑃, 𝑄 are the extrinsic 

and intrinsic parameters respectively. The equation (2) 

can be reduced to the form  

𝑑2 𝑁

𝑑𝑡2
= 𝐺(𝑁′ 𝑁, 𝑃, 𝑄)                                           (3) 

In the above modeling of equation (3) we have ignored the 

physiological difference through the use of averages, 

large-time delay, environment noises and variation in 

space etc. We now split the force 𝐺 into two factors: 

𝐺 = 𝐺𝐾 + 𝐺𝐻                                       (4) 

Where the first term 𝐺𝐾 = 𝑎(𝐾 − 𝑁),         (5) 

In equation (5) 𝑎   is a constant value.  

is the measure of the tendency for the population to be 

affected more strongly the further it is away from its 

equilibrium position set by the external environment? The 

second part is 

𝐺𝐻 = −𝑏
𝑑𝑁

𝑑𝑡
                  (6) 

 𝑏 is a constant value in equation (6). 

The force comes not only from the time it takes for 

environmental factors to change, but also from the 

resistance of the population to changes in population size 

that happen quickly. We have finally 

𝑑2𝑁

𝑑𝑡2
+ 𝑏

𝑑𝑁

𝑑𝑡
+ 𝑎(𝑁 − 𝐾) = 0                       (7) 

as the basic deterministic model equation of the 

population under consideration. A similar second-order 

differential equation for the population growth results for 

short time, equation (2). 
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This model equation was discussed by Clark [5], who also 

tested its validity with some observational results. 

Equation (7) is also our basic model equation for 

stochastic extension. 

3. Stochastic model equation for stability analysis: 

To take effect of randomly fluctuating environment of the 

population as we add a random force 𝑓(𝑡)  to the 

deterministic force 𝐺 leading to the stochastic differential 

equation. 

𝑑2𝑁

𝑑𝑡2
+ 𝑏

𝑑𝑁

𝑑𝑡
+ 𝑎(𝑁 − 𝐾) = 𝑓(𝑡)               (8) 

Where 𝑓(𝑡)  is assumed to be a white noise characterized 

by  

< 𝑓(𝑡) > 0,<  𝑓(𝑡)𝑓(𝑡)  > 𝜀𝛿(𝑡 − 𝑡′)        (9) 

Where   𝜀𝛿(𝑡 − 𝑡′)  is the intensity of the noise. Let us 

write 𝑥 = 𝑁 − 𝐾 so that 𝑥(𝑡) denotes the deviation from 

the equilibrium value 𝐾 at any time 𝑡. Then the equation 

(8) reduces to the form  

𝑑2 𝑥

𝑑𝑡2
+ 𝑏

𝑑𝑥

𝑑𝑡
+ 𝑎𝑥 = 𝑓(𝑡)                                 (10) 

to solve (10), let us first remove the first order derivative 

by setting 

𝑥(𝑡) = 𝑦(𝑡)𝑒
−𝑏𝑡

2⁄                                      (11) 

Then one has the equation  

                                   
𝑑2𝑦

𝑑𝑡2
+ (𝑎 −

𝑏2

4
) 𝑦 = 𝐴(𝑡)       (12)          

Where 𝐴(𝑡) = 𝑓(2)𝑒𝑥𝑝(𝑏𝑡 2⁄ )         (13) 

 Let us consider the solution of the homogeneous part of 

the equation (12), i.e., the equation. 

𝑑2𝑦

𝑑𝑡2
+ (𝑎 −

𝑏2

4
) 𝑦 = 0              (14) 

Case I : Let 1(𝑡) and 2(𝑡) be the solution of (14) and 

are given by  

 1(𝑡) = 𝑒
(
𝑏2−4𝑎
2

)

1 2⁄

𝑡 = 𝑒𝑡

 2(𝑡) = 𝑒
−(
𝑏2−4𝑎
2

)
1 2⁄

𝑡 = 𝑒−𝑡

}
 
 

 
 

      (15) 

Where 

  =
(𝑏2 − 4𝑎)1 2⁄

2
> 0                                       

 

Assuming 𝑐1 = −2, 𝑏 = −1, 𝑎 = 0, 𝑐2 = 1, 𝑘 = 2 

And we have assumed 0 ≤ 4𝑎 ≤ 𝑏2 

The general solution of the equation (14) is given by  

𝑦 = 𝐴11(𝑡) + 𝐴22(𝑡)

= 𝐴1𝑒
𝑡 + 𝐴2𝑒

−𝑡                                      

Or by  

𝑥 = 𝑁 − 𝐾 = 𝐴1𝑒
(−𝑏)𝑡 + 𝐴2𝑒

(−𝑏)𝑡                           (16)  

Where  =
(𝑏2−4𝑎)1 2⁄

2
 

From (16) we see that the population will remain finite for 

all 𝑡 if 

− 𝑏 < 0 𝑜𝑟 𝑏

>                                                                (17) 

1(𝑡) and 2(𝑡) being given by (15) we can determine 

the mean-square fluctuation or variance or y satisfying the 

stochastic equation (12). Following Mazu [6], we have  

< (𝛿𝑦)2 >=< [𝑦(𝑡)− < 𝑦(𝑡)]2 >                               

= ∫𝑑𝑠

𝑡

0

∫𝑑𝑠′𝐺(𝑡, 𝑠′) < 𝐴(𝑠)𝐴(𝑠′) >            (18)

𝑡

0

 

By virtue of (9), this can be written as 

< (𝛿𝑦)2 >= 𝜀∫𝐺2(𝑡, 𝑠)𝑒𝑏𝑠𝑑𝑠

𝑡

0

 

Or is terms of the original variable x, one has [6], 

< (𝛿𝑦)2 >

= 𝜀∫𝐺2(𝑡, 𝑠)𝑒−𝑏(𝑡−𝑠)𝑑𝑠                                     (19)

𝑡

0

 

Where𝐺(𝑡, 𝑠) = 1(𝑡)1(𝑠) − 1(𝑠)1(𝑡)          (20) 

      = 𝑒(𝑡−𝑠) − 𝑒(𝑠−𝑡)    

Hence  



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 49–53  |  52 

< (𝛿𝑁)2 >=< (𝛿𝑥)2 >

= 𝜀∫[𝑒2(𝑠−𝑡) + 𝑒−2(𝑠−𝑡) − 2]

𝑡

0

× 𝑒−𝑏𝑡 . 𝑒𝑏𝑠𝑑𝑠 

= 𝜀 [
1

𝑏 − 2
] {1 − 𝑒−(𝑏−2)𝑡} +

1

𝑏 − 2
{1 − 𝑒−(𝑏+2)𝑡

−
2

𝑏
(1 − 𝑒−𝑏𝑡)] 

= 𝜀 [
1

𝑏 − 2
] {1 − 𝑒+(2−𝑏)𝑡}

+
1

𝑏 − 2
{1 − 𝑒−(2+𝑏)𝑡

−
2

𝑏
(1 − 𝑒−𝑏𝑡)]                     (21) 

Which remains finite for large t if 

𝑏 > 2                              (22) 

Case II: Suppose 𝑏2 < 4𝑎 . Then the solution of the 

equation (14) is given by 

1(𝑡) = sin 𝑢𝑡            

2(𝑡) = cos ut             
}                                   (23) 

Where                    𝑢 =
(4𝑎−𝑏2)

1
2

2
         (24) 

Then as before the mean-square fluctuation of x is given 

by  

< (𝛿𝑥)2 >= 𝜀∫[sin 𝑢𝑡 cos 𝑢𝑠

1

0

− sin 𝑢𝑡 cos 𝑢𝑠]2𝑒−𝑏𝑡𝑒𝑏𝑠𝑑𝑠 

Or 

 < (𝛿𝑁)2 >

=
𝜀

2
{
1 − 𝑒−𝑏𝑡

𝑏
−
cos 2𝑢𝑡

𝑏2 + 4𝑢2
(b cos 2𝑢𝑡    

+ sin 2𝑢𝑡 − 𝑏)

−
𝑏 sin2 𝑢𝑡 − usin 4𝑢𝑡 + 2𝑢 sin 2𝑢𝑡

𝑏2 + 4𝑢2
}                 (25) 

Which remains finite for every value of 𝑡. 

The finite value of the mean-square fluctuation <

(𝛿𝑁)2 > implies the stochastic stability of the steady state 

of the population system in the sense of second-order 

moment [9, 10]. 

4. Discussion and conclusion 

The paper consists of two parts. In the first part (section-

2) following Clark [5] and Ginzberg [6], we have 

presented a second-order differential equation model of a 

single species' population growth in line with Newtonian 

mechanics. Clark [5] investigated the validity of this 

model using observational data from the bighorn sheep 

[13] and mule deer populations [11], respectively. 

The second part of the paper (section 3) is concerned with 

the stochastic extension of the deterministic model to 

consider the effect of the fluctuating environment on the 

system. This is one of many possible extensions of the 

original model equation (7) suggested by Clark himself 

[5]. The stochastic stability, that is, the finiteness of the 

second-order moment (or variance) of population size for 

all time, implies that the real growth curve will not deviate 

very much from the mean or the deterministic growth 

curve. One point is, however, to be noted. In this case, the 

finiteness of the population size or equivalently the first 

order moment of the stochastic population is required, 

whereas for the stochastic stability or the finiteness of the 

second-order moment, it is required that. The validity of 

the stochastic model, therefore, requires a slightly narrow 

range of the parabola. The stochastic stability of the 

deterministic model, on the other hand, makes it more 

likely that the model is correct for small changes in the 

random environment (see [3, 12]). 
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