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Abstract: Heart attack prediction is a critical task in cardiovascular healthcare, as early detection can significantly improve patient 

outcomes. Traditional systems diagnosed the disease based on statistical and images based, but these systems will not predict early. So our 

approach focuses on predicting heart attacks by analyzing systolic and diastolic heart sounds. The model employs refined deep learning 

techniques, specifically Long Short-Term Memory (LSTM) and Bi-LSTM models, to analyze heart sounds and capture irregularities in the 

"lub" and "dub" rhythm. Using a diverse dataset featuring heart sounds from various patients. And extracted multiple features like MFCC, 

frequency and mel spectrogram and stacked into single list to train these models. The model demonstrates exceptional performance with a 

notable classification accuracy of 0.90, signifying its effectiveness in precisely identifying heart diseases by recognizing irregular patterns.  
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1. Introduction 

Cardiovascular diseases (CVDs) remain the leading cause 

of mortality worldwide, with heart attacks being one of the 

most severe manifestations. Early and accurate prediction 

of heart attacks is crucial for reducing mortality rates and 

improving patient scenario. Traditional methods of heart 

attack detection often rely on electrocardiograms (ECGs), 

blood tests, and imaging techniques, which, while 

effective, can be invasive, expensive, and require 

significant clinical expertise. The systems like [1, 2, 15, 

and 16] worked on statistical data, like blood test results, 

and other symptoms. These approaches diagnoses lately 

and not provide accurate results.  

The systems like [3], [4] , [8] and [17], have worked on 

images samples to train machine or deep learning models 

for disease identification. Implementing CNN models, 

they have successfully classified diseases based on ECG 

abnormal patterns. But these systems though classifying 

accurately, and diagnosing the disease on demand.  

Notably, models presented in [18] and [19] utilize image-

based approaches in this context, although a notable 

challenge exists to diagnose heart disease automatically. 

On a different front, [20] studied all statistical-based 

approaches, coming off light on the robustness of machine 

learning models when considering various statistical 

features for heart disease diagnosis.  

But if one want detect the disease automatically, continues 

observation of person is required. Heart will generate 

sounds, produced by the mechanical activity of the heart 

like Systolic and diastolic sounds, which correspond to the 

heart's contraction and relaxation phases, respectively, 

contain subtle variations that can indicate underlying 

cardiac conditions. Analyzing these sounds using 

advanced intelligence methods can provide a non-invasive 

and cost-effective means of predicting heart attacks 

automatically. 

The systems like [9] worked on heart sound recordings, 

from theses samples they extracted MFCC features and 

trained CNN model, and [12] [13] [14] worked on 

PhysioNet data set extracted various features and trained 

CNN, RNN models and achieved consistent results, But 

[20] [22] [23] worked Clinical recordings, and trained 

Chirplet Transform, Multiclass Composite Classifiers, 

and Wavelet Packet Decomposition Tree and achieved 

results of accuracy of 0.92, and 0.85. but our proposed 

system will extracts all audio data features and trains 

sequential model to provide consistent results.  

Contribution 

• Our model boasts an accuracy of 0.91 and 

consistently recognizes heart-related disorders 

using diverse methods. 

• In comparative assessments, it surpasses 

specified models and demonstrates a rapid 

capability to identify sound disorders. 

• The distinctive features of our model 

significantly enhance its effectiveness in 

identifying heart diseases. 
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2. Related work 

Predicting and detecting strategies for cardiovascular 

disease (CVD) can be categorized into three main types 

based on feature extraction: statistical, image-based, and 

audio-based (specifically systolic and diastolic sounds). 

Statistical feature-based methods, while promising for 

early detection, features such as age, blood pressure, and 

cholesterol levels, which may require minimal 

modifications for improved accuracy. Image-based 

methods, such as the work by Martin-Isla et al. (2020), 

have focused on utilizing Electrocardiogram (ECG) 

samples, and trained CNN models to classify the disease. 

The researchers like [4], [11] and [12] studied applications 

of heart disease prediction, and observed that with image 

data the accuracy of the model has been improved, but it 

will not detect the disease at early stages. With a audio 

based application the heart abnormalities are observed 

24/7 and it is possible to detect the disease at early stages. 

Joshi et al. in [4] reviewed the all deep learning models, 

emphasizing their utility in various fields, including heart 

disease detection. The paper discussed different CNN 

architectures and their performance on medical image 

datasets, highlighting improvements in accuracy and 

efficiency over traditional methods. The authors did not 

focus on a specific dataset but provided a comprehensive 

overview of existing studies and their results. 

Majumder et al. in [2] proposed hybrid model that uses 

ensemble classifiers for heart disease prediction. The 

authors used various publicly available datasets for heart 

disease, though specific datasets were not mentioned. The 

hybrid ensemble method combines the strengths of 

different classifiers, achieving higher accuracy and 

robustness in predictions. 

Pant et al. in [3] employed image segmentation through 

CNNs to predict heart disease. The dataset used included 

medical images of heart structures, likely obtained from 

hospital archives or open-access medical repositories. The 

CNN model segmented these images to identify patterns 

associated with heart disease. Their results like accuracy 

is 0.90 showed that image-based CNN models could 

significantly enhance the detection accuracy. Chang et al. 

in [5] developed an artificial intelligence model for heart 

disease detection using various machine learning 

algorithms. The study utilized the Cleveland Heart 

Disease dataset, a well-known repository in medical 

research. The model employed algorithms like decision 

trees, random forests, and SVMs, achieving a notable 

accuracy like 0.87. Muhammad et al in [7] proposed an 

intelligent system to detection of heart disease. They used 

the Framingham Heart Study dataset, applying techniques 

like neural networks and deep learning models. The study 

reported 0.91accuracy with specificity.  Nova et al. in [8] 

developed an automated image segmentation model for 

cardiac septal defects using CNNs. The dataset included 

echocardiogram images from clinical records. The CNN-

based model successfully segmented cardiac images, 

aiding in the accurate diagnosis of septal defects with an 

accuracy of 0.88.  

Bao et al. in [9] conducted a comparative study on 

frequency distributions of heart sound signals using 

CNNs. They used heart sound recordings from various 

sources, possibly including the PhysioNet database. And 

trained different CNN architectures' and analyzed 

performance in classifying heart sound signals, finding 

significant improvements in accuracy like 0.85. Panah et 

al. in [10] explored the impact of noise and degradations 

on heart sound classification models. For that they used 

PhysioNet heart sound database, they analyzed how 

various noise levels affected the classification accuracy, 

so trained CNNs and recurrent neural networks 

(RNNs).from their observations the noise will affect the 

model accuracy, if we required a robust and consist model 

the noise should be overcome. Alkayyali et al. in [11] 

performed a systematic literature review on deep and 

machine learning algorithms in cardiovascular disease 

diagnosis. They examined numerous studies, datasets, and 

methods, concluding that deep learning models, 

particularly CNNs and RNNs, consistently outperformed 

traditional models. 

Djebbari and Bereksi-Reguig in [21] detected the valvular 

split within the second heart sound using the reassigned 

smoothed pseudo Wigner-Ville distribution. They used 

clinical datasets to show that this neural network model 

could accurately detect valvular splits, enhancing the 

diagnosis of heart valve conditions. Safara et al. in [25] 

worked on Clinical dataset and trained a multi-level basis 

selection model that works on wavelet packet 

decomposition tree.  

Recent advancements in heart sound analysis for heart 

attack prediction have shown promising results using 

various deep learning and signal processing techniques. 

Bao et al. (2023) in [9] employed CNNs and analyzed 

time-frequency distributions of heart sounds from datasets 

such as PhysioNet, achieving an accuracy of around 85%. 

Ren et al. (2023) in [12] with a combination of CNNs, 

RNNs, and hybrid models, reaching approximately 87% 

accuracy on PhysioNet/CinC Challenge databases. With 

this hybrid models the accuracy has improved. Chen et al. 

(2021) [13] conducted a comprehensive review of deep 

learning methods, noting that CNNs can achieve 

accuracies as high as 90% on databases like PhysioNet 

and Littmann. Soto-Murillo et al. (2021) in [14] also 

utilized CNNs among other methods, reporting an 89% 

accuracy using the PhysioNet database and clinical 

recordings. Ghosh et al. (2020) in [21] achieved a notable 

92% accuracy by applying chirplet transform and 

multiclass composite classifiers to clinical recordings. 

Earlier works, such as Safara et al. (2013) using wavelet 
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packet decomposition and Varghees & Ramachandran 

(2014) in [26] with a heart sound activity detection 

framework, reported accuracies of 85% and 90%, 

respectively, on clinical datasets. 

3. Methodology 

Heart sound analysis can be effectively conducted through 

a sequential neural network model.  In This methodology 

we extracted various features, like mel spectrogram, 

MFCC, time-frequency, and rhythm features and beat 

frames. This multi-modal will capture diverse aspects of 

heart sounds. To ensure a comprehensive feature 

representation, the methodology involves extracting 

rhythm, spectral, and MFCC features stacked into a 

unified list for training the LSTM and Bi-LSTM model. 

This approach facilitates capturing both temporal and 

spectral characteristics in heart sound analysis, leveraging 

the strengths of LSTM networks in sequential data 

processing.  

Data preprocessing and feature extraction 

In this approach we used Kaggle heart disease challenge 

dataset that has wav files and with labels like normal and 

affected like 5 classes as shown in Figure 1. The normal 

samples are more than the all the classes. So after 

extracting the features vectors, the data is augmented to 

balance the minority classes. We extracted features like 

time-frequency as shown in Figure 2, harmonic features, 

mel- spectrogram, spectral features, rhythm features, 

mean signal length and MFCC from the audio signals as 

shown in Figure 5 and 6. Applying a signal length of 

16000, clip duration of 12, and the extraction of 

spectrogram features, as depicted in Figures 1 through 7, 

reflects the detail feature extraction process. Normalizing 

the data and applying max pooling to balance or equalize 

all samples in to same matrix size, then stacked all the 

features into single stack with a size of 23400 vectors that 

is transformed into three dimensions (585 * 40 * 1), to 

train LSTM model. 

 

Fig 1 number of samples and classes 

 

Fig 2 time frequency of artifact 

 

Fig 3 time frequency of extrahls 
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Fig 4 time frequency of normal patient 

 

Fig 5 Mel spectrogram image with mean and maiden mel 

 

Fig 6 Melspectogram image after normalization 

 

Fig 7 Power spectrogram of heart sound 
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Implementation 

We implemented a well-structured LSTM model with a 

deep sequential architecture consisting of three layers, 

each comprising three gates (input, forget, output, and 

context gates). This model captures and keeps short and 

long-term dependencies, making it convenient for 

temporal patterns and memory retention tasks. 

The input size of the LSTM is 585*40*1, reflecting the 

proportions of the data fed into the model. And 

intermediate units for each layer (128, 64, and 32) units 

and including dropout layers with a dropout rate of 0.05% 

at each layer contribute to optimal training and 

regularization, preventing over fitting. And finally a fully 

connected layer reaches a dimension of 5. Because the 

data has five classes.  

Using the SoftMax activation function and the Adam 

optimizer the weights will be updated and will enhances 

the model's capacity to learn complex patterns and 

dependencies within the sequential data efficiently. This 

combination of architectural choices and optimization 

techniques aligns with the best techniques for developing 

effective LSTM models in deep learning applications. 

𝑓𝑡 = 𝜎𝑔(𝑤𝑓𝑥𝑡 + 𝑢𝑓ℎ𝑡−1 + 𝑏𝑓)   

 (1) 

𝑖𝑡 = 𝜎𝑔(𝑤𝑖𝑥𝑡 + 𝑢𝑖ℎ𝑡−1 + 𝑏𝑖)   

  (2) 

𝑜𝑡 = 𝜎𝑔(𝑤𝑜𝑥𝑡 + 𝑢𝑜ℎ𝑡−1 + 𝑏𝑜)   

 (3) 

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐𝑥𝑡 + 𝑢𝑐ℎ𝑡 + 𝑏𝑐)   

 (4) 

From equations (1) (2) (3) and (4) represent the core 

computations within a LSTM cell. In these equations, 𝑓𝑡 

is the forget gate, 𝑖𝑡 is the input gate, 𝑜𝑡 is the output gate, 

and 𝑐𝑡 is the cell state update. Specifically, 𝑓𝑡  from (1) 

determines which information to forget from the previous 

cell state; 𝑖𝑡 from (2) decides which new information to 

add; 𝑜𝑡 𝑓𝑟𝑜𝑚 (3) controls the output gate, dictating the 

output of the current cell; and Ct from (4) updates the cell 

state with new candidate values. Here, σ  represents the 

sigmoid function, tanh is the hyperbolic tangent function, 

w and u are weight matrices, b is the bias term, 𝑥𝑡 is the 

input at time t, and ℎ𝑡−1 is the previous hidden state. 

These gates and state updates allow the LSTM or Bi-

LSTM to selectively remember or forget information. The 

gates will capture long term dependencies with context 

gate. And the output gate will pass content to the unit of 

LSTM like that the output of each gate is passed unit all 

the units are completed finally it is passed to dense layer, 

and then classifies the samples.  

4.  Result analysis 

The detailed description of the training process and 

evaluation of the LSTM and Bi-LSTM model provides 

valuable insights into its performance at various hyper 

parameters. The approach of adjusting the learning rate 

based on changes in loss, as shown in Figure 8, is a well-

considered strategy for optimizing training. The 

observation of slight over fitting after 40 epochs, indicated 

by the divergence in training and validation accuracy, is a 

common challenge and can be attributed to the complexity 

of the model or insufficient data for certain classes. 

The accuracy metrics, explicitly noting the fluctuations in 

training accuracy after 40 epochs and the consistent 

validation accuracy, align with expectations given the 

potential challenges of imbalanced class samples. The 

confusion matrix (figure 9) provides a more granular 

view, highlighting the high true positive rate for class 2 

and revealing class imbalances. The performance curve in 

figure 10 further underscores the impact of imbalanced 

samples, with class 0 exhibiting a high accuracy while 

other classes face challenges. 

Addressing class imbalances, such as data augmentation 

or adjusting class weights during training may help 

mitigate these issues. Also, precision-recall curves can 

offer a more nuanced evaluation in imbalanced datasets. 

Systematic analysis provides a solid foundation for further 

refining the model and addressing specific challenges 

encountered during training and validation. 

 

Fig 8 training and validation loss and accuracy of LSTM model 
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Fig 9 confusion matrix, represents true positive and negative rate of 3 classes. 

 

Fig 10 ROC curve of all classes and their accuracy 

Table 1 comparison of proposed model with prescribed models 

Study Dataset Methods Used Results (Accuracy) 

Pant et al. (2023) [3] Medical images CNN for Image Segmentation Accuracy: ~90% 

Chang et al. (2022)[5]  Cleveland Heart Disease 

dataset 

Decision Trees, Random Forests, 

SVMs 

Accuracy: 87.4% 

Muhammad et al. (2020) 

[7] 

Framingham Heart Study Neural Networks, Deep Learning 

Models 

Accuracy: 91% 

Nova et al. (2021) [8] Echocardiogram images CNN for Image Segmentation Segmentation 

accuracy: ~88% 

Bao et al. (2023) [9] Heart sound recordings 

(e.g., PhysioNet) 

CNNs for Time-Frequency 

Distributions 

Accuracy: ~85% 

Ren et al. (2023) [12] PhysioNet/CinC Challenge 

databases 

CNNs, RNNs, Hybrid Models Accuracy: ~87% 

Chen et al. (2021) [13] PhysioNet, Littmann 

databases 

Review of Deep Learning 

Methods 

CNN accuracy: 

~90% 

Soto-Murillo et al. (2021) 

[14] 

PhysioNet database, clinical 

recordings 

Six Classification Methods (incl. 

CNNs) 

CNN accuracy: 

~89% 
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Ghosh et al. (2020) [21]   Clinical recordings Chirplet Transform, Multiclass 

Composite Classifiers 

Accuracy: 92% 

Safara et al. (2013) [25] Clinical datasets Wavelet Packet Decomposition 

Tree 

Accuracy: 85% 

Varghees & 

Ramachandran (2014) [26] 

Clinical recordings Heart Sound Activity Detection 

Framework 

Accuracy: 90% 

Proposed model-1 Clinical recordings LSTM 0.91 

Proposed model -2 Clinical recordings Bi-LSTM 0.92 

 

The table 1 presents a comparative analysis of various 

studies on heart disease detection and classification, 

emphasizing the datasets used, methods employed, and 

the achieved accuracy. Pant et al. (2023) [3] utilized 

CNNs for image segmentation on medical images, 

achieving approximately 90% accuracy. Chang et al. 

(2022) [5] applied Decision Trees, Random Forests, and 

SVMs to the Cleveland Heart Disease dataset, reaching an 

accuracy of 87.4%. Muhammad et al. (2020) [7] employed 

neural networks on the Framingham Heart Study, 

achieving 91% accuracy, while Nova et al. (2021) [8] used 

CNNs for echocardiogram image segmentation with an 

accuracy of around 88%. Bao et al. (2023) [9] used CNNs 

for time-frequency distributions of heart sound 

recordings, attaining about 85% accuracy. But a hybrid 

model [12] with CNN and RNN PhysioNet/CinC 

Challenge databases, achieving approximately 87% 

accuracy. Chen et al. (2021) [13] reviewed deep learning 

methods on the PhysioNet and Littmann databases, noting 

CNN accuracies around 90%. Soto-Murillo et al. (2021) 

[14] applied six classification methods, including CNNs, 

to clinical recordings from the PhysioNet database, 

achieving approximately 89% accuracy. Ghosh et al. 

(2020) [21] used chirplet transform and multiclass 

composite classifiers on clinical recordings, attaining 92% 

accuracy. Safara et al. (2013) [25] employed a wavelet 

packet decomposition tree on clinical datasets, achieving 

85% accuracy. Varghees & Ramachandran (2014) [26] 

applied a heart sound activity detection framework to 

clinical recordings, reaching 90% accuracy. Additionally, 

two proposed models, LSTM and Bi-LSTM, applied to 

clinical recordings, achieved accuracies of 0.91 and 0.92, 

respectively, highlighting advancements in deep learning 

methodologies for heart disease diagnosis. From all these 

models the proposed models with Bi LSTM performed 

well interns of accuracy. 

5. Conclusion 

Implementing the LSTM and Bi-LSTM model for heart 

disease classification represents a well-considered and 

practical approach, utilizing dynamic learning rate 

adjustment and a deep sequential architecture to capture 

long-term dependencies in sequential data. Despite facing 

challenges posed by an imbalanced class distribution, the 

model showcases invariant performance with an accuracy 

of 0.91 and 0.92. The model exhibits impressive capacity 

in accurately identifying diverse heart sound patterns, 

including cardiac disorders such as lub-dub, lub-lub, and 

lub-lub-lub-dub, as well as proper order like lub and dub.  

This approach handles the imbalanced class distribution 

by giving priority to minority class, this can improve the 

model's generalization. Adjusting class weights proves to 

be an effective technique in alleviating the impact of the 

skewed distribution on training accuracy and class-

specific performance. A thorough analysis using the 

confusion matrix and performance curve yields valuable 

insights like class misbalancing and hyper parameters. 

Comparative evaluations against other established models 

underscore the superiority of the customized LSTM and 

Bi_LSTM model, emphasizing its effectiveness in heart 

disease classification. In our ongoing research, we plan to 

integrate multiple modalities of data, encompassing 

statistical, imaging, and audio-based features, to achieve a 

holistic understanding of heart health.  
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