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Abstract: Industry 4.0 technologies have shaped the logistics capabilities under their new framework of Logistics 4.0. Under the 

evolving framework of Logistics 4.0, the industrial electrical and mechanical machines traditionally controlled by on-plant supervisory 

programmable logic controllers can be controlled by software-based monitoring and control systems hosted on cloud computing. This 

shift towards vertical integration requires all machines and equipment to transmit data from their sensors directly to the cloud-hosted 

software designed to monitor and control multiple manufacturing plants spread globally. Thus, a fully interconnected system of machines 

and equipment can be achieved enabling visualization of the physical processes at the cloud computing layers. In this evolution, the 

traditional ERP and MRP systems can be deployed on cloud computing for controlling multiple manufacturing plants spread globally. 

Further, layers of intelligent software systems using artificial intelligence and machine learning can be deployed for advanced predictive 

analytics. In such an environment, new logistics capabilities can be created: digitalization, real time visibility of logistics events, 

automated remote monitoring and controls, self-configuration and diagnostics, self-collaboration and communication, intelligent 

management of dynamic processes, and cognitive and environmental awareness. This research investigated their impacts on supply chain 

resilience and flexibility using the Fuzzy Interpretive Structural Modeling (FISM) method. Rankings of influences were collected from 

eighteen experts using a five-level scale. The rankings were processed and analyzed using the FISM method. The final model shifted the 

intelligent management of dynamic processes to the dependent variables’ group alongside supply chain resilience and flexibility thus 

creating a model of the remaining above-mentioned variables grouped as independent variables influencing them. Revisiting theory, it 

was proposed that digitalization and real time visibility of logistics events are foundations for enabling the remaining new logistics 

capabilities. Remote monitoring and control of logistics events can be done by cloud-based applications supporting the ERP and CRM. 

The self-diagnostics capabilities may help the machines in invoking preventive maintenance and troubleshooting thus improving their 

longevity and reducing their outages. Environmental awareness may help in reducing disruptions, outages, engineering failures, and 

environmental hazards. The key aspect to be kept in mind is that every plant and other facility networked under the Logistics 4.0 

framework should have digitization feasibility of all machines and reliable Internet connection at sufficient capacities. 
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1. Introduction 

Modern logistics engineering is shaped by new 

capabilities enabled by Industry 4.0 technologies to 

enhance delivery effectiveness and efficiency, reduction 

of losses and damages, reduction of lead times, reduction 

in stalled inventories, reduction of logistics costs, better 

flexibility and responsiveness in deliveries, and better 

risk awareness and mitigation (Bigliardi, Casella, and 

Bottani, 2021; Woschank and Dallasega, 2021). These 

new capabilities in modern logistics engineering are 

driven by several technology-enabled enhancements 

catering to new process modeling, new data-driven 

planning and data analysis systems, new smart 

capabilities in equipment and machinery, automation in 

transportation and logistics engineering, and 

sustainability with circular economy capabilities 

(Dallasega et al., 2022; Jabbour et al., 2018).  

Industry 4.0 is primarily linked with integration and 

digitization of the entire business model of logistics and 

supply networking (Kucukaltan et al., 2022). The 

logistics operations enabled by adopting Industry 4.0 

technologies are called Logistics 4.0, in which the value 

chain of physical components is entire digitalized and 

integrated with digital analytics, command, and control 

systems preferably running on cloud computing 

platforms. With the evolution of Logistics 4.0, a complex 

evolution of interactions between humans and machines 

is also evident. The machines can collaborate and 

communicate in groups and also to the command-and-

control systems following new communication protocols 

emerging under a category called “Machine Type 

Communications (MTC)”. Human operators and 

decision makers do not get directly involved in the MTC 
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albeit are involved in a number of interventions for 

commanding and controlling the Logistics 4.0 

performance. Research studies are required to investigate 

how these interactions are shaping the processes in 

logistics and supply networking to build new capabilities 

driving supply chain performances such as flexibility, 

agility, resilience, and responsiveness. 

Amidst the hype around Industry 4.0 and Logistics 4.0, 

the average logistics personnel may consider them as 

adoption of new technologies and hence will value the 

awareness of their success factors and the chances of 

their failures (Khan et al., 2022). The core technologies 

of Industry 4.0 are Industrial Internet of Things (IIoT), 

short and long-distance communications, Cyber Physical 

Systems (CPS), Big Data Analytics (BDA), and Machine 

Learning for Artificial Intelligence (MLAI). Adopting 

these technologies require changes in business model, 

smartness of work culture, adoption of new skills and 

responsibilities, and automation in multiple systems. 

There are implications related to leadership and 

management, employment, transformation of existing 

infrastructure, education and trainings, top management 

commitment, and new organizational business strategy 

matching the new logistics capabilities. 

This research is designed to investigate the enabling 

factors related to modern capabilities in Logistics 

Engineering under Logistics 4.0 and further investigate 

their influences on two critical supply chain performance 

attributes: Resilience and Flexibility. The reasons for 

choosing these two supply chain performance variables 

are discussed in Section 4.0 of this paper. 

The research questions investigated are the following: 

(a) What are the key factors and their interrelationships 

related to modern capabilities in Logistics 

Engineering? 

(b) How these key factors influence Supply Chain 

Resilience and Flexibility? 

The highlights of the research are the following: 

(a) A theoretical review of Industry 4.0 and Logistics 

4.0, the factors related to modern capabilities in 

Logistics Engineering, and Supply Chain Resilience 

and Flexibility; 

(b) Ratings on influence of logistics engineering factors 

on supply chain performance following a survey 

approach among eighteen logistics engineering 

specialists working in industrial states of MP and UP 

in India; 

(c) A fuzzy interpretive structural model (FISM) 

evolving from the logistics engineering specialists 

showing the key factors and their interrelationships 

related to modern capabilities in Logistics 

Engineering and their influence on Supply Chain 

Resilience and Flexibility; 

(d) A detailed recommendation on using the interpretive 

structural model for future research; 

The next three sections present the literature review of 

the existing theories related to the research topic. 

2. Industry 4.0 and Logistics 4.0: 

Logistics engineering is an integrated domain of several 

engineering disciplines to facilitate, monitor and control 

logistics operations (Bartodziej, 2017; Michlowicz, 

2021; Pissardini and Sacomano, 2020; Plinta, 2016). 

Traditionally, these disciplines have been the electrical, 

mechanical, and civil engineering, operations research, 

communications engineering, and information 

technologies relevant to a common umbrella discipline 

of industrial engineering. IIoT, CPS, BDA, and MLAI 

have evolved collectively as new paradigms under the 

industrial engineering umbrella (Khan et al., 2022; 

Kucukaltan et al., 2022). Amidst all the new 

technological evolution and hypes, the fundamental 

quests of logistics engineering are already defined in 

literature (Christopher, 2022; Michlowicz, 2021). They 

are stated as the following: 

(a) Minimizing lead times in all processes and 

transportation; 

(b) Ensuring optimum shaping of the logistics 

networking fitting the business model; 

(c) Distributing all the transportation streams in the 

network to achieve reliable and timely deliveries; 

(d) Selecting and positioning the right machines and 

equipment in the network to achieve optimum 

operating performance; 

(e) Reducing the inventory holding levels and costs; 

(f) Efficient management of logistics resources; 

(g) Solving conflicts and reducing wastages through 

logistics and transportation operating curves and 

applying queuing theory principles; 

(h) Accounting and optimisation of in-plant logistics 

operations following the storage and production 

operating curves; 

(i) Integrating the logistics systems and processes of the 

supply chain stages to build the horizontal value 

chain network; 

(j) Integrating all engineering components end-to-end in 

the value chain network catering to the full 

production life cycle (including the circular economy 

reverse logistics); 

(k) Integrating communications channels across the 

value chain network; 

Industry 4.0 is an evolution of advanced manufacturing 

and logistics engineering systems capable of better 

networking among manufacturing partners ensuring 

better business and operating models driven by trust 
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relationships, information sharing, and transparent 

communications (Tao et al., 2014, 2014a; Unal et al., 

2021; Vermesan et al., 2014; Zhong et al., 2016). IIoT 

technology is at the core of Industry 4.0 for integrating 

the physical world with the computing world designed 

for data analytics, monitoring, and control (Li and Si, 

2017). IIoT is used for information flow from the field 

engineering systems into the core processes comprising 

production planning and control, scheduling, 

procurement, manufacturing, inventory control, and 

delivery to customers (Pissardini and Sacomano, 2020). 

The primary information flows initiate from the field 

sensors used for automated information transfer about 

inventory control, sales and orders, demand capturing 

points of the product lines, production capacity utilised, 

supplies already scheduled in channels, forecasting 

(related to demand loads, deadlines, and expenses), and 

control efficiency (a measure of costs and deadlines 

met). The enablers of primary information flows are 

sensors, IIoTs, CPS, their communication interfaces, 

software firmware, big data analytics, and intelligent 

analytics installed on the cloud computing platforms. 

IIoTs are Internet of Things designed for industrial 

applications (Liu et al., 2022). IIoTs can be attached with 

embedded software in devices to enable localised 

information processing and communications capabilities 

in them (Bartodziej, 2017; Carlsson, 2017; Liu et al., 

2022). The embedded software is built with Java or 

JavaScript firmware designed for field operations of the 

devices. They are capable of integrating physical sensors 

and activators attached with the devices to form a 

localised sensor network remotely operated and 

controlled by the distributed programmable logic 

controllers (PLC). The PLCs are further integrated using 

localised industrial computers running plant level 

scheduling, monitoring and control protocols. These 

systems have existed during the Industry 3.0 era. In 

Industry 4.0, introduction of IIoTs and resulting 

transformation of field devices and PLCs into CPS have 

enabled new communication capabilities using open 

protocols such as Advanced Message Queuing Protocol 

(AMQP), IPv6, and message queuing telemetry transport 

(MQTT) (Naik, 2017). The new communication 

capabilities have enabled modern open data 

transmissions beyond the physical boundaries of 

manufacturing plants and their logistics facilities thus 

forming the scope and opportunities for manufacturing 

and logistics networking.   

The new evolved architecture of manufacturing and 

logistics is driven by real time visualisation of the field 

events and remote monitoring and control of plants, 

robotics, and machinery (Bartodziej, 2017; Lim, Xiong, 

and Wang, 2021; Qu et al., 2016). In Industry 3.0, the 

remote monitoring and control existed in small, closed 

domains controlled by distributed PLCs. In Industry 4.0, 

the monitoring and control capabilities are extended to 

cloud-based applications (Abdmeziem, Tandjaoui, 

Romdhani, 2016; Henzel & Herzwurm, 2018; Unal et al., 

2021). Cloud based scheduling, monitoring, and control 

of field manufacturing systems is called “Cloud 

Manufacturing”, which enables pooling of 

manufacturing resources and services of several 

manufacturing partners using cloud-based manufacturing 

software applications (Ghomi, Rahmani, Qader, 2019; 

Lim, Xiong, and Wang, 2021; Qu et al., 2016). The 

layers of cloud manufacturing are presented in Figure 1 

(simplified form of Bartodziej, 2017; Lim, Xiong, and 

Wang, 2021; Qu et al., 2016).  

 

Fig 1: Layers of cloud manufacturing (simplified form of Abdmeziem, Tandjaoui, Romdhani, 2016; Bartodziej, 2017; Lim, 

Xiong, and Wang, 2021; Qu et al., 2016) 
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The layers of cloud manufacturing shown in Figure 1 

facilitate networking of several manufacturing partners 

serving common customers (Bartodziej, 2017; Lim, 

Xiong, and Wang, 2021; Qu et al., 2016). The field 

devices of several manufacturing plants can be integrated 

using IIoT and CPS technologies enabling them to 

contribute to common perception building in a sensor 

area networking. The common perception data is 

transmitted to the cloud layers through Internet-enabled 

networking. The entry points to cloud manufacturing 

applications are facilitated by application programming 

interfacing, messaging interfacing, and interfaces for 

management and administration. Overall, this is quite 

complex system. The incentives for adopting this 

architecture depend upon the modern logistics 

capabilities achieved by business owners. Hence, the 

factors enabling these capabilities determine the success 

of Industry 4.0 and Logistics 4.0. The next section 

presents a review in this context. 

3. Factors related to modern logistics capabilities 

under Logistics 4.0: 

The field-level manufacturing and logistics systems of 

several manufacturers forming a common perception 

layer enables synchronisation of the CPS devices 

enabling what is known as smart capabilities (Qu et al., 

2016). The smart CPS devices are capable of real-time 

data collection and transmission to data analytics, 

monitoring, and control software systems on cloud 

computing. In a near field communications network, the 

smart CPS devices can collaborate and communicate 

mutually in a framework of edge computing. They can 

actively interact with the environment where they are 

operating (as either static or mobile devices). The 

locations of the CPS devices can be tracked using 

location-based positioning and traceability services 

embedded within the edge computing framework (Zhang 

et al., 2017). The positioning system can be operated 

using interactive maps and augmented reality overlapped 

with big data as an integrated software system (Krstic, 

Tadic, and Zecevic, 2021). 

There are several applications of smart capabilities in 

Logistics 4.0. The data collected from sensors are 

transmitted to manufacturing and logistics analytics 

services almost in real time thus enabling real time 

forecasting analysis by applying time series and 

regression analysis statistics. Smart capabilities also help 

in efficient field operations, cognitive awareness of CPS 

devices, optimised scheduling, reduced queuing and 

waiting times, advanced tracking and tracing of assets, 

resources and products, controlling the operations 

through augmented reality, and controlling the “value 

addition” of the value-added services (Cimini et al., 

2020; Krstic, Tadic, and Zecevic, 2021; Qu et al., 2016; 

Unal et al., 2021; Zhang et al., 2017).   

A vertical integration between the field devices (and 

their combined perception layer) and the higher layers in 

the cloud manufacturing interfaces and applications is 

facilitated by long distance broadband communications 

networking using 5G LTE or urban Wi-Fi technologies 

(Lim, Xiong, and Wang, 2021; Wollschlaeger, Sauter, 

and Jasperneite, 2017). By term “vertical integration” it 

is implied that all the electrical and mechanical systems 

deployed in the production areas, which can be 

controlled through programmable logic are controlled 

remotely using digital technologies and data 

communications deployed higher in the system 

hierarchy, preferably on the cloud computing.  The 

monitoring and controlling operations from centralised 

cloud manufacturing systems are facilitated from the 

cloud-based manufacturing and logistics controllers. 

These controllers receive data streams from the sensor 

groups, which are registered in a centralised repository 

of sensors. The sensory data helps in building real time 

perception of the field operations. The operations are 

remotely controlled by issuing actuation commands by 

the cloud controllers. The low-level physical actions by 

machines, robots, vehicles, equipment, etc. can be 

commanded by remote actuation controllers. This entire 

framework operates under automated control systems 

running on the cloud manufacturing system. A reliable 

and efficient industrial communication system is a major 

factor for making remote monitoring and control of field 

operations successful. Industrial communication has 

evolved from a variety of proprietary protocols and links 

to the modern IPv6, LTE, MQTT, AMQP, and other 

open standards protocols and links. 

As described by Li and Si (2017: 609), an intelligent 

manufacturing system designed with Industry 4.0 

technologies comprises of several modernised dynamic 

capabilities in the domains of multi-time-scale dynamic 

processes, space-time dynamic processes, and multi-

level hybrid dynamic processes. These dynamic 

processes were very difficult operate without the 

Industry 4.0 technologies. A manufacturing organisation 

can quickly scale up or down operations and also modify 

production and supplies as per the demand patterns 

rapidly. Significant uncertainties exist in these processes 

requiring development of capabilities to manage 

uncertainties and complexities. Several layers of control 

structures are required at supervisory level, logic level, 

and at the process loop level. The entire system is 

required to be self-configurable, which requires loose 

connections, soft rules, and smart decision-logic capable 

of making events-driven decisions. They are partially 

human controlled and partially controlled by MLAI. 
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Summarising the above, the key factors related to 

modern capabilities in logistics engineering are 

digitalisation for vertical integration, real time visibility 

of logistics events, automated remote monitoring and 

controls, self-configuration and diagnostics, self-

collaboration and communication, cognitive and 

environmental awareness, and intelligent management of 

dynamic processes. This research aims to study the 

influence of these variables on supply chain resilience 

and flexibility. Before starting the primary research, a 

review of supply chain resilience and flexibility is 

presented in the next section. 

4. Supply chain resilience and flexibility: 

To understand the contexts of supply chain resilience and 

flexibility, the modern evolution of supply chain needs to 

be understood. In the modern world of globalisation and 

liberalisation, supply chains were interconnected 

globally transforming them into supply chain networks 

(Christopher, 2018). Global connections offered several 

advantages to the manufacturing companies and supply 

chain networks operators, such as lean and just-in-time 

practices. However, global connections also raised the 

level of interdependencies among the supply network 

nodes and routes. There is high probability that failures 

at certain nodes in the network of supply chains can 

propagate their knock-off effects to other parts. Hence, 

the canvas for risk management in modern supply chain 

networks has expanded significantly. There can be 

several sources of risks in supply, demands, process, 

control, environment, and geopolitics contexts. 

To build supply chain resilience against the globally 

dispersed risks, they need to adopt cultural, process, and 

capability maturity of risk management (Kumar and 

Anbanandam, 2020; Li et al., 2020; Roque Jr., Frederico, 

and Costa, 2023). Technology excellence, supply chain 

integration, information sharing, flexible manufacturing 

strategies, commercial flexibility, supply flexibility, 

partnership flexibility, inventory flexibility, 

market/demand related flexibilities, and absorbing, 

restorative, and adaptive capacities are key capabilities 

determining supply chain resilience. In fact, flexibility in 

several supply chain management domains is required to 

achieve supply chain resilience. 

Flexibility in supply chains can be achieved by 

continuously looking into, studying, and analysing their 

dynamics and making choices about opportunities 

carefully (Shekarian, Nooraie, and Parast, 2020). Simply 

stated, it requires intelligent management of dynamic 

processes in such a way that the organisational exposure 

to risks of supply disruptions can be controlled based on 

the organisational business choices and interests. The 

trade-offs between risk taking and benefits to the 

organisations need to be estimated carefully such that the 

cost of accepting or mitigating risks is budgeted in the 

opportunities availed. This capability is the supply chain 

flexibility, which can be achieved in tandem with agility 

(Irfan, Wang, and Akhtar, 2020). Agility is about quick 

decision-making about the actions after analysing the 

information collected about a situation, and flexibility is 

about taking actions based on situation. Agility requires 

information integration to make decisions about 

operating the flexibility available to an organisation in a 

given situation and flexibility requires integration of 

supply chain echelons and their processes to build 

dynamic capabilities to respond to the situations it faces 

(Irfan, Wang, and Akhtar, 2020; Shukor et al., 2021). An 

integrated and intelligent management system for 

information and supply chain process integration is 

essential to generate and operate both agility and 

flexibility. Such a management system can strengthen 

organisational resilience against supply chain 

disruptions. Recent studies indicate the role of Industry 

4.0 technologies as enablers of flexibility and agility, and 

in building strong organisational resilience (Fatorachian 

and Kazemi, 2021; Ghadge et al. 2020; Ralston and 

Blackhurst, 2020; Shukor et al., 2021). As this research 

is about factors related to modern capabilities in logistics 

engineering and their influence on supply chain 

resilience and flexibility, the role of Industry 4.0 is vital. 

As reviewed earlier in this research, the specific 

Logistics 4.0 capabilities have evolved from the 

foundation of Industry 4.0.  

A methodology to investigate a multivariate model for 

investigating the influence of modern logistics 

capabilities on supply chain resilience and flexibility is 

presented in the next section. 

5. Research Methodology: 

The research methodology followed in this research is 

quantitative with induction logic following interpretive 

philosophical approach (Saunders, Lewis, and Thornhill, 

2009). This design helps in evolution of new theories and 

models related to the phenomena under study. The 

method selected for this research is fuzzy interpretive 

structural modelling (FISM), which helps in deriving a 

relational matrix with the help of experts. The experts 

selected were eighteen logistics engineering specialists 

working in industrial states of MP and UP in India. The 

researcher approached twenty-eight experts and could 

get completed responses from eighteen out of them. The 

profiles of the respondents who sent completed 

responses are the following: 

Respondents 1 to 11: Engineers working on digitalised 

manufacturing processes operating the equipment 

communicating to centralised monitoring and control 

systems hosted within the plants through local open 
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standards networking and five of them having on 

Internet; 

Respondents 12 to 16: Technical supervisors operating 

entire shop floors of digitalised manufacturing processes; 

one of these four has been operating an entire plant; 

Respondents 17 and 18: Owners of digitalised 

manufacturing plants getting their production orders 

from a network application for order bookings and 

payments operated over the Internet; 

This research followed the survey method for interacting 

with the experts and collecting data from them (Yin, 

2011). As described by Yin (2011), surveys result in 

constrained responses restrained by the allowed degrees 

of freedom in a structured questionnaire. Hence, 

responses collected from surveys are measurable. The 

steps followed for this method are the following (as 

explained by Das, Azmi, and James, 2020; Hunie, 2022; 

Tyagi, Sharma, and Shukla, 2019): 

(a) The first step was to identify the variables to be 

discussed with the experts. In this research, the 

variables are the factors related to modern 

capabilities in logistics engineering and supply chain 

resilience and flexibility; 

(b) The second step was to organise these variables in a 

Structural Self-Interaction Matrix (SSIM). This 

matrix comprises the variables entered as row as well 

as column headers in such a way that all pairs of 

combinations can be formed within the matrix. The 

variables in the row headers are designated as “i” and 

the ones in the column headers are designated as “j”.  

The “i” variables are indicated as influencers 

indicated in the leftmost column, and the same 

variables are indicated as influenced (repeating the 

same sequence of the stated column) as “j” variables. 

(c) The third step was to decide a nature of relationship 

between the variables in each of the pairs defined. 

The relationships are defined as V (the factor “i” has 

an influence on factor “j”), A (the factor “j” has an 

influence on factor “i”), X (both factors “i” and “j” 

have mutual two-way relationships), and O (there is 

no relationship between factors “i” and “j”). The 

relationships may have varying strengths in either 

direction depending upon their known theoretical 

implications. The design of the SSIM ensures that the 

nature of every variable as an influencer and as the 

influenced can be showed. The SSIM is a M X M 

matrix in which, every variable influencing every 

other variable within a group of variables can be 

shown following one-to-one relationships in both 

directions of all the variables in the group. At the 

diagonal line of the SSIM matrix, the self-influences 

of the variables are shown as “1”.  

(d) The next step in fuzzy ISM was to record the 

strengths of relationships in V, A, and X. At 

fundamental level, four main levels are defined in the 

scale: perfect influence (P), strong influence (S), 

moderate influence (M), weak influence (W), and no 

influence (N). A sixth level called absolute influence 

is also entered as “1” representing a factor 

influencing itself. Thus, the total number of levels in 

the fundamental scale is five. The terms V, A, X, O, 

P, S, M, W, and N are called linguistic terms. There 

is no hard rule for defining linguistic terms. Every 

researcher is free to choose what best suits the study. 

The number of levels can be increased if required by 

the objectives of a research. This study has adopted 

the fundamental structure of five levels as shown in 

the Table 1. The highest level is the Level 5 

indicating perfect influence, and the lowest level is 

the Level 1 indicating no influence. The fuzzy values 

of the five levels are presented as the following 

(Tyagi, Sharma, and Shukla, 2019): 

 

Table 1: Five level scale with fuzzy values for each level 

Level No. Level’s name Linguistic Term Triangular Fuzzy Value 

5 Perfect influence P (0.75, 1, 1) 

4 Strong influence S (0.5, 0.75, 1) 

3 Moderate influence M (0.25, 0.5, 0.75) 

2 Weak influence W (0, 0.25, 0.5) 

1 No influence N (0, 0, 0.25) 

 

The three numbers in brackets indicate that the fuzzy 

numbers are triangular. Figure 2 and Equation (1)  

below show the triangular fuzzy number µA(X) 

represented as (Elizabeth and Sujatha, 2014): 
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𝜇𝐴(𝑋) =  {

0    𝑖𝑓 𝑋 ≤ 𝑎 𝑜𝑟 𝑋 ≥ 𝑐
𝑥−𝑎

𝑏−𝑎
        𝑖𝑓 𝑎 ≤ 𝑋 ≤ 𝑏

𝑐−𝑋

𝑐−𝑏
       𝑖𝑓 𝑏 ≤ 𝑋 ≤ 𝑐

 Equation (1) 

 
Fig 2: Triangular fuzzy number 

(e) The next step was to enter the values in the SSIM 

using linguistic equivalents of relationships as well as 

their fuzzy values. These are the values collected 

from each expert proving their respective SSIM 

matrices. This research approached 28 experts and 

received responses from eighteen out of them. Here, 

the relationships V and A can have three values each 

represented linguistically as V (S), A (S), V (M), A 

(M), V (W), and A (W) (Das, Azmi, and James, 

2020). Given that X represents bidirectional 

relationships, it can have nine values: X (S, S), X (S, 

M), X (S, W), X (M, S), X (M, M), X (M, W), X (W, 

S), X (W, M), and X (W, W). The relationship O can 

have only one value O (N). Each respondent provided 

their respective SSIM tables using these symbols.  

(f) The next step was to transform the SSIM by 

converting linguistic equivalents to defuzzified 

values. Defuzzification of triangular fuzzy numbers 

can be carried out using multiple methods. This 

research selected the method of magnitude measure 

using the following formula (Elizabeth and Sujatha, 

2013, 2014): 

Magnitude of 𝜇𝐴(𝑋) =  
𝑎+7𝑏+𝑐

12
  Equation (2) 

Using the formula for magnitude of the triangular fuzzy 

number, the defuzzified number is tabulated in Table 2: 

 

Table 2: Five level scale with triangular fuzzy values and defuzzified values using magnitude method for each level 

(Elizabeth and Sujatha, 2013, 2014): 

Level 

No. 

Level’s name Linguistic 

Term 

Triangular Fuzzy 

Value 

Defuzzified value using 

magnitude method 

5 Perfect influence P (0.75, 1, 1) 0.729 

4 Strong influence S (0.5, 0.75, 1) 0.5625 

3 Moderate influence M (0.25, 0.5, 0.75) 0.375 

2 Weak influence W (0, 0.25, 0.5) 0.1875 

1 No influence N (0, 0, 0.25) 0.0208 

 

(g) The next step is to combine the data of all the 

responses to arrive at the aggregated defuzzified 

SSIM table. The responses were collected in SSIM 

formats using linguistic terms defined in the Step 

(e), which were converted to fuzzy numbers and 

then were triangulated using the magnitude method 

for defuzzification. After achieving the magnitude 

numbers, the responses of the eighteen respondents 

were combined using MODE method, which 

captures the values having highest frequencies in 

the responses (Das, Azmi, and James, 2020; Jain 

and Soni, 2019; Khatwani et al., 2014; Mohanty 

and Shankar, 2017). 
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(h) The next step was to create the reachability matrix. 

The reachability matrix simply shows the 

relationships, which can be shown as “1”. After 

defuzzification and aggregation, only the 

relationships P (perfect), S (strong), and 

bidirectional relationships with at least one 

direction having P or S have been retained and 

others dropped out of the SSIM. In the initial 

reachability matrix, only the direct relationships are 

shown. To show all possible relationships, a final 

reachability matrix needs to be created in which, 

every direct and indirect relationships are explored 

and shown. This table can be formed after checking 

all the transitivity relationships and filling the 

missing gaps. The final reachability matrix sets a 

precedent for the next table called the level 

partitioning table explained in step (i). 

(i) The next step was to conduct the MICMAC (Matrix 

Impact-Cross Multiplication Applied to 

Classification). It is a four-quadrant plotting of the 

variables as per their driving and dependence 

powers. The four quadrants are: autonomous, 

dependent, independent, and linkage. 

(j) Level partitioning table was the next step in which, 

the reachability, antecedents, and intersections are 

presented. 

(k) The next step was to show the conical matrix 

showing the driver and dependence powers 

numerically. 

(l) The next step was to produce the diagram showing 

all the relationships in the form of a path diagram. 

(m)  Finally, the FISM model was drawn pictorially 

representing an output of this research. This model 

was discussed theoretically by finding reflections of 

the theoretical understanding formed in literature 

review. 

It may be noted that FISM presents the collective 

validated opinions of experts of the subject matter under 

study, which cannot be treated as established because the 

results are expected to vary slightly in repeated studies in 

different individuals. Hence, this research is about 

exploring theoretical relationships using interpretive 

approach but not confirming them as is possible in the 

deductive approach. FISM is not a substitute of advanced 

multivariate quantitative methods that are known to 

produce empirically established results. For deriving 

such outcomes, a large group of experts should be 

sampled and the multivariate analytical methods such as 

multiple regression, MANOVA, or structural equation 

modelling should be conducted. The discussion on 

results of this research is presented in the next section. 

6. Results and Discussion: 

In this section the final results of FISM method 

following the steps explained in the previous section are 

produced and discussed. The Table 3 shows all the 

factors derived from the literature review. As mentioned 

in the research objectives, the interrelationships among 

all the driving factors F1 to F9 were studied through 

FISM. 

Table 3: Variables derived from literature review 

Factors Names 

F1 digitalization for vertical integration 

F2 real time visibility of logistics events 

F3 automated remote monitoring and controls 

F4 self-configuration and diagnostics 

F5 self-collaboration and communication 

F6 cognitive and environmental awareness 

F7 intelligent management of dynamic processes 

F8 supply chain resilience  

F9 supply chain flexibility 

 

These factors were shared with the experts team 

comprising of twenty-eight logistics engineering 

specialists working in industrial states of MP and UP in 

India. Out of them, eighteen responded. The profiles of 

the respondents are presented in the previous section. 

Their first task assigned was to allocate all relationships 

a code out of X (S, S), X (S, M), X (S, W), X (M, S), X 

(M, M), X (M, W), X (W, S), X (W, M), X (W, W), V 

(S), V (M), V (W), A (S),  A (M), and A (W) and O (N) 

in the SSIM template shared with them. The meanings of 
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these codes are described in Point (c) of Section 5. The 

eighteen responses were entered in an Excel sheet in 

separate tabs. In each of these tabs, the SSIM matrices 

with fuzzified and defuzzified values were entered based 

on their individual responses. Finally, the mode values 

(highest frequencies of the defuzzified values) of all 

eighteen responses were entered in the finalized 

aggregated SSIM matrix. The finalized SSIM showing 

the aggregate (mode) values of the defuzzified values is 

presented in Table 4 below: 

Table 4:  Aggregate (mode) values of the defuzzified values entered in the finalised SSIM 

 

The Table 4 indicates existence of perfect relationship (P 

= 0.729), strong relationship (S = 0.5625), moderate 

relationships (M = 0.375), weak relationships (W = 

0.1875), and no relationships (N = 0.0208) between the 

pair of variables shown in the SSIM. The finalised SSIM 

with corresponding fuzzy values is shown in Table 5.  

Table 5: SSIM with Fuzzy values 

 

The linguistic equivalents of each relationship were also 

entered in a separate table, as shown in Table 6. In the 

subsequent analysis, the relationships V (M), V (W) and 

O (N) were dropped. The relationships X (S, S), X (S, 

M), X (M, S), V(P), and V (S) were retained for further 

analysis. The Internet tool by Ahmad and Ayman (2021) 

was used to generate the reachability matrix. The X (M, 

M), V (M), V (W) and O (N) were treated as “O” in 

subsequent steps. 

Table 6: SSIM with Linguistic Equivalents 

 

Now the picture is clear. There were four forward perfect 

relationships, ten bidirectional relationships (five with at 

least P and S in one direction), one weak relationship, 

two no relationships, and the remaining were moderate 

relationships. The relationships were entered in the 

Internet-enabled tool by Ahmad and Ayman (2021) as 

shown in the Figure 3 below. The X (S, S), X (S, M), and 

X (M, S) values are indicated as X and the V (P) and 

V(S) values are indicated as V. The X (M, M), V (M), V 

(W) and O (N) values are treated as O. The experts 

provided their opinions on not only existence or absence 

of relationships but also about the strengths of 

relationships. To adjust the relationships for validity, 

only the perfect and strong relationships have been 

retained. In bidirectional relationships, the ones having at 

least P or S in one of the directions have been retained 

with a perception that such relationships may have some 

value in their contribution to the overall model. In 

theory, every relationship may have some importance in 

the bigger picture. The model comprising of moderate 

relationships may be much more expanded and complex. 

However, the model with moderate relationships may not 

produce a realistic theoretical construct. The focus needs 

to be on the most influential relationships in the model. 

Hence, only the P and S relationships may carry value in 

defining the specifications of the bigger picture. Other 
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relationships may be studied by an interested researcher as a by-product of the main theoretical construct. 

 

Fig 3: SSIM of only X (S, S), X (S, M), X (M, S), and V (S) values retained in the aggregated (mode) values of defuzzified 

triangulated values 

The Figure 3 shows the screenshot when the SSIM was 

populated with the essential relationships as defined. On 

pressing the “Calculate ISM Results” button, the rest of 

the reports were generated. In the next step, the initial 

reachability matrix was formed. This matrix requires that 

all selected relationships for further analysis are shown 

as “1”. The rejected relationships because of fuzzy 

analysis have not been included in this matrix. The initial 

reachability matrix was formed as shown in Table 7 

using the Smart ISM application by Ahmed and Ayman 

(2021). 

 

                  Table 7: Initial Reachability Matrix created in Smart ISM application by Ahmed and Ayman (2021) 

 

As described in Step (h) of Section 5, the initial 

reachability matrix comprises of only the direct 

relationships. The driving and dependence powers are 

also shown in Table 7. The root of driving power is with 

F1 whereas the F7, F8, and F9 are the factors with most 

dependence power. This is explained theoretically after 
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the finalised model. The final reachability matrix is 

shown in Table 8. As discussed in Point (h) of Section 5, 

the final reachability matrix comprises of all the direct 

and indirect relationships. It may be noted that the 

driving and dependence powers have changed when all 

the indirect relationships are accounted for. Now, F1 to 

F6 are shown with equal driving powers whereas F7 to 

F9 retain their dependence status. The Table 8 shows the 

complete matrix of dependencies. The numbers with 

stars indicate that only indirect relationships exist 

between those variables. 

 

Table 8: Final Reachability Matrix created in Smart ISM application by Ahmed and Ayman (2021) 

 

 

The driving and dependence powers can also be shown 

in the MICMAC analysis chart as shown in Figure 4. 

The MICMAC analysis shows the variables F1 to F6 as 

the main driving variables with equal powers and F7 to 

F9 as the dependent variables. There is an interesting  

observation in the MICMAC analysis. The variables F1 

and F6 have a driving power of 9 but also have 

dependence power of 6. This shows the reachability  

extent to these variables making them dependent on their 

predecessors in the initial and final reachability matrices. 

However, the driving powers of F7 to F9 are merely at 

unity. Thus, for testing a valid construct, it is logical to 

consider the variables F1 to F6 as independent variables 

and the variables F7 to F9 as the dependent variables. 

Such a construct may be considered as the outcome of 

this FISM research and used for theoretical 

interpretations and analysis. 

 

 

Fig 4: MICMAC chart created in Smart ISM application by Ahmed and Ayman (2021) 
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The next step was to generate the level partitioning table. 

The Table 9 shows the sets of antecedents, intersections, 

and reachability at two levels of partitioning. The 

partitions represent the chains of relationships when 

traced individually in the final traceability matrix. This 

forms a hierarchical structure of the relationships among 

variables traced. The result shows the independent 

variable at a higher level (Level 2) than the dependent 

variables (at Level 1). 

 

Table 9: Level Partitioning Matrix created in Smart ISM application by Ahmed and Ayman (2021) 

 

Table 10: Conical Matrix created in Smart ISM application by Ahmed and Ayman (2021) 

 

Finally, the Table 10 shows the final representation of 

the full picture in the Conical Matrix. This matrix 

summarises the finalised reachability, the driving and 

dependence powers, and the levels of the variables in a 

single table. This matrix may be viewed as the summary 

of all the outcomes of the FISM steps conducted in this 

research. The full reachability can be shown graphically 

in the form of diagraph shown in Figure 5. While it 

shows the full scope of inter-relationships and 

reachability, it represents a very complex picture to be 

discussed theoretically. Hence, the researcher needs to 

drop the secondary relationships and even some primary 

ones to make the research simpler and focussed. For this 

reason, a finalised model has been created following the 

power structure of driving and dependence powers and 

the relationships segregated between the two levels. The 

relationships within the levels may be dropped. With this 

approach in mind, the finalised model may be derived as 

shown in the Figure 6. 
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Fig 5: Diagraph chart created in Smart ISM application by Ahmed and Ayman (2021) [redrawn in colour] 

 

Fig 6: Final Model created in Smart ISM application by Ahmed and Ayman (2021) [Redrawn in colour] 

Referring Figure 6, a model showing multivariate 

relationships between DVI, RTVLE, ARMC, SCD, SCC, 

and CEA grouped as independent variables, and IMDP, 

SCR, and SCF grouped as dependent variables. The 

interrelationships within these groups are ignored to keep 

the analysis simple and focussed. The variables DVI and 

RTVLE are foundations required for modern logistics 

capabilities represented by the other individual factor 

variables. DVI is a new capability achievable through 

digitalisation of the electrical and mechanical machines, 

equipment, and robotics. In the Industry 3.0, they were 

integrated horizontally using in-plant logic controllers. In 

Industry 4.0, the controllers are moved to cloud 

computing thus invoking the capability of managing 

multiple manufacturing plants through digitalisation and 

automation. The integration in the Industry 4.0 is thus 

vertical. The RTVLE is enabled when all the electrical 

and mechanical machines, equipment, and robotics are 

digitalised and connected to controllers on cloud 

computing. They are digitally transformed to send 

continuous data streams to the cloud-hosted controllers 

thus forming the required and continuously changing 

information base for a continuous real time perception or 

visualisation of the process events executed by them (Li 

and Si, 2017). The process of such digital transformation 

involves embedded software built with Java or 

JavaScript firmware designed for field operations of the 

PLC devices (Bartodziej, 2017; Carlsson, 2017; Liu et 

al., 2022). The embedded software helps in digitising the 

information collected from the sensors reading the 

running physical process parameters (such as, 

temperature, flow, revolutions per minute, electrical flux, 
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torque, etc.). With the DVI and RTVLE implemented 

effectively, the other four Logistics 4.0 capabilities 

ARMC, SCD, SCC, and CEA can be implemented by 

virtue of big data systems, applications, and artificial 

intelligence (Pissardini and Sacomano, 2020). SCD, 

SCC, and CEA require both cloud and edge computing 

and communication systems and deployment of MLAI 

capabilities (Li and Si, 2017). 

The logistics capabilities of ARMC, SCD, SCC, and 

SEA requires deployment of cloud-based applications 

having the full view of the ground-level running 

processes via DVI for real-time flexibility and responses 

(Abdmeziem, Tandjaoui, Romdhani, 2016; Henzel & 

Herzwurm, 2018; Unal et al., 2021). The Figure 1 

presented earlier (drawn based on the concepts explained 

by Abdmeziem, Tandjaoui, Romdhani, 2016; Bartodziej, 

2017; Lim, Xiong, and Wang, 2021; Qu et al., 2016) 

shows the two cloud layers and the applications to be 

deployed. In Industry 3.0 systems, the same applications 

were deployed locally in manufacturing plants having 

visibility into the processes running in them. On cloud 

computing, they can visualise processes across multiple 

manufacturing plants irrespective of where they are 

located globally. Internet becomes the core medium for 

communications for this enhancement. New business and 

operating models have evolved for operating logistics 

operations, as defined in the literature by some of the 

latest studies (Christopher, 2022; Khan et al., 2022; 

Kucukaltan et al., 2022; Michlowicz, 2021). The 

fundamental quests for logistics engineering presented in 

Section 2 remain relevant albeit with enhanced 

performances and new capabilities induced through 

digitalisation. For example, the ARMC capability may 

be able to reduce lead times and response times to 

changes in processes, and the SCD and SCC capabilities 

may be able to improve on longevity and breakdown 

periods of all machines and equipment by preventive 

maintenance and fault elimination. The CEA capability 

may reduce disruptions, outages, engineering failures, 

and environmental hazards. The effectiveness of these 

capabilities may, however, vary by experience, as 

reflected in the varying rankings provided by the experts. 

For example, a manufacturing plant or a logistics facility 

may not achieve feasibility of complete digital 

transformation because of certain challenges like old 

machines, poor Internet connectivity, and poor mobile 

coverage. With such restrictions manual and automated 

operations may have to be executed in tandem. Such a 

plant cannot operate a cloud-based monitoring and 

control software and cloud-based ERP and MRP systems 

effectively.  

As the scope of this research has been completed, a 

conclusion is presented in the next section. 

7. Conclusion: 

This research was planned to investigate the key 

capabilities in Logistics 4.0 for enhancing logistics 

performance with digitalisation and data-enabled 

monitoring and control of assets and processes. The 

research started with a theoretical review of Industry 4.0 

technologies and the related Logistics 4.0 capabilities. 

The key factors of Logistics 4.0 capabilities were derived 

from this literature review and their influences on supply 

chain resilience and flexibility were rated by eighteen 

logistics engineering specialists in the industrial states of 

MP and UP in India. A survey method was followed 

allowing the experts to rate the influence of each variable 

on supply chain resilience and flexibility at five levels. 

Their ratings were used to follow the Fuzzy Interpretive 

Structural Modelling method to arrive at a final model. 

The final model showed the variables digitalization for 

vertical integration, real time visibility of logistics 

events, automated remote monitoring and controls, self-

configuration and diagnostics, self-collaboration and 

communication, and cognitive and environmental 

awareness as modern logistics engineering factors 

influencing supply chain resilience and flexibility, and 

intelligent management of logistics processes in logistics 

engineering domain in a multivariate construct. Mapping 

with theory, digitalization for vertical integration and 

real time visibility of logistics events were considered as 

the foundation and all the other variables using them and 

activated through cloud-based logistics applications. 

Without getting into technical details, this research 

argued with the help of literature review and the expert 

ratings that the core of modern logistics capabilities is 

real-time data-driven and transparent perception building 

about the running physical assets and their processes. If 

this core is established, the fundamental quests of 

logistics engineering listed in Section 2 can be achieved. 

The influence on supply chain resilience and flexibility 

may be achieved because of real-time visibility into the 

process events thus reducing decision-making and action 

times. The new capabilities may be effective in 

improving supply chain performance in resilience and 

flexibility albeit with varying effectiveness. For example, 

automated monitoring and control may reduce process 

lead times and rapid response times. Further, self-

diagnostics may reduce downtimes of machines as 

maintenance and troubleshooting can be done timely and 

at times proactively. These improvements can enhance 

supply chain resilience and responsiveness. However, the 

solution of digitalisation and cloud-hosted logistics 

applications may not be suitable for manufacturing 

plants and logistics facilities having old machines and 

poor connectivity to the Internet. There may be several 

old machines with poor digitalisation feasibility. Further, 
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some remote industrial areas may not have good Internet 

connectivity for running cloud applications. 

The future research may be conducted on how Industry 

4.0 technologies can influence supply chain resilience 

and flexibility. Logistics 4.0 is influenced by Industry 

4.0 technologies. The future researchers may like to 

delve deeper into the technical side of Industry 4.0 to 

investigate how investments made in them can enhance 

supply chain performances. Industry 4.0 comprises of 

several generic technologies beyond logistics and 

manufacturing sectors. In future studies the FISM 

method may be executed with the help of technical 

experts of Industry 4.0 technologies, especially in the 

IIoT and cloud computing domains. Further, the role of 

Industry 5.0 capabilities in enhancing supply chain 

performance should also be studied. Industry 5.0 may 

still be at a hype stage, but several new studies indicate 

the need for serious research on Industry 5.0 

technologies for enhancing logistics and supply chain 

performances. 
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