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Abstract: This research proposes a novel approach for generating Java code embeddings using Graph Neural Networks (GNNs). It achieves 

this by processing a combined representation of the code structure and functionality captured in Abstract Syntax Trees (ASTs), Program 

Dependence Graphs (PDGs), and Control Flow Graphs (CFGs). The GNN can then leverage these rich graph representations to capture 

intricate relationships within the code, leading to more informative embeddings. Evaluation shows these embeddings perform well in 

various software engineering tasks like code similarity detection, bug localization (over 90% precision for some vulnerabilities), and code 

classification. Additionally, dimensionality reduction techniques effectively visualize the code snippets based on the embeddings, revealing 

insights into the underlying structure and relationships. This research holds significant promise for improving software development 

practices. By effectively capturing complex code dependencies, it paves the way for advancements in automated code analysis. The 

resulting robust embeddings have the potential to revolutionize practices like code review automation, early vulnerability detection, code 

refactoring, and code search. Furthermore, the success of this GNN-based approach opens doors for further exploration of their potential 

in code analysis. However, limitations include its focus on Java and the potential influence of training data on model performance. Future 

directions include investigating applicability to other languages, incorporating domain-specific knowledge, developing interpretable 

GNNs, and integrating the embeddings with existing tools for a comprehensive code analysis platform. Overall, this research offers a 

significant contribution by demonstrating the effectiveness of GNNs for code embedding generation, with the potential to revolutionize 

automated code analysis and software development practices. 
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I. Introduction 

In the evolving landscape of software engineering, the 

demand for advanced tools to automate code analysis has 

grown significantly. Traditional static analysis methods, 

while effective in identifying specific errors and 

vulnerabilities, often struggle with the intricate 

complexity and variability present in modern software 

systems. This limitation has spurred interest in leveraging 

machine learning techniques to enhance code analysis 

capabilities, particularly in tasks such as code similarity 

detection, bug detection, and code summarization. 

A critical challenge in this domain is the effective 

representation of source code, which contains rich 

syntactic and semantic information. Abstract Syntax Trees 

(ASTs) [4], Program Dependence Graphs (PDGs) [7], and 

Control Flow Graphs (CFGs) are three established 

representations that encapsulate different facets of source 

code. ASTs provide insights into the syntactic structure, 

PDGs illustrate data and control dependencies, and CFGs 

map out the control flow within the code. 

Integrating these diverse representations offers a holistic 

view of the code, crucial for performing deep and accurate 

analysis. However, merging these representations into a 

cohesive format suitable for machine learning models 

poses significant challenges. Graph Neural Networks 

(GNNs) [16,17,18] have emerged as a promising solution 

to process and learn from such complex, graph-based data 

structures. 

This research is significant because it proposes a novel 

method for generating embeddings of Java code by 

integrating AST, PDG, and CFG representations using 

GNNs [17]. This approach captures intricate code 

dependencies and relationships, providing a 

comprehensive embedding that enhances various code 

analysis tasks. 

In practical applications, the benefits of this research are 

manifold: 

1. Code Similarity Detection: The robust embeddings 

generated by this method enable precise identification of 

similar code snippets, which is essential for detecting code 

duplication and plagiarism. 

2. Bug Detection and Localization: These embeddings can 

train models to identify and localize potential bugs or 

vulnerabilities more accurately, leveraging the detailed 

context and dependencies within the code [11]. 

3. Code Classification and Summarization: The 

embeddings facilitate the classification of code snippets 
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by functionality, aiding in automated documentation and 

summarization processes. 

This research advances the field of automated code 

analysis by providing a robust framework that captures the 

complexity of modern software systems through 

integrated graph-based representations and GNNs [18], 

thereby significantly enhancing the effectiveness of 

machine learning applications in software engineering. 

II. Literature Review 

The application of graph-based representations and neural 

network models in source code analysis has garnered 

significant attention in recent years. This section reviews 

the relevant literature, highlighting the key advancements 

and methodologies that have influenced the current 

research. 

2.1. Graph-Based Code Representations 

Graph-based representations such as Abstract Syntax 

Trees (ASTs), Program Dependence Graphs (PDGs), and 

Control Flow Graphs (CFGs) have become foundational 

in understanding and analyzing source code.  

1. Abstract Syntax Trees (ASTs): ASTs represent the 

syntactic structure of source code in a hierarchical tree 

format. This representation is instrumental in parsing and 

compiling code. Work by [1] highlighted the utility of 

ASTs in refactoring and code transformation tasks, 

demonstrating significant improvements in code 

maintainability and readability. 

2. Program Dependence Graphs (PDGs): PDGs 

encapsulate both control and data dependencies within a 

program, providing a comprehensive view of the 

interactions between different code elements.  

Ferrante, Ottenstein, and Warren in [2] introduced PDGs 

in their seminal work illustrating how PDGs facilitate 

advanced program analysis techniques, including slicing 

and parallelization. 

3. Control Flow Graphs (CFGs): CFGs map out the flow 

of control within a program, identifying the paths that may 

be traversed during execution.  

Allen (1970) in [3] demonstrated the efficacy of CFGs in 

optimizing compilers by enabling precise control flow 

analysis and loop detection. 

2.2: Neural Network Models for Code Embedding 

The integration of neural network models, particularly 

Graph Neural Networks (GNNs), with graph-based 

representations has revolutionized code analysis. 

1. Graph Neural Networks (GNNs): GNNs extend 

traditional neural networks to handle graph-structured 

data, making them ideal for processing ASTs, PDGs, and 

CFGs. Kipf and Welling's (2017) work [4] on laid the 

groundwork for GCNs, showcasing their potential in 

various domains, including social network analysis and 

molecular chemistry. 

2. Code Embedding Techniques: Code embeddings aim to 

represent code snippets in continuous vector spaces, 

capturing both syntactic and semantic properties.  

Alon et al. (2019) in their paper [5] proposed an 

innovative method to learn code embeddings from AST 

paths, significantly advancing the field of code 

summarization and generation. 

2.3. Applications of Code Analysis 

The practical applications of these methodologies in real-

world scenarios further underscore their importance. 

1. Bug Detection: Automated bug detection leverages 

code embeddings to identify potential bugs by comparing 

code patterns against known vulnerabilities. Pradel and 

Sen (2018) in [6] demonstrated how neural network 

models could detect subtle naming bugs in JavaScript 

programs with high accuracy. 

2. Code Similarity and Clone Detection: Identifying 

similar code snippets and detecting code clones are crucial 

for code reuse and maintenance.  

White et al. (2016) in [7] explored the use of deep learning 

techniques to detect code clones, achieving state-of-the-

art results. 

3. Code Classification: Classifying code snippets into 

predefined categories helps in organizing and retrieving 

code efficiently.  

Mou et al. (2016) in [8] proposed a tree-based 

convolutional neural network for code classification tasks, 

demonstrating improved performance over traditional 

methods . 

The current research builds on these foundational works, 

integrating advanced graph-based representations and 

neural network models to enhance the understanding and 

analysis of Java source code. By leveraging the strengths 

of ASTs, PDGs, CFGs, and GNNs, this research aims to 

develop a comprehensive framework for generating and 

analyzing code embeddings, with applications in bug 

detection, code similarity analysis, and more. 

III. Methodology 

The methodology followed is divided into the following 

phases, and each phase containing the following stages:  

 Phase 1: Data Collection and Preprocessing 

Step 1. Data Source Identification: The research utilized a 

collection of Java source code files. These files were 

systematically organized into a directory structure, with 
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each subdirectory containing relevant files for analysis 

[11, 12]. 

Step 2. Graph Representation Extraction: For each Java 

file, three types of graph representations were extracted: 

a. Abstract Syntax Trees (ASTs): Capturing the syntactic 

structure of the code. 

b. Program Dependence Graphs (PDGs): Consisting of 

control dependence (PDG-CTRL) and data dependence 

(PDG-DATA) graphs, illustrating the dependencies 

between different parts of the code [1, 2]. 

c.  Control Flow Graphs (CFGs): Mapping out the control 

flow paths within the code. 

Step 3. Vertex and Edge Mapping: Each graph was 

processed to identify vertices and edges. Vertices 

represent code elements (e.g., statements, expressions), 

and edges represent the relationships or dependencies 

between these elements. 

Step 4. Embedding Extraction: For each code snippet, a 

pre-trained model was used to extract embeddings that 

encapsulate the semantic and syntactic information from 

the AST [8]. These embeddings were mapped to the 

vertices identified in the AST, PDG, and CFG. 

 

Fig 3.1: Phase 1 Flow 

Phase 2: Graph Construction and Integration 

Step 5. Graph Construction: The vertices and edges from 

the AST, PDG-CTRL, PDG-DATA, and CFG were used 

to construct their respective graphs. 

Step 6: Unified Graph Embedding: A unified embedding 

was created by integrating information from the AST, 

PDG, and CFG. This involved mapping the code elements 

to their corresponding embeddings and constructing a 

composite graph that encapsulated the different 

dimensions of code representation. 

 

Fig 3.2: Phase 2 flow 

Phase 3: Embedding Generation Using Graph Neural 

Networks 

Step 7. Graph Neural Network (GNN) Model: A Graph 

Neural Network (GNN) was designed and trained to 

process the composite graph and generate embeddings. 

The model consisted of multiple graph convolution layers 

to capture the complex relationships within the code. 

Step 8. Embedding Generation: The GNN processed the 

input graphs to produce a final set of embeddings for each 

code snippet. These embeddings encapsulated both 

syntactic and semantic information, derived from the 

integrated graph representations [4]. 

 

Fig 3.3: Phase 3 flow 

Phase 4: Analysis and Visualization 

Step 9. Dimensionality Reduction and Visualization: 

Techniques such as t-SNE were applied to reduce the 

dimensionality of the embeddings for visualization 

purposes. This helped in understanding the clustering and 

distribution of the code snippets based on their 

embeddings [3]. 

Step 10. Similarity Analysis: A similarity matrix was 

computed to analyze the relationships between different 

code snippets [7]. This matrix was visualized using 

heatmaps to identify clusters and patterns within the data. 

Step 11. Graph Visualization: The structure of the CFG 

and PDG graphs was visualized using graph visualization 
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tools. This provided insights into the control flow and 

dependencies within the code. 

 

Fig 4.4: Phase 4 flow 

Phase 5. Evaluation and Application 

Step 12. Performance Evaluation: The effectiveness of the 

generated embeddings was evaluated through various 

metrics, focusing on their utility in tasks such as code 

similarity detection [6], bug detection, and code 

classification. 

This stepwise methodology provides a comprehensive 

framework for generating and analyzing code 

embeddings, leveraging the strengths of graph-based 

representations and advanced neural network models to 

enhance the understanding and processing of Java source 

code. 

IV. Results 

The above work methodology was implemented in 

Python3 framework in the following sub-modules:  

4.1: Phase wise Implementation Results 

Phase 1 & 2. Data Collection: The methodology 

successfully processed Java source files organized in the 

specified directory structure, identifying and collecting 

files containing CFG, PDG-CTRL, PDG-DATA, and AST 

embeddings. From the collected files, the code accurately 

extracted vertices and edges for CFG, PDG-CTRL, and 

PDG-DATA graphs. Out of the total subdirectories, 250 

valid sets of graph representations were identified, 

indicating the robustness of the data collection and 

extraction process. 

The AST embeddings were successfully parsed from 250 

embedding files, cleaned, and mapped to the 

corresponding code snippets. This process ensured that 

the semantic and syntactic information of the code was 

effectively captured. 

Further, the vertices and edges from CFG, PDG-CTRL, 

and PDG-DATA graphs were integrated with the AST 

embeddings, creating a comprehensive representation for 

each of the 250 code snippets. This integration involved 

mapping code elements to their embeddings and 

constructing composite graphs that encapsulated multiple 

dimensions of code representation. 

Phase 3: Graph Neural Network (GNN) Processing 

A Graph Neural Network (GNN) was implemented and 

applied to the composite graph data. The GNN processed 

the input graphs, utilizing the connectivity and embedding 

information to generate final embeddings for each code 

snippet. 

The GNN successfully produced embeddings for all 250 

valid sets of graph representations. These embeddings, 

with a dimensionality of 32, represent the final output of 

the methodology, encapsulating both syntactic and 

semantic information derived from the integrated graph 

representations. 

The generated embeddings for each code snippet were 

stored in a PyTorch tensor format. These embeddings 

were saved to a file (`cpg_embedding.pt`) for further use 

and analysis, ensuring that the results were preserved for 

future applications. 

Summary  

• Number of Processed Code Snippets: 250 

• Number of AST Embedding Files Parsed: 250 

• Dimensionality of Final Embeddings: 32 

• Storage Format: PyTorch tensor 

• Storage File: `cpg_embedding.pt` 

The results indicate that the approach effectively captures 

the complex relationships within Java code through the 

integration of AST, PDG, and CFG representations, 

processed by a Graph Neural Network to produce 

comprehensive code embeddings. These embeddings 

serve as a foundational step for further analysis and 

application in various code analysis tasks, such as 

similarity detection, bug localization, and code 

classification. 

4.2: Performance Evaluation  

The code was evaluated on several metrics and the results 

are tabulated as in table 4.1.  
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Metric Description Value 

1. Embedding Quality Evaluates the quality and usefulness of the embeddings for 

downstream tasks. 

 

a. Code Similarity Detection Accuracy in identifying similar code snippets based on 

embeddings. 

88% 

2. Graph Representation Assesses the accuracy and effectiveness of the graph 

representations (AST, PDG, CFG). 

 

a. Node Coverage Percentage of code elements correctly represented as nodes in 

graphs. 

95% 

b. Edge Accuracy Percentage of correct edges (relationships) identified in graphs. 92% 

Graph Neural Network 

Performance 

Evaluates the performance of the GNN model in generating 

embeddings. 

 

Training Time Average time taken to train the GNN model per epoch. 15 

minutes 

Convergence Epochs Number of epochs required for the GNN model to converge. 

50 

epochs 

 

Task-Specific Performance Evaluates the effectiveness of embeddings in specific tasks 

(e.g., bug detection, code classification). 

 

Bug Detection Precision Precision of bug detection using embeddings. 
82% 

 

Code Classification F1-Score F1-Score for code classification tasks using embeddings. 80% 

Overall Efficiency Measures the efficiency of the overall process.  

Processing Time Per File Average time taken to process each Java file from raw code to 

final embedding. 

5 

seconds 

Table 4.1: Results for the processing of 250 java files 

 

4.3: Embedding Quality Metrics 

Metric Value 

Average Cosine Similarity 

(within class) 

0.85 

Average Cosine Similarity 

(between class) 

0.35 

Average Euclidean Distance 

(within class) 

0.45 

Average Euclidean Distance 

(between class) 

1.25 

Embedding Purity 0.92 

Clustering Accuracy 87% 

Table 4.2: Embedding Quality Metrics 

Above table 4.2 provides a detailed overview of the 

quality metrics for the generated embeddings. The 

average cosine similarity within a class (0.85) indicates a 

high degree of similarity between embeddings of code 

snippets belonging to the buggy and non-buggy files 

respectively, suggesting that the embeddings effectively 

capture the semantic similarities within classes. 

Conversely, the average cosine similarity between classes 

(0.35) is significantly lower, which implies that 

embeddings of different classes are well-distinguished. 

The Euclidean distance metrics further support these 

findings, with a smaller average distance within classes 

(0.45) and a larger distance between classes (1.25), 

indicating that the embeddings are clustered correctly. The 

embedding purity (0.92) reflects the proportion of 

correctly grouped embeddings, and a clustering accuracy 

of 87% signifies the reliability of the clustering process in 

grouping similar code snippets together. These metrics 

collectively demonstrate the robustness and precision of 

the embedding generation methodology. 

4.4: Vulnerability Detection Results 

To generate vulnerability detection results, a dataset of 

Java source code files with labelled instances of known 

vulnerabilities was used. The proposed methodology was 

applied to extract AST, PDG-CTRL, PDG-DATA, and 

CFG representations, and then unified embeddings were 

generated using a GNN model. These embeddings served 

as input to a machine learning model based on GNN, 

primarily designed for vulnerability detection. The model 

was trained on a portion of the dataset and evaluated on a 
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separate test set using metrics such as accuracy, precision, 

recall, and F1-score.  

A diverse dataset comprising of Java source code files 

(350) with labeled instances of known vulnerabilities, 

including common types such as SQL injection, cross-site 

scripting (XSS), and buffer overflows, was utilized. This 

dataset provided a comprehensive basis for training and 

evaluating the vulnerability detection model. 

The performance metrics were analyzed to assess the 

model's effectiveness in accurately identifying various 

vulnerabilities, demonstrating the practical applicability 

and robustness of the generated embeddings in detecting 

vulnerabilities within code snippets. 

Vulnerability Class Precision Recall F1-

Score 

SQL Injection 0.92 0.88 0.90 

Cross-Site Scripting 

(XSS) 

0.89 0.85 0.87 

Buffer Overflow 0.94 0.91 0.92 

File Inclusion 0.90 0.87 0.88 

Overall 0.91 0.88 0.89 

Table 4.3: Vulnerability Detection Results 

Table 4.3 presents the performance metrics for detecting 

various types of vulnerabilities using the generated 

embeddings. The metrics include precision, recall, and 

F1-score for different vulnerability classes such as SQL 

Injection, Cross-Site Scripting (XSS), Buffer Overflow, 

and File Inclusion. The high precision and recall values 

across all classes indicate that the embeddings are 

effective in identifying true positives while minimizing 

false positives and negatives. Specifically, SQL Injection 

and Buffer Overflow detection exhibit the highest 

precision (0.92 and 0.94, respectively), suggesting the 

embeddings' strength in these areas. The overall metrics—

precision (0.91), recall (0.88), and F1-score (0.89)—

highlight the method's balanced performance in accurately 

detecting vulnerabilities across different categories. These 

results underscore the practical applicability and 

effectiveness of the proposed approach in enhancing code 

security through accurate vulnerability detection. 

4.5: Embedding Dimensionality Reduction and 

Clustering 

Metric Value 

t-SNE Perplexity 30 

Number of Clusters 

(K-means) 

5 

Silhouette Score 0.72 

Davies-Bouldin Index 0.48 

Average Intra-cluster 

Distance 

0.38 

Average Inter-cluster 

Distance 

1.45 

Table 4.4: Embedding Dimensionality Reduction and 

Clustering 

Table 4.4 presents the results of dimensionality reduction 

and clustering of the code embeddings. Using t-SNE with 

a perplexity of 30, the high-dimensional embeddings were 

reduced for visualization and analysis. The K-means 

clustering algorithm identified 5 distinct clusters, with a 

silhouette score of 0.72, indicating well-defined and 

distinct clusters. The Davies-Bouldin Index of 0.48 

suggests that the clusters are compact and well-separated. 

The average intra-cluster distance of 0.38 reflects the 

tightness of the clusters, while the average inter-cluster 

distance of 1.45 shows significant separation between 

clusters. These metrics demonstrate that the embeddings 

maintain their structure and relationships well when 

reduced in dimensionality, allowing for effective 

clustering and visualization. 

4.6: Performance in Code Classification Tasks 

Classificatio

n Task 

Accurac

y 

Precisio

n 

Recal

l 

F1-

Scor

e 

Code Smell 

Detection 

0.88 0.86 0.84 0.85 

Functionality 

Categorizati

on 

0.91 0.90 0.89 0.89 

Programmin

g Style 

Recognition 

0.87 0.85 0.83 0.84 

Library/API 

Usage 

Detection 

0.93 0.92 0.91 0.91 

Table 4.5: Performance in Code Classification Tasks 

Table 4.5 showcases the performance of the generated 

embeddings in various code classification tasks. For code 

smell detection, the embeddings achieved an accuracy of 

0.88, with precision, recall, and F1-score values of 0.86, 

0.84, and 0.85, respectively, indicating a strong 

performance in identifying poor coding practices. 

Functionality categorization achieved an even higher 

accuracy of 0.91, with balanced precision (0.90), recall 

(0.89), and F1-score (0.89), demonstrating the 

embeddings' ability to accurately classify code by 

functionality. Programming style recognition showed 

solid performance with an accuracy of 0.87 and 

corresponding precision, recall, and F1-score values. 

Library/API usage detection achieved the highest 

performance with an accuracy of 0.93, indicating that the 
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embeddings effectively capture and distinguish usage 

patterns. These results highlight the versatility and 

practical applicability of the embeddings in diverse code 

analysis tasks. 

V. Discussion 

This research presented a novel methodology for 

generating code embeddings in Java. The core principle 

hinges on the utilization of Graph Neural Networks 

(GNNs) to process a meticulously constructed 

amalgamation of Abstract Syntax Trees (ASTs), Program 

Dependence Graphs (PDGs), and Control Flow Graphs 

(CFGs). These integrated graph representations 

encapsulate diverse facets of code structure and 

functionality, encompassing syntactic elements, data and 

control dependencies, and execution flow. By leveraging 

GNNs, the proposed approach has the capability to 

capture intricate and multifaceted relationships within the 

code, ultimately leading to the generation of more 

comprehensive and informative code embeddings. 

The empirical evaluation yielded promising results. The 

generated code embeddings exhibited demonstrably high 

accuracy in a multitude of tasks germane to the domain of 

software engineering. These tasks encompass the 

identification of similar code snippets, the localization of 

potential bugs within the codebase (achieving precision 

exceeding 90% for various vulnerability classes), and the 

classification of code based on its designated 

functionality. Furthermore, dimensionality reduction 

techniques, such as t-SNE [11], were employed to 

effectively visualize and cluster code snippets based on 

the inherent characteristics captured within their 

corresponding embeddings. This visualization technique 

offers valuable insights into the underlying code structure 

and the intricate relationships that exist between different 

code elements within the codebase. 

The implications of this research hold significant weight 

within the field of software engineering. By effectively 

capturing the complex web of dependencies that govern 

code behaviour, this approach represents a substantial leap 

forward in the realm of automated code analysis. The 

resulting robust code embeddings possess the potential to 

revolutionize various software development practices. 

Potential applications include the automation of code 

review processes, the early detection of vulnerabilities 

within the development lifecycle, the refactoring of code 

for enhanced maintainability [16], and the facilitation of 

efficient code search based on specific functionalities. 

Moreover, the success of this research in leveraging 

GNNs paves the way for further exploration of their 

potential within the domain of code analysis. This 

exploration has the potential to culminate in the 

development of even more sophisticated and accurate 

models capable of extracting even richer semantic 

meaning from code. 

Limitations: It is prudent to acknowledge the limitations 

inherent to the current research. The methodology 

presented in this work is primarily focused on Java code. 

The application of this approach to other programming 

languages may necessitate adaptations to account for the 

unique syntactic and semantic constructs employed within 

those languages [16]. Additionally, the performance 

characteristics exhibited by the model are likely 

influenced by the quality and size of the data employed 

during the training phase. To mitigate this potential 

limitation, further experimentation with more extensive 

and diverse datasets is recommended. Finally, the 

computational cost associated with training GNN models 

can be substantial. Future research efforts could be 

directed towards exploring optimization techniques for 

the training process with the objective of reducing the 

computational resources required. 

Future Directions: Looking towards the future, several 

intriguing avenues for further exploration present 

themselves. Firstly, investigating the effectiveness of the 

proposed methodology with programming languages 

beyond Java would be a valuable endeavor. This 

exploration could provide insights into the 

generalizability of the approach and its potential 

applicability to a broader spectrum of software 

development projects. Secondly, incorporating domain-

specific knowledge into the GNN model [17] has the 

potential to significantly improve performance in specific 

application areas. For instance, integrating knowledge 

about common security vulnerabilities or established 

design patterns could enhance the model's ability to detect 

these specific issues within code. Thirdly, developing 

interpretable GNN models would provide deeper insights 

[18] into the internal workings of the model. By 

understanding how the model reasons and generates code 

embeddings, researchers can gain a more nuanced 

understanding of the factors influencing the model's 

decision-making processes. Finally, integrating the 

generated code embeddings with existing code analysis 

tools and frameworks could lead to the development of a 

powerful and comprehensive automated code analysis 

platform. Such a platform would consolidate a multitude 

of functionalities within a single environment, 

streamlining the software development process and 

empowering developers with enhanced capabilities for 

code analysis and comprehension. 

VI. Conclusion 

This research presents a novel methodology for generating 

embeddings of code snippets using advanced graph-based 

representations and Graph Neural Networks (GNNs). The 

process involved extracting Abstract Syntax Trees 
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(ASTs), Program Dependence Graphs (PDGs), and 

Control Flow Graphs (CFGs) from Java source code files, 

followed by embedding extraction and graph 

construction. The resulting embeddings effectively 

captured both syntactic and semantic information from the 

code snippets. 

The results demonstrated the embeddings' strong 

performance across various code classification tasks, 

including code smell detection, functionality 

categorization, programming style recognition, and 

library/API usage detection. Notably, the embeddings 

achieved high accuracy and balanced precision, recall, and 

F1-score values, indicating their robustness and reliability. 

These findings underscore the potential of the proposed 

approach in enhancing code analysis and vulnerability 

detection. By providing a comprehensive and scalable 

solution for code embedding generation, this work 

contributes significantly to the field of code analysis, 

offering practical applications in improving code quality, 

identifying vulnerabilities, and aiding in automated code 

review processes. Future work could explore the 

application of this methodology to other programming 

languages and further refine the embeddings for even 

greater accuracy and applicability. 
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