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Abstract: In the age of 6G networks, ensuring robust privacy and security measures is essential. Given the widespread connectivity and 

a plethora of applications, the management of extensive data in the realm of 6G, facilitated by cutting-edge technologies, demands an 

elevated level of safeguarding. Essentially, strong privacy measures cultivate trust, encouraging broad adoption by instilling confidence 

among both users and organizations. In this landscape, prioritizing privacy and security is paramount to safeguarding sensitive 

information, maintaining integrity, and mitigating risks associated with the dynamic and interconnected nature of 6G networks. The 

research introduces an advanced federated learning approach tailored for 6G networks. Utilizing differential privacy during localized 

model training and homomorphic encryption for secure transmission, the central server orchestrates secure aggregating encrypted 

updates. This collaborative learning model progressively enhances global accuracy while preserving individual data privacy. Robust 

monitoring ensures regulatory compliance and dynamic improvements to privacy mechanisms signify the proactive evolution of this 

paradigm within the enigmatic realms of 6G networks, offering a significant advancement in both model precision and privacy standards. 
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1.Introduction 

In the fast-changing world of data-driven technologies, 

making security stronger is crucial. Two innovative 

methodologies, homomorphic encryption and differential 

privacy, stand out as crucial elements in fortifying security 

measures across various applications. These cutting-edge 

techniques play pivotal roles in addressing the challenges 

associated with data privacy and security, particularly in the 

context of advanced data processing and collaborative 

learning environments. Homomorphic encryption represents a 

breakthrough in cryptographic techniques [1]. It enables 

computations to be performed directly on encrypted data 

without the need for decryption. This capability is 

revolutionary as it allows data to remain in a secure, encrypted 

state throughout processing [2].  

Traditional encryption methods require data to be decrypted 

before any computations can take place, potentially exposing 

sensitive information [3].  

Homomorphic encryption, in contrast, ensures that 

computations can be carried out on encrypted data, 

maintaining confidentiality and integrity throughout the entire 

process. This approach is particularly valuable in scenarios 

where data privacy is of utmost concern, such as in healthcare, 

finance, and collaborative machine learning [4]. Differential 

privacy, on the other hand, focuses on introducing controlled 

noise during data analysis to protect individual privacy. This 

technique acknowledges the delicate balance between 

deriving meaningful insights from data and safeguarding the 

sensitive information inherent in that data. In collaborative 

learning scenarios, where multiple entities contribute data for 

model training, differential privacy ensures that no single 

contribution can be isolated or reverse-engineered, thereby 

preventing the inadvertent disclosure of sensitive details. By 

injecting carefully calibrated noise into the data, the privacy of 

individual contributions is preserved, paving the way for 

secure and collaborative data analysis.  

Federated Learning serves as a good solution to address 

privacy concerns in the era of data-driven technologies. 

Traditional machine learning models often require 

centralized access to vast datasets, raising significant 

privacy and security challenges [5] In contrast, federated 

learning operates on a decentralized premise, allowing 

models to be trained across multiple local devices or 
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servers without exchanging raw data. This innovative 

approach offers several key mechanisms that contribute to 

enhancing privacy in machine learning. Federated learning 

enables localized model training on individual devices, 

ensuring that sensitive data remains on the user's device 

and is never transferred to a central server [6].  

This decentralized training process helps mitigate the risk 

of data breaches and unauthorized access, as the raw data 

is kept locally, and only model updates, typically 

represented as model parameters, are shared. By limiting 

data movement and facilitating model training at the edge, 

federated learning minimizes the exposure of sensitive 

information. This is particularly crucial in scenarios where 

the data involved, such as personal user preferences or 

health records, is highly sensitive and subject to stringent 

privacy regulations [7]. Moreover, federated learning 

promotes a collaborative model update process. Instead of 

aggregating raw data centrally, local models contribute 

insights through model updates, allowing the global model 

to learn from the collective knowledge while preserving 

the privacy of individual contributors.  

In the domain of collaborative machine learning, initial 

methodologies frequently utilized less effective strategies 

that presented considerable obstacles to the privacy and 

security of data. One prevalent method was centralized 

training with data sharing, where all data from diverse 

devices or users was collected and stored in a central 

server. The global model underwent training on this 

centralized dataset, and the updated model was then 

distributed to all participating devices [8]. While this 

method was commonplace in traditional machine-learning 

settings, it exhibited notable drawbacks. One primary 

concern revolved around privacy. The centralization of 

sensitive data introduced substantial privacy risks, as the 

concentration of all information in one location made it 

susceptible to unauthorized access and potential breaches 

[9].  

Managing and governing this centralized dataset also 

presented challenges, especially in dealing with diverse 

data sources, varying formats, and the need for compliance 

with multiple privacy regulations [10]. Additionally, the 

continuous transmission of data between devices and the 

central server resulted in considerable communication 

overhead, especially in scenarios involving a large number 

of devices [11]. Another less efficient approach was non-

secure model aggregation in distributed learning scenarios. 

In this method, models trained on different devices were 

aggregated on a central server without employing secure 

aggregation techniques. The updates from individual 

models were combined directly without encryption or 

additional privacy-preserving measures, leading to several 

drawbacks. One significant drawback was the privacy risks 

during the aggregation process. Without secure 

aggregation, there was a potential for sensitive information 

from individual model updates to be exposed during the 

combination process. [12] Malicious entities could 

intercept or manipulate these updates, posing a threat to the 

confidentiality of the data. The lack of encryption during 

the aggregation phase also introduced security 

vulnerabilities, making the system susceptible to various 

attacks [13].  

To enhance the data rates in a wireless Mobile Ad-Hoc 

Network (MANET), there's a critical need to optimize 

efficient packet access [14]. The challenge lies in 

mitigating the impact caused by the identification of 

malicious nodes, which exhibit similar characteristics to 

reliable nodes within the sensing area. The growing 

prominence of Wireless Sensor Networks (WSN) in 

commercial and industrial sectors is attributed to notable 

advancements in embedded computer systems, offering 

significant enhancements in processors, communication, 

and efficient power utilization [15]. Adversaries could 

attempt to compromise the integrity of the aggregated 

model or gain insights into the contributions from 

individual devices. Furthermore, trust issues arose as users 

might be hesitant to contribute to the collaborative learning 

process without confidence in the secure handling of their 

data during the aggregation step [16].  

Non-secure model aggregation often lacks robust 

mechanisms for accountability and auditing. Without 

proper encryption and secure aggregation techniques, it 

becomes challenging to trace the origin of specific 

contributions to the aggregated model [17]. In contrast to 

these less efficient methods, modern federated learning 

ecosystems leverage advanced techniques such as 

differential privacy, homomorphic encryption, secure 

aggregation, and monitoring mechanisms. These 

innovations address the shortcomings of earlier 

approaches, establishing a more robust and privacy-

preserving collaborative learning environment, particularly 

within the dynamic landscape of 6G networks. 

The objectives of the work are: 

• Enable the central server to initiate a global 

machine learning model, distributing it to diverse 

wireless devices, ranging from smartphones to 

IoT devices. 

• Implement localized model training on each 

device using differential privacy techniques, 

introducing controlled noise to enhance the 

privacy of sensitive data. 

• Apply homomorphic encryption to secure model 

updates or gradients generated by each device, 

ensuring the confidentiality of information during 

transmission across the network. 
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• Utilize secure aggregation techniques at the 

central server, grounded in cryptographic 

protocols, to seamlessly combine encrypted 

updates, preserving individual contributions and 

fostering a collaborative learning environment. 

2. Methodology 

Privacy-preserving federated learning in the context of 6G 

networks involves the use of advanced techniques such as 

differential privacy and homomorphic encryption to 

enhance security while allowing wireless devices to 

collaboratively train machine learning models without 

sharing sensitive data. 

In Fig.1, The process begins with a central server initiating 

a global machine learning model, which is then distributed 

to an array of diverse wireless devices, ranging from 

smartphones to IoT devices. Each device independently 

engages in localized model training, employing differential 

privacy techniques to introduce controlled noise and 

enhance the privacy of sensitive data. Concurrently, 

homomorphic encryption is applied to secure the model 

updates or gradients generated by each device, ensuring 

confidentiality during transmission across the network. As 

these encrypted updates converge at the central server, 

secure aggregation techniques, grounded in cryptographic 

protocols, seamlessly orchestrate their combination, 

preserving individual contributions.  

 

Fig 1. Workflow of Privacy- Preserving Federated 

Learning 

The central server, positioned as the nucleus of 

collaborative intelligence, undertakes the intricate task of 

decrypting the aggregated model updates, updating the 

global model, and redistributing this refined model to all 

participating devices. Throughout this intricate process, 

secure communication protocols act as steadfast guardians, 

shielding data in transit. This iterative cycle fosters a 

collaborative learning environment, progressively 

enhancing the global model's accuracy while meticulously 

upholding the principles of individual data privacy. 

Continuous vigilance through monitoring mechanisms 

ensures unwavering compliance with privacy regulations, 

and the dynamic implementation of improvements to 

privacy-preserving mechanisms underscores the proactive 

evolution of this state-of-the-art federated learning 

ecosystem within the enigmatic realms of 6G networks. 

This combination ensures that individual devices can 

collaboratively train a global model without sharing 

sensitive information. Differential privacy adds a layer of 

privacy protection by introducing controlled noise during 

local model training, while homomorphic encryption 

secures model updates during transmission. The use of 

secure aggregation at the central server safeguards 

individual contributions, fostering a collaborative learning 

environment. This innovative approach not only enhances 

the accuracy of the global model but also upholds rigorous 

standards of privacy and security in the dynamic landscape 

of 6G networks. 

2.1 Paillier Encryption 

The Paillier Homomorphic Encryption Algorithm is 

chosen for its inherent strengths in preserving individual 

data privacy, facilitating secure aggregation, ensuring 

regulatory compliance, and supporting the dynamic nature 

of privacy improvements within the federated learning 

paradigm. These characteristics make it a well-suited and 

effective choice within the context of the proposed 

advanced privacy-preserving federated learning 

framework. 

The Paillier Homomorphic Encryption Algorithm takes as 

input the desired security parameter, specified by the 

number of bits (‘bits’). This input is utilized for the 

generation of a public key (‘pk’) and a private key (‘sk’). 

The public key contains the modulus ‘n’ and generator ‘g’, 

while the private key comprises security parameters 

‘lambda (lam)’ and ‘mu’. During encryption, the algorithm 

accepts a plaintext value (‘plaintext’) to be secured. The 

output includes the key pairs (‘public_key’ and 

‘private_key’), the ciphertext representing the encrypted 

plaintext (‘ciphertext’), and the decrypted text obtained by 

decrypting the ciphertext (‘decrypted_text’). These output 

components collectively enable secure collaborative 

learning, particularly in privacy-preserving scenarios like 

federated learning. 

Algorithm 1: Paillier encryption algorithm 

1. def generate_keypair(bits): 

# Key generation 

2. p = gmpy2.next_prime(gmpy2.mpz_urandomb(2 * 

bits)) 

3. q = gmpy2.next_prime(gmpy2.mpz_urandomb(2 * 

bits)) 

4. n = p * q 

5. lam = (p - 1) * (q - 1) 

6. g = n + 1 

7. mu = gmpy2.invert(lam, n) 

8. public_key = {'n': n, 'g': g} 

9. private_key = {'lam': lam, 'mu': mu} 
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10. return public_key, private_key 

11. def encrypt(public_key, plaintext): 

# Encryption 

12. n, g = public_key['n'], public_key['g'] 

13. r = gmpy2.powmod(gmpy2.mpz_urandomb(256), n, 

n**2) 

14. ciphertext = (gmpy2.powmod(g, plaintext, n**2) * 

gmpy2.powmod(r, n, n**2)) % (n**2) 

15. return ciphertext 

16. def decrypt(public_key, private_key, ciphertext): 

# Decryption 

17. n, lam, mu = public_key['n'], private_key['lam'], 

private_key['mu'] 

18. c = gmpy2.powmod(ciphertext, lam, n**2) 

19. plaintext = ((c - 1) // n * mu) % n 

20. return plaintext 

# Example usage: 

21. bits = 1024 

22. public_key, private_key = generate_keypair(bits) 

# Encrypting a value 

23. plaintext = mpz(42) 

24. ciphertext = encrypt(public_key, plaintext) 

# Decrypting the ciphertext 

25. decrypted_text = decrypt(public_key, private_key, 

ciphertext) 

26. print(f"Original: {plaintext}") 

27. print(f"Ciphertext: {ciphertext}") 

28. print(f"Decrypted: {decrypted_text}") 

 

In the Paillier Homomorphic Encryption Algorithm, a 

central authority initiates the process by generating a 

public key (pk) and a private key (sk). The public key, 

containing the modulus n and generator g, is shared 

openly, while the private key is kept confidential. Each 

participating wireless device engages in client-side 

encryption, securing its model updates or gradients (x) 

using the public key. The encryption equation, denoted as 

Enc(x), involves modular arithmetic. 

Enc(x)=(g^x * r^n) mod (n^2)  (1) 

with g as a generator, n as the product of two large primes, 

and r as a random value. The devices transmit these 

encrypted model updates Enc(x) to the central server. The 

central server, utilizing Paillier encryption, performs 

secure aggregation by multiplying the encrypted updates 

together 

Enc(x )=nEnc(x)mod(n^2) (2) 

resulting in the encrypted sum of all individual model 

updates. Decryption at the central server involves 

computing the sum of model updates (Enc(x)) using the 

private key:  

x =L(Enc(x^modn^2)*µmodn  (3) 

where l(u)=(u-1)/n and  and µ are private key parameters. 

The central server updates the global model using the 

decrypted sum of model updates ( x), distributing the 

refined model to all participating devices for subsequent 

rounds of training. This algorithm facilitates secure 

collaborative learning, preserving data privacy in federated 

learning scenarios. 

3. RESULTS 

In Fig.2, federated learning provides a comprehensive view 

of the collaborative learning process's efficacy. The x-axis 

delineates successive iterations, offering a temporal 

perspective on the evolution of the federated model. 

Concurrently, the y-axis quantifies the extent of accuracy 

enhancement in the global model, presenting a nuanced 

understanding of performance improvements. The upward 

trajectory of the blue line signifies a positive trend in 

model accuracy over successive iterations. Variability in 

data points reflects the dynamic nature of the learning 

process, influenced by diverse data sources and the 

implementation of privacy-preserving techniques. This 

iterative graph offers a nuanced understanding of the 

continuous enhancement in the global model's accuracy 

over time. 

 

Fig 2. Accuracy Improvement Over Iterations 

In Fig.3, the first blue bar signifies the time efficiency of 

local model training on diverse wireless devices. With a 

duration of 10 seconds, it suggests that devices efficiently 

engage in individualized training, incorporating differential 

privacy techniques to safeguard sensitive data. This step 

showcases a relatively swift execution. The second green 

bar, spanning 15 seconds, represents the time efficiency of 

applying homomorphic encryption to secure model updates 

during transmission. While slightly longer than local 

training, this duration is reasonable, indicating efficient 

encryption and decryption processes for ensuring the 

confidentiality of model updates. The third orange bar, 

lasting 8 seconds, illustrates the time efficiency of secure 

aggregation at the central server. The relatively balanced 

durations across the steps indicate a well-orchestrated and 

efficient federated learning cycle. This efficiency is vital 

for the successful deployment of federated learning within 

the advanced landscape of 6G networks, emphasizing both 

privacy preservation and collaborative learning 

effectiveness. 
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Fig 3. Time Efficiency of Federated Learning Steps 

This brief duration implies that the cryptographic protocols 

seamlessly orchestrate the combination of encrypted 

updates. The efficient aggregation safeguards individual 

contributions while facilitating a collaborative learning 

environment. The final red bar, accounting for 12 seconds, 

reflects the time taken for the central server to decrypt 

aggregated model updates, update the global model, and 

redistribute the refined model. This duration underscores 

the central server's swift processing and dissemination, 

contributing to the overall efficiency of the federated 

learning cycle. The relatively balanced durations across the 

steps suggest a well-orchestrated and efficient federated 

learning process, where each stage is executed within 

reasonable time limits.  

The graph indicates that the collaborative learning 

environment, involving local training on diverse devices 

and subsequent model updates, is executed with efficiency, 

fostering collective intelligence without compromising on 

time. The durations reflect that privacy-preserving 

mechanisms, such as differential privacy during local 

training and homomorphic encryption during transmission, 

are implemented with efficiency, ensuring secure and 

confidential model updates. The graph concludes that the 

federated learning process, as depicted by the time 

efficiency of its individual steps, is well-optimized and 

operates within acceptable time frames. This efficiency is 

vital for the successful deployment of federated learning 

within the advanced landscape of 6G networks, 

emphasizing both privacy preservation and collaborative 

learning effectiveness. 

The efficiency metrics affirm that the proposed federated 

learning framework not only prioritizes privacy but also 

operates within acceptable time frames, making it practical 

and feasible for deployment in the dynamic and advanced 

landscape of real-world 6G networks. The balance between 

security, efficiency, and practicality positions the 

framework as a viable solution for privacy-preserving 

collaborative learning in the context of 6G networks. 

Table.1 provides a detailed breakdown of key steps in a 

federated learning process. Each step is characterized by its 

associated color, duration in seconds, a succinct 

description of the process, an efficiency assessment, an 

evaluation of privacy preservation efforts, and an 

indication of the technical complexity involved. This 

comprehensive analysis aims to offer insights into the 

efficiency, privacy, and technical considerations of 

individual stages within the federated learning cycle in the 

context of advanced 6G networks. 

Table.1 Performance and Privacy Analysis of Federated 

Learning Steps in 6G Networks 

Ste

p 

Col

or 

Dura

tion 

(seco

nds) 

Description 

Efficie

ncy 

Assess

ment 

Privacy 

Preserv

ation 

Techni

cal 

Compl

exity 

1 Blu

e 

10 Local model 

training on 

diverse devices 

with differential 

privacy to 

safeguard 

sensitive data 

Swift 

Executi

on 

High Moder

ate 

2 Gre

en 

15 Application of 

homomorphic 

encryption for 

securing model 

updates during 

transmission. | 

Reasonable 

Duration 

Reason

able 

Duratio

n 

High High 

3 Ora

nge 

8 Secure 

aggregation at 

the central server 

with 

cryptographic 

protocols 

combining 

encrypted 

updates 

Efficien

t 

Aggreg

ation 

High Moder

ate 

4 Red 12 Central server 

decrypts 

aggregated 

updates, updates 

the global 

model, and 

redistributes the 

refined model 

Swift 

Process

ing & 

Dissemi

nation 

High High 
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 Fig 4. Privacy Impact Over Iterations 

Fig.4 demonstrates the dynamic nature of privacy 

preservation over multiple iterations. Privacy impact 

measurements for each iteration are plotted, allowing 

Investors to observe how the federated learning process 

affects privacy across different phases. Fluctuations in the 

line or variations in privacy impact values from one 

iteration to the next illustrate the inherent variability in 

preserving privacy during federated learning. This may be 

influenced by factors such as the nature of the data, 

diversity among participating devices, and the 

effectiveness of privacy-preserving techniques. A 

consistent trend of maintaining a low privacy impact over 

iterations indicates the effectiveness of privacy-preserving 

mechanisms implemented in the federated learning 

process. It suggests that the collaborative learning 

approach successfully incorporates privacy-enhancing 

techniques, such as differential privacy, to protect sensitive 

information. 

While some variations in privacy impact are expected, a 

consistent trend of maintaining a low impact or showing 

improvement over iterations is essential for demonstrating 

the effectiveness of privacy-preserving measures. The 

graph provides a dynamic perspective on the privacy 

impact, guiding decision-makers in evaluating and refining 

privacy strategies to ensure the continued effectiveness of 

the federated learning framework within the evolving 

landscape of privacy and security standards. 

The graph allows for the observation of trends over time. A 

decreasing privacy impact or a stable low impact suggests 

that the federated learning system is adapting and 

improving its privacy preservation strategies iteratively. 

Continuous refinement in the privacy-preserving 

mechanisms showcases a commitment to evolving security 

and privacy standards.  The graph proves the effectiveness 

of privacy-preserving measures in federated learning by 

showcasing the dynamics of privacy impact over iterations. 

It provides valuable insights for decision-making, 

adaptation, and continuous improvement in the federated 

learning system's privacy-preserving strategies within the 

context of evolving privacy and security standards. 

 

Fig 5. Distribution of Security Compliance Scores 

In Fig.5, The histogram depicting the distribution of 

security compliance scores offers valuable insights into the 

stability and consistency of security and privacy measures 

over time. The even distribution of compliance scores 

across the range suggests a maintained and satisfactory 

level of security practices. The absence of extreme values 

indicates a stable security posture, providing reassurance 

that privacy measures are consistently upheld. The 

histogram serves as a visual representation of the 

continuous monitoring of security and privacy, reflecting a 

proactive approach to maintaining robust measures. A 

stable distribution reinforces confidence in the 

effectiveness of security protocols. Fluctuations in 

compliance scores, if present, may indicate adaptive 

security strategies, such as the implementation of new 

measures or adjustments to existing protocols in response 

to evolving security requirements.  

The histogram of security compliance scores serves as a 

valuable tool for evaluating and communicating the overall 

security posture of the federated learning framework. A 

stable, even distribution of scores reinforces confidence in 

the framework's security practices, highlighting its 

commitment to continuous monitoring, adaptation, and 

adherence to evolving privacy and security standards 

within the complex landscape of 6G networks. It is a 

powerful tool for decision-making in security compliance 

monitoring. It validates security measures and highlights 

potential adaptations. It also enhances transparent 

communication with stakeholders and serves as a crucial 

decision-support tool for maintaining a secure and privacy-

conscious environment. 

4. Conclusion and Future Work 

This research introduces a novel federated learning 

framework designed for 6G networks. It integrates 

advanced privacy-preserving techniques, such as 

differential privacy and homomorphic encryption, to 

ensure secure and collaborative learning while protecting 

individual data privacy. The framework enables localized 

model training on diverse devices and optimizes the 

efficiency of federated learning in the decentralized 6G 

network landscape. The framework's unique feature is the 

dynamic adaptation of privacy mechanisms, continuously 

improving to address the evolving privacy standards of 6G. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 01–07 |  7 

The comprehensive assessment of security compliance 

scores offers a transparent overview of the framework's 

adherence to security protocols. Future work will focus on 

optimizing privacy parameters and exploring advanced 

encryption techniques. This framework sets a benchmark 

for advancing privacy and security in the context of 6G 

networks. 
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