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Abstract: Underwater Object Classification (UOC) is a critical task for Autonomous Underwater Vehicles (AUVs) engaged in 

underwater exploration and environmental monitoring. This paper explores the integration of bio-inspired deep learning techniques, 

particularly Spiking Neural Networks (SNN), with edge computing paradigms utilizing Field-Programmable Gate Arrays (FPGAs) and 

Graphics Processing Units (GPUs), coupled with the Constrained Application Protocol (CoAP) communication protocol. The application 

of Deep Q-Networks (DQN) for reinforcement learning-based object classification is investigated. The proposed framework aims to 

enhance the autonomy, efficiency, and adaptability of AUVs in discerning and classifying underwater objects in real-time scenarios. By 

leveraging the inherent parallelism and energy efficiency of SNNs, along with the computational capabilities of FPGAs and GPUs for 

accelerated inference, AUVs can perform object classification tasks onboard with reduced latency and energy consumption. Moreover, 

the integration of CoAP facilitates seamless communication between AUVs and remote servers for data exchange and collaborative 

decision-making. The utilization of DQN enables AUVs to learn and adapt their classification strategies based on feedback from the 

environment, thereby improving their performance over time. The proposed approach demonstrates promising results in underwater 

object classification through experimental validation and simulation studies, paving the way for advanced applications in underwater 

robotics and exploration. Through experimental validation, the system achieves a remarkable increase in classification accuracy by 15%, 

as evidenced by adaptability scores ranging from 7.5 to 8.9. These results signify a significant advancement in underwater robotics, 

paving the way for more efficient and precise exploration and monitoring of underwater environments. 

Keywords: Underwater Object Classification (UOC), Autonomous Underwater Vehicles (AUVs), Constrained Application Protocol 

(CoAP), Deep Q-Networks (DQN), Field-Programmable Gate Arrays (FPGAs). 

1.Introduction 

AUVs have emerged as indispensable tools for exploring 

the depths of our oceans, conducting scientific research, 

and monitoring marine ecosystems [1]. These vehicles 

navigate through challenging underwater environments, 

facing complex tasks such as identifying and classifying 

various underwater objects [2]. Accurate object 

classification is crucial for AUV to make informed 

decisions about navigation, obstacle avoidance, and data 

collection, yet traditional methods for achieving this task 

often rely on manually crafted features and centralized 

processing systems [3]. However, these conventional 

approaches come with limitations, particularly in dynamic 

and unpredictable underwater environments. They can 

struggle to adapt to changing conditions, leading to 

suboptimal performance and inefficiencies [4]. To 

overcome these challenges, there is a growing interest in 

leveraging advanced technologies, such as bio-inspired 

deep learning and edge computing, to enhance the 

capabilities of AUVs in underwater object classification 

[5]. In response to this need, this paper proposes an 

innovative framework for UOC on AUVs. At its core, the 

framework integrates bio-inspired deep learning 

techniques, specifically Spiking Neural Networks (SNN), 

which draw inspiration from the neural processing 

mechanisms observed in biological systems [6]. By 

mimicking the parallelism and energy efficiency of neural 

networks found in nature, SNNs offer a promising 

approach to efficiently process sensor data and classify 

underwater objects in real time [7]. The proposed 

framework harnesses the computational power of edge 

computing, utilizing FPGA and GPU onboard AUV [8]. 

This enables accelerated inference and decision-making, 
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reducing reliance on centralized processing and facilitating 

faster response times in dynamic underwater environments 

[9]. Integrating communication protocols such as CoAP 

enables seamless data exchange between AUVs and 

remote servers, facilitating collaborative decision-making 

and information sharing. Moreover, the application of 

DQN for reinforcement learning-based object classification 

introduces adaptive learning capabilities, allowing AUVs 

to continuously improve their classification performance 

based on feedback from the environment [10]. The 

effectiveness and performance of the proposed framework 

are evaluated through rigorous experimental validation and 

simulation studies. The results demonstrate significant 

advancements in terms of classification accuracy, 

efficiency, and adaptability, thereby showcasing the 

potential of this approach to revolutionize underwater 

exploration and marine research. With applications 

spanning environmental monitoring, underwater 

archaeology, and offshore industries, this research 

represents a critical step forward in enhancing the 

capabilities of AUVs for underwater object classification 

in complex and dynamic underwater environments. The 

objectives are:  

• Develop a robust framework for UOC on AUV 

that integrates bio-inspired deep learning 

techniques, specifically SNN, with edge 

computing utilizing FPGA and GPU. 

• Enhance the autonomy and efficiency of AUVs in 

discerning and classifying underwater objects by 

leveraging the inherent parallelism and energy 

efficiency of SNNs, allowing for real-time 

processing of sensor data and classification tasks. 

• Investigate the feasibility and effectiveness of 

edge computing paradigms onboard AUVs, 

including FPGA and GPU acceleration, for 

accelerating inference and decision-making in 

underwater object classification tasks, thereby 

reducing reliance on centralized processing and 

improving response times. 

• Explore communication protocols such as CoAP 

to enable seamless data exchange between AUVs 

and remote servers, facilitating collaborative 

decision-making and information sharing in 

underwater exploration scenarios. 

• Evaluate the adaptive learning capabilities of 

DQN for reinforcement learning-based object 

classification, enabling AUVs to continuously 

improve their classification performance based on 

feedback from the underwater environment. 

 

 

2. Literature Review 

Underwater object classification represents a critical aspect 

of AUVs tasked with underwater exploration and 

environmental monitoring [11]. Recent advancements in 

bio-inspired deep learning techniques, coupled with edge 

computing capabilities, have garnered significant attention 

in the realm of underwater robotics [12]. The integration of 

these technologies holds promise for enhancing the 

autonomy and efficiency of AUVs in discerning and 

classifying underwater objects. Several studies have 

explored the application of bio-inspired deep learning 

algorithms, drawing inspiration from the remarkable 

adaptive capabilities of marine organisms, to address 

challenges in underwater object classification [13]. 

Research has demonstrated the effectiveness of 

convolutional neural networks (CNNs) inspired by the 

visual processing mechanisms of aquatic species in 

accurately classifying underwater objects based on visual 

sensor data [14]. Similarly, proposed recurrent neural 

network (RNN) architectures inspired by the navigational 

behaviors of marine mammals improve AUVs' ability to 

navigate and localize objects in underwater environments. 

The incorporation of edge computing on AUV platforms 

has emerged as a promising approach to enhance real-time 

data processing and decision-making capabilities [15]. 

Studies have explored the implementation of edge 

computing frameworks onboard AUVs, enabling efficient 

execution of deep learning algorithms for object 

classification tasks without relying heavily on centralized 

processing or communication with surface stations. 

Despite the potential benefits, several challenges and 

limitations persist in the integration of bio-inspired deep 

learning and edge computing for underwater object 

classification on AUVs. One notable disadvantage is the 

computational and energy constraints associated with 

onboard processing on AUVs [16]. Deep learning 

algorithms, particularly those with complex architectures, 

demand substantial computational resources and power, 

which may exceed the capabilities of resource-constrained 

AUV platforms, leading to increased energy consumption 

and reduced operational endurance. The reliance on visual 

and acoustic sensor data for object classification poses 

challenges in underwater environments characterized by 

low visibility, turbidity, and acoustic interference [17]. 

Limited sensor range and resolution may hinder the 

accuracy and reliability of object classification algorithms, 

especially in complex underwater scenarios with diverse 

object shapes and sizes [18]. The design and optimization 

of bio-inspired deep learning models for underwater 

environments require extensive domain knowledge and 

data collection efforts, often leading to lengthy 

development cycles and high implementation costs. 

Moreover, the transferability and generalization of trained 

models across different underwater ecosystems and 
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environmental conditions remain an ongoing research 

challenge, necessitating further investigation into robust 

and adaptive learning techniques. 

3. Proposed work 

 

Fig 1 Underwater Object Classification System 

Architecture for Autonomous Underwater Vehicles 

3.1 Spiking Neural Networks  

SNNs mimic the functionality of biological neural 

networks, which are inherently suited for processing 

spatiotemporal data, making them particularly well-suited 

for tasks in dynamic environments like underwater 

exploration. AUVs operate in real-time, processing data as 

it is collected from onboard sensors such as sonar and 

cameras. SNNs excel at processing streaming data, 

enabling AUVs to make rapid decisions based on changing 

environmental conditions and object dynamics. Energy 

efficiency is critical for AUVs, as they often operate in 

remote locations with limited access to power sources. 

SNNs have the potential to significantly reduce power 

consumption compared to traditional neural network 

architectures, making them well-suited for deployment on 

resource-constrained platforms. SNNs inherently support 

online learning and adaptive behavior, allowing AUVs to 

continuously update their classification models based on 

new data and environmental feedback. This adaptability is 

crucial for robust performance in dynamic underwater 

environments where object appearance and behavior may 

vary unpredictably. By closely modeling the behavior of 

biological neurons, SNNs offer a more biologically 

plausible approach to artificial intelligence. This biological 

relevance is particularly advantageous in underwater 

environments, where biological systems have evolved 

sophisticated sensing and decision-making mechanisms 

over millions of years of evolution. 

SNNs utilize sparse encoding, where only a subset of 

neurons becomes active in response to stimuli. This 

property enables efficient representation of sensory data, 

reducing redundancy and conserving computational 

resources. In the context of AUVs, sparse encoding helps 

optimize the utilization of onboard processing units, 

allowing for more effective utilization of limited 

computational resources. Unlike traditional neural 

networks, which operate on fixed time intervals, SNNs are 

event-driven, meaning they only compute when there is a 

change in input stimuli. This event-driven processing 

paradigm aligns well with the sporadic nature of sensory 

data in underwater environments, where objects may 

appear suddenly or move unpredictably. By minimizing 

unnecessary computations, event-driven SNNs contribute 

to the overall energy efficiency and responsiveness of the 

AUV system. SNNs excel at processing temporal 

information, capturing the temporal dynamics of sensory 

stimuli over time. This capability is particularly valuable 

for tasks such as object tracking and motion estimation in 

underwater environments, where objects may exhibit 

complex temporal behaviors.  

By effectively modeling temporal dynamics, SNNs enable 

AUVs to accurately interpret and respond to changes in the 

underwater scene, enhancing situational awareness and 

navigation capabilities. In addition to adaptive learning, 

SNNs support adaptive sensing, allowing AUVs to 

dynamically adjust their sensory modalities based on task 

requirements and environmental conditions. By selectively 

attending to relevant sensory cues and filtering out noise, 

adaptive sensing with SNNs enhances the robustness and 

efficiency of object classification in challenging 

underwater scenarios, such as low visibility or cluttered 

environments. SNNs can be seamlessly integrated with 

edge computing architectures onboard AUVs, enabling 

distributed processing of sensory data close to the source. 

This integration minimizes communication latency and 

bandwidth requirements, facilitating real-time decision-

making and reducing dependence on centralized 

processing resources. By harnessing the power of edge 

computing, SNN-based AUV systems achieve greater 

autonomy and responsiveness, enhancing their capabilities 

for autonomous underwater exploration and surveillance. 

3.2 Constrained Application Protocol 

CoAP, designed for resource-constrained devices and low-

power networks, serves as the communication backbone 

for exchanging data and control messages among AUVs, 

edge computing nodes, and other networked devices. Its 

lightweight and efficient natures make it well-suited for the 

resource-constrained environment of AUVs operating in 

underwater settings. AUVs equipped with sensors generate 

large volumes of data, including sonar images, video 

streams, and environmental measurements. CoAP 

facilitates the transmission of this data between AUVs and 

edge computing nodes, allowing for real-time analysis and 

decision-making. Its efficient message format and support 

for UDP (User Datagram Protocol) minimize overhead, 
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reduce communication latency, and conserve bandwidth, 

which is essential in the bandwidth-limited underwater 

communication environment. CoAP supports resource 

discovery mechanisms, enabling AUVs to dynamically 

locate and interact with available services and data sources 

in the network. This capability facilitates dynamic task 

allocation and resource management, allowing AUVs to 

adapt to changing environmental conditions and mission 

objectives. By leveraging CoAP's resource discovery 

features, AUVs can efficiently access the computational 

resources and deep learning models deployed on edge 

computing nodes for object classification tasks. 

Underwater environments pose challenges such as 

intermittent connectivity and variable propagation delays.  

CoAP's asynchronous communication model, coupled with 

support for message queuing and reliable transmission 

mechanisms, enables robust communication despite these 

challenges. AUVs can asynchronously exchange control 

commands, status updates, and data requests with edge 

computing nodes, ensuring reliable operation and mission 

continuity in the face of communication disruptions. CoAP 

seamlessly integrates with edge computing architectures 

deployed on AUVs and shore-based stations. By 

standardizing communication protocols and interfaces, 

CoAP facilitates interoperability and compatibility 

between heterogeneous devices and software components 

in the system. This integration enables distributed data 

processing and decision-making close to the data source, 

minimizing reliance on centralized infrastructure and 

reducing communication overhead. CoAP includes built-in 

mechanisms for security and authentication, such as 

Datagram Transport Layer Security (DTLS) and 

Lightweight Machine-to-Machine (LwM2M) security 

protocols. These mechanisms ensure data integrity, 

confidentiality, and authentication of communication 

endpoints, safeguarding against unauthorized access and 

malicious attacks. In the context of AUVs, where data 

confidentiality and system integrity are paramount, CoAP's 

security features provide essential safeguards for sensitive 

mission-critical operations. 

CoAP's support for asynchronous communication and 

resource discovery mechanisms enhances the scalability 

and adaptability of the proposed system. AUV fleets 

equipped with SSD-based object detection systems can 

dynamically allocate computing resources, including 

FPGA and GPU accelerators, based on workload demands 

and environmental conditions, ensuring optimal 

performance across diverse deployment scenarios. By 

utilizing CoAP, AUVs can establish lightweight, bi-

directional communication channels with edge computing 

resources, enabling seamless transmission of sensory data 

and inference results in real time. This facilitates swift 

decision-making and response to dynamic underwater 

environments, enhancing overall operational efficiency. 

CoAP's adherence to web standards promotes 

interoperability with existing IoT frameworks and 

protocols, facilitating seamless integration with 

heterogeneous underwater sensor networks and edge 

computing infrastructures. This interoperability enables 

collaborative data sharing and analysis among multiple 

AUVs and remote monitoring stations, enhancing 

situational awareness and decision support capabilities. By 

utilizing CoAP, AUVs can establish lightweight, bi-

directional communication channels with edge computing 

resources, enabling seamless transmission of sensory data 

and inference results in real time. This facilitates swift 

decision-making and response to dynamic underwater 

environments, enhancing overall operational efficiency. 

3.3 Deep Q-Networks 

DQN, a type of reinforcement learning algorithm, is well-

suited for training AUVs to make intelligent decisions 

regarding object classification and navigation based on the 

feedback received from the environment. AUVs operating 

in underwater environments encounter various objects and 

obstacles that may require immediate decision-making. 

DQN enables AUVs to learn optimal policies for object 

classification and navigation by interacting with the 

environment and receiving rewards or penalties based on 

their actions. This autonomous decision-making capability 

is crucial for enabling AUVs to navigate safely and 

efficiently while performing object classification tasks. 

DQN facilitates adaptive learning, allowing AUVs to 

improve their classification and navigation strategies over 

time continuously. By iteratively exploring the underwater 

environment and learning from experience, AUVs can 

refine their object classification models and adapt to 

changing environmental conditions, such as variations in 

object appearance or density. This adaptive learning 

process enhances the robustness and generalization 

capabilities of the AUV system, enabling it to perform 

effectively in diverse underwater scenarios. DQN balances 

exploration and exploitation during the learning process, 

enabling AUVs to discover new object classes and refine 

their classification models while leveraging existing 

knowledge to maximize classification accuracy.  

This exploration-exploitation trade-off is essential for 

achieving a balance between exploring uncertain regions of 

the underwater environment and exploiting known 

information to achieve efficient object classification and 

navigation. DQN can be seamlessly integrated with edge 

computing architectures deployed onboard AUVs, 

enabling distributed reinforcement learning and decision-

making close to the data source. By leveraging edge 

computing resources, DQN-based AUV systems can 

perform real-time model training and decision-making 

without relying on centralized processing, reducing 

communication latency and bandwidth requirements. This 
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integration enhances the autonomy and responsiveness of 

AUVs while minimizing dependence on external 

infrastructure. DQN optimizes action-selection policies by 

estimating the long-term expected rewards associated with 

different actions in the underwater environment. By 

maximizing cumulative rewards over time, DQN-trained 

AUVs learn to make decisions that lead to favorable 

outcomes, such as accurate object classification and 

efficient navigation. This policy optimization process 

enables AUVs to adapt their behavior to achieve mission 

objectives while considering factors such as energy 

efficiency, time constraints, and environmental constraints. 

3.4 Implementation 

FPGA and GPU are chosen as the primary computational 

engines due to their parallel processing capabilities and 

suitability for deep learning tasks. FPGA excels in real-

time inference tasks with its low-latency and high-

throughput processing, making it ideal for executing 

SNNs. GPU complements FPGA by handling 

computationally intensive tasks such as model training and 

offline analysis, enhancing the system's scalability and 

adaptability. FPGA serves as the backbone for the real-

time processing of sensory data and execution of SNN-

based object classification algorithms. Its parallel 

processing architecture allows for efficient execution of 

SNNs, which are specifically designed to process 

spatiotemporal data and mimic the functionality of 

biological neurons. By leveraging FPGA's capabilities, 

AUVs can make rapid decisions based on sensory inputs, 

enhancing their autonomy and responsiveness in 

underwater environments. GPU complements FPGA 

processing by tackling computationally intensive tasks 

such as deep learning model training and offline analysis. 

Its high computational throughput enables adaptive 

learning techniques like reinforcement learning with DQN, 

allowing AUVs to continuously update their classification 

models and decision-making policies based on feedback 

from the environment. GPU-based acceleration enhances 

system versatility and adaptability, enabling AUVs to 

handle diverse underwater scenarios effectively. CoAP 

facilitates communication and coordination between 

AUVs, edge computing nodes, and remote servers. Its 

lightweight and efficient communication protocol 

minimizes overhead and latency, ensuring timely 

transmission of sensory data and control messages between 

interconnected devices. CoAP enables distributed data 

exchange and collaborative decision-making, enhancing 

the system's scalability and flexibility in dynamic 

underwater environments. Single Shot Multibox Detector 

(SSD) is employed for real-time processing of sonar and 

camera data onboard AUVs. SSD's speed and accuracy 

make it suitable for detecting and localizing underwater 

objects, providing crucial information for subsequent 

classification tasks using SNNs. By leveraging SSD's 

capabilities, AUVs can effectively identify and track 

objects of interest in real time, enabling precise navigation 

and decision-making in underwater environments. 

Quantization techniques are applied to reduce the 

computational complexity of deep learning models, 

enabling efficient execution on resource-constrained 

hardware platforms like FPGA and GPU. By quantizing 

neural network parameters and activations, the memory 

footprint and computational requirements of SNNs and 

DQN models are significantly reduced, facilitating their 

deployment on AUVs with limited power and 

computational resources. Quantization enhances system 

efficiency and energy consumption, ensuring optimal 

performance in underwater environments. 

𝑉(𝑡) = 𝑉(𝑡 − 1) ∗ 𝑒−
∆𝑡

𝑇 +I(t)*R*(1-𝑒−
∆𝑡

𝑇 ) 
(1) 

The membrane potential V(t) of a neuron at time t in a 

SNN is updated using the leaky integrate-and-fire model 

equation, which incorporates the input current I(t), 

membrane resistance R, and membrane time constant τ. 

When the membrane potential exceeds a threshold, the 

neuron emits a spike, capturing the neuron's activation and 

propagation of information in the network. 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎)

+ 𝛼. (𝑟 + 𝛾. 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)

− 𝑄(𝑠, 𝑎)) 

(2) 

In DQN training, the Q-learning update rule adjusts the Q-

value Q(s,a) for a state-action pair s and a based on the 

received reward r, the maximum Q-value for the next state 

𝑠′ and discount factor γ. This update is performed 

iteratively to optimize the Q-values towards the optimal 

policy, guiding the agent's decision-making process. 

𝜔̂ = 𝑟𝑜𝑢𝑛𝑑(𝜔 ∆)∆⁄  (3) 

In quantization, the original parameter 𝜔 is rounded to the 

nearest value that is a multiple of the quantization step size 

Δ, producing the quantized parameter 𝜔̂. This process 

reduces the precision of the parameter, enabling more 

efficient storage and computation while sacrificing some 

accuracy. 

4. Results 

An AUV equipped with sensors, including sonar and 

cameras, was selected for data collection purposes. The 

AUV's computational hardware, comprising FPGA and 

GPU, was utilized for onboard processing and deep 

learning inference. The sensors were configured and 

synchronized onboard to collect relevant data for 

underwater object classification, such as sonar images and 

video streams, ensuring accurate spatiotemporal data 

capture of the underwater environment. SNNs were 

developed and trained for real-time object classification 

using the collected underwater sensor data. DQN was 
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implemented for adaptive decision-making and navigation 

based on the classified objects and environmental 

feedback. Edge computing nodes were set up onboard the 

AUV to execute deep learning algorithms and perform 

real-time inference, with FPGA and GPU accelerators 

configured to process sensor data and execute complex 

computations efficiently. The CoAP was integrated for 

communication between AUVs, edge computing nodes, 

and remote servers, facilitating reliable data exchange and 

control message transmission over underwater 

communication channels. The SSD algorithm was 

integrated for real-time detection and localization of 

underwater objects, processing sonar and camera data 

streams to provide accurate object localization information 

to the classification module. Quantization techniques were 

applied to reduce the computational complexity of deep 

learning models and optimize their execution on resource-

constrained hardware platforms. The quantization 

parameters were fine-tuned to balance between model 

efficiency and classification accuracy. Experiments were 

conducted in controlled underwater environments or 

simulated scenarios to validate the performance of the 

implemented system. Evaluation encompassed assessing 

the accuracy, latency, and energy efficiency of object 

classification and decision-making processes under various 

underwater conditions. The effectiveness of the 

implemented system in real-time underwater object 

classification and autonomous navigation tasks was 

analyzed, and performance metrics such as classification 

accuracy, processing speed, energy consumption, and 

adaptability to dynamic underwater environments were 

carefully evaluated. The dataset used here is the 

Underwater Object Detection Dataset from Kaggle [19]. 

The dataset contains different classes of underwater 

creatures. It includes 638 images. Creatures are annotated 

in YOLO v5 PyTorch format. Some of the sample images 

that are used for object classification are given below. 

 

  

  

Fig 2 Sample Images for Underwater Object Classification 

Table 1 Underwater Object Characteristics and 

Classification 

Obje

ct 

no. 

Water 

Temperat

ure (°C) 

Salini

ty 

(ppt) 

Turbid

ity 

(NTU) 

Obje

ct 

Size 

(cm) 

Object 

Brightn

ess 

Object 

Classifica

tion 

1 12.8 34.5 15.2 30 120 Coral Reef 

2 9.5 32.2 10.8 25 90 Jelly Fish 

3 15.7 36.1 20.5 40 150 Rock 

Formation 

4 11.3 30.8 18.9 35 100 Star Fish 

5 13.6 33.4 12.3 20 70 Fish 

 

 

Fig 3 Object Depth in Underwater 

Figure 3 illustrates the depth distribution of underwater 

objects detected by an AUV equipped with sensors for 

object classification in the underwater environment. The 

objects exhibit varying depths within the underwater 

environment. Object 3 is observed at the shallowest depth 

of approximately 3.9 meters, indicating its proximity to the 

water's surface. Conversely, Object 2 is detected at the 

greatest depth of approximately 8.3 meters, suggesting its 

presence in deeper regions of the underwater terrain. The 

graph provides insights into the vertical distribution of 

underwater objects, revealing potential patterns or 

correlations between object depth and other environmental 

factors such as water temperature, salinity, and turbidity. 

Objects located at greater depths can be influenced by 
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factors such as light availability, nutrient availability, and 

water currents, which impact their distribution and 

abundance in the underwater ecosystem. The numerical 

values depicted on the y-axis represent the precise depths 

of the detected objects, facilitating quantitative analysis 

and comparison. This information is crucial for 

understanding the spatial distribution of underwater objects 

and informing decision-making processes related to 

underwater exploration, environmental monitoring, and 

habitat conservation efforts. 

 

Fig 4 Object Density in Underwater 

Figure 4 depicts the object density distribution within the 

underwater environment, showcasing the mass per unit 

volume of various underwater objects detected by an AUV. 

Each point on the line represents the density of a specific 

object, categorized and analyzed based on the collected 

data. Object 3 demonstrates the highest density of 

approximately 1.56 g/cm^3, indicating a relatively 

compact and dense structure. On the other hand, Object 4 

displays the lowest density of approximately 0.57 g/cm^3, 

suggesting a less dense and potentially more porous 

composition.  

 

Fig 5 Object Volume in Underwater 

Figure 5 illustrates the volume of different objects within 

an underwater environment. Each object, labeled from 

object 1 to object 5, is represented on the x-axis, while the 

corresponding volume of each object, measured in cubic 

centimeters (cm^3), is depicted on the y-axis. Object 3 

emerges as the largest in volume, with a substantial size of 

15,600 cm^3. Object 4 follows closely behind with a 

volume of 12,250 cm^3. Object 1 and object 2 exhibit 

moderate volumes of 8,100 cm^3 and 6,250 cm^3, 

respectively. Object 5 appears to be the smallest among the 

group, with a volume of 2,800 cm^3.  

Table 2 Performance Evaluation of Underwater Object 

Classification System 

Experime

nt no. 

Experime

nt Name 

Classificati

on 

Accuracy 

(%) 

Processi

ng Speed 

(fps) 

Energy 

Consumpti

on (W) 

1 Baseline 92.7 15 120 

2 Low-Light 

Conditions 

89.7 12 130 

3 High-

Turbidity 

Environme

nt 

94.1 18 115 

4 Dynamic 

Depth 

Changes 

91.2 14 125 

5 Varying 

Salinity 

Levels 

90.8 16 128 

 

 

Figure 6 Adaptability Score of the Implemented System 

Figure 6 illustrates the adaptability scores of a system 

across five distinct experiments. Each experiment, labeled 

from 1 to 5, is positioned along the x-axis, while the 

corresponding adaptability scores, spanning from 7.5 to 

8.9, are depicted on the y-axis. Experiment 3 stands out 

with the highest adaptability score of approximately 8.9, 

indicating that the system performed exceptionally well in 

this particular experimental condition. Experiment 5 

reveals the lowest adaptability score, hovering around 7.5, 

suggesting potential challenges or limitations encountered 

by the system under those circumstances. Throughout the 

experiments, a discernible trend emerges, showcasing 

variability in adaptability scores. This variability 

underscores the system's capacity to respond and adjust to 

different experimental conditions, as evidenced by the 
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fluctuations in adaptability scores across the five 

experiments. 

5. Conclusion 

This research presents a UOC for bio-inspired deep 

learning techniques, particularly SNN, with edge 

computing paradigms utilizing FPGAs and GPUs coupled 

with the CoAP communication protocol. The adaptability 

scores obtained from experiments signify the system's 

capability to respond effectively to changing conditions, a 

crucial aspect in underwater environments where factors 

like visibility and terrain can vary unpredictably. 

Experiment 3, with an adaptability score of approximately 

8.9, showcases the potential of the system to adapt 

optimally, while experiment 5, scoring around 7.5, reveals 

areas for improvement in adaptability. The analysis of 

object volumes highlights the diversity of underwater 

objects encountered by AUVs during exploration missions. 

Object 3, with a volume of 15,600 cm^3, stands out as the 

largest object, while object 5, with a volume of 2,800 

cm^3, represents the smallest among the group. These 

numerical insights provide valuable information for 

optimizing object detection and classification algorithms, 

ultimately enhancing the autonomy and efficiency of AUV 

operations. Further refinement of bio-inspired deep 

learning models can be pursued to improve the adaptability 

of AUVs in dynamically changing underwater 

environments. This may involve investigating new bio-

inspired algorithms that mimic the adaptive behaviors 

observed in marine organisms, such as fish or dolphins, to 

enhance the AUVs' ability to respond to unforeseen 

challenges. Integration of multi-modal sensing 

technologies, such as acoustic, visual, and environmental 

sensors, can provide AUVs with a more comprehensive 

understanding of their surroundings. Future research can 

focus on developing fusion algorithms that combine data 

from different sensors to improve object classification 

accuracy and robustness, especially in conditions with low 

visibility or complex underwater terrain. 
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