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Abstract: Real-time emotion recognition from facial expressions holds significant promise for enhancing human-computer interaction 

and personalizing user experiences. Harnessing the potential of advanced technologies, the research presents a novel approach to real-

time emotion recognition from facial expressions using Spiking Neural Networks (SNN) on wearable edge devices. The methodology 

integrates key technologies including Open Neural Network Exchange (ONNX), Message Queuing Telemetry Transport (MQTT), and 

Long Short-Term Memory (LSTM) networks to enhance the efficiency and accuracy of emotion recognition systems in practical 

scenarios. By leveraging ONNX, seamless model interchangeability and deployment across diverse hardware platforms are achieved, 

ensuring scalability and flexibility in model deployment. Through optimized model conversion and deployment on wearable edge 

devices, interoperability and efficiency in real-time emotion recognition tasks are ensured. MQTT serves as a lightweight and reliable 

communication protocol for seamless data exchange between wearable edge devices and external systems, facilitating real-time 

transmission of facial expression data and inference results. This enables collaborative processing and decision-making across distributed 

networks, enhancing system responsiveness and scalability. The integration of LSTM networks captures temporal dependencies in facial 

expressions, improving the accuracy and robustness of emotion recognition systems. LSTM networks excel in modeling sequential data 

and long-term dependencies, making them suitable for analyzing temporal patterns in facial expressions over time. 

Keywords: Spiking Neural Networks (SNNs), Open Neural Network Exchange (ONNX), Long Short-Term Memory (LSTM), Message 

Queuing Telemetry Transport (MQTT). 

1.Introduction 

Emotion recognition from facial expressions is a 

captivating field with applications spanning from human-

computer interaction to mental health monitoring [1]. With 

the rise of wearable technology and the increasing demand 

for real-time processing capabilities, there is a growing 

interest in leveraging advanced neural network 

architectures, such as SNN, for performing emotion 

recognition tasks directly on wearable edge devices [2].  

This integration promises to bring about significant 

advancements in both accuracy and efficiency, enabling 

seamless and personalized user experiences in various 

domains [3]. The utilization of Field Programmable Gate 

Arrays (FPGA) and Application-Specific Integrated 

Circuits (ASIC) plays a crucial role in enhancing the 

performance and efficiency of real-time emotion 

recognition systems based on SNN [4]. These hardware 

platforms offer customizable and parallel processing 

capabilities, making them well-suited for implementing 

complex neural network architectures optimized for low-

latency inference on edge devices [5]. By leveraging the 

inherent parallelism and reconfigurability of FPGA and the 

specialized hardware design of ASIC, researchers and 

developers can design and deploy efficient SNN-based 

emotion recognition systems capable of meeting the 

stringent requirements of real-time processing [6]. 

Furthermore, the adoption of standardized formats such as 

ONNX facilitates seamless model deployment and 

interoperability across different hardware platforms and 

software frameworks [7]. ONNX enables the conversion 

and exchange of trained neural network models between 

various deep learning frameworks, allowing developers to 

leverage pre-trained models and optimize them for 

deployment on FPGA and ASIC-based edge devices [8]. 

This interoperability enhances the flexibility and 

scalability of SNN-based emotion recognition systems, 

enabling rapid prototyping and deployment in diverse 

environments. In addition to hardware acceleration and 

model interchangeability, efficient communication 

protocols such as MQTT are essential for facilitating 

seamless interaction between wearable edge devices and 
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external systems [9]. MQTT provides lightweight and 

reliable messaging communication suitable for resource-

constrained environments, enabling real-time data 

exchange between edge devices and cloud servers or other 

edge devices [10]. By leveraging MQTT for data 

transmission, SNN-based emotion recognition systems can 

seamlessly integrate with existing infrastructure and enable 

collaborative processing and decision-making across 

distributed networks. Moreover, advanced neural network 

architectures such as LSTM and Temporal Convolutional 

Neural Networks (TCNN) offer complementary 

capabilities for capturing temporal dependencies and 

spatial features in facial expressions, enhancing the 

accuracy and robustness of emotion recognition systems 

[11]. LSTM networks excel in modeling sequential data 

and capturing long-term dependencies, making them 

suitable for analyzing temporal patterns in facial 

expressions over time [12]. On the other hand, TCNN 

leverage convolutional operations to extract spatial 

features from input data, enabling efficient and scalable 

processing of high-dimensional image data. In this context, 

SNN emerge as a promising paradigm for real-time 

emotion recognition from facial expressions on wearable 

edge devices [13]. SNN mimic the asynchronous and 

event-driven processing observed in biological neural 

networks, enabling efficient computation and 

communication of spatiotemporal information inherent in 

facial expressions [14]. By leveraging the inherent 

parallelism and sparsity of spike-based processing, SNN 

offer the potential for achieving high accuracy and energy 

efficiency in real-time emotion recognition tasks, making 

them well-suited for deployment on resource-constrained 

edge devices. The objectives are: 

• Develop a real-time emotion recognition system 

capable of accurately analyzing facial 

expressions. 

• Utilize SNN to achieve efficient processing of 

spatiotemporal information inherent in facial 

expressions. 

• Implement the system on wearable edge devices 

equipped with FPGA and ASIC for optimized 

performance. 

• Explore the interoperability of neural network 

models using ONNX for seamless deployment on 

diverse hardware platforms. 

• Investigate efficient communication protocols like 

MQTT for data exchange between wearable edge 

devices and external systems. 

2. Literature Work 

Research on real-time emotion recognition from facial 

expressions using SNN on wearable edge devices has 

gained considerable traction in recent years due to its 

potential to revolutionize human-computer interaction and 

enhance user experience [15]. Several studies have 

explored the feasibility and effectiveness of employing 

SNN for emotion recognition tasks, leveraging the 

processing capabilities of wearable edge devices to achieve 

low-latency and energy-efficient solutions [16]. A notable 

advantage of using SNN for real-time emotion recognition 

is their ability to mimic the biological behavior of neurons, 

enabling efficient processing of spatiotemporal information 

inherent in facial expressions [17]. This bio-inspired 

approach holds promise for achieving high accuracy and 

robustness in emotion recognition tasks, even in dynamic 

and noisy environments commonly encountered in real-

world applications. Moreover, the deployment of SNN on 

wearable edge devices offers the advantage of localized 

processing, reducing the need for data transmission to 

centralized servers and thereby enhancing privacy and 

security [18]. By performing inference tasks directly on the 

device, SNN-based emotion recognition systems can 

operate in real time without relying on continuous network 

connectivity, making them suitable for applications in 

remote or resource-constrained environments. However, 

despite these advantages, several challenges and 

limitations exist in the implementation of real-time 

emotion recognition using SNNs on wearable edge devices 

[19]. One significant drawback is the computational 

complexity associated with training and inference tasks, 

which may pose constraints on the hardware capabilities of 

wearable devices and lead to increased power consumption 

and latency [20]. The interpretability of SNN models and 

the robustness of their performance across diverse 

demographic groups and environmental conditions remain 

areas of ongoing research and development [21]. Ensuring 

the reliability and fairness of SNN-based emotion 

recognition systems requires addressing biases in training 

data and optimizing model architectures for generalization 

to real-world scenarios. The integration of SNN with 

wearable devices introduces design considerations related 

to energy efficiency, memory constraints, and real-time 

processing requirements.  

3. Proposed work 

 

Fig.1 Facial Expression Recognition Pipeline with Spiking 

Neural Network Inference 
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3.1 Message Queuing Telemetry Transport 

The integration of MQTT aims to establish an efficient 

communication protocol for data transmission between 

edge devices and backend servers. The primary focus lies 

in designing and implementing a MQTT-based 

communication framework tailored specifically for real-

time emotion recognition applications on wearable edge 

devices. This framework will seamlessly integrate with the 

existing SNN-based emotion recognition pipeline, ensuring 

efficient data exchange and synchronization. To optimize 

the MQTT protocol for the application, adjustments to 

parameters such as quality of service levels, message size, 

and retention policies will be explored. Through thorough 

evaluation, the aim is to enhance the efficiency of data 

transmission, measured in terms of message latency, 

bandwidth utilization, and power consumption, particularly 

on resource-constrained wearable edge devices. Scalability 

and reliability are paramount in edge environments, 

prompting exploration into MQTT's capabilities in 

handling concurrent connections and ensuring message 

delivery reliability amidst dynamic edge environments. 

Investigation into MQTT broker clustering techniques and 

fault-tolerant strategies will be conducted to bolster system 

robustness and resilience. Security and privacy are crucial 

considerations in handling sensitive facial expression data. 

Analysis will encompass MQTT security mechanisms like 

TLS encryption, authentication, and access control to 

safeguard data during transmission. Additionally, 

implementation of privacy-preserving techniques, 

including data anonymization and differential privacy, will 

uphold user privacy. Experimental validation will be 

pivotal in gauging the efficacy of the proposed integration. 

Real-world experiments conducted on wearable edge 

devices equipped with SNN-based emotion recognition 

models and the MQTT-enabled communication framework 

will provide insights into performance under various 

conditions. These experiments will evaluate the 

effectiveness and efficiency of the integration, considering 

diverse network scenarios, user loads, and edge device 

configurations. 

𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =∑ (𝐿𝑖
𝑁

𝑖=1
∗ 𝐼𝑖) 

(1) 

This equation estimates the total power consumption of 

wearable edge devices during MQTT communication by 

summing the product of voltage (𝐿𝑖) and current (𝐼𝑖) for 

each operating component. 

𝑄𝑜𝑆𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑓(𝑄𝑜𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) (2) 

This equation adjusts the initial Quality of Service (QoS) 

level based on current network conditions, such as latency, 

packet loss, and available bandwidth, using a function f to 

optimize message delivery. 

3.2 Long Short-Term Memory  

LSTM networks, renowned for their proficiency in 

handling sequential data processing tasks, hold substantial 

promise across various domains, including natural 

language processing and time series analysis. The aim is to 

explore the potential of LSTM networks in augmenting the 

accuracy and efficiency of emotion recognition systems 

deployed on wearable edge devices. Initially, efforts will 

be directed towards the acquisition and preprocessing of 

facial expression datasets deemed suitable for training 

LSTM models. This involves meticulous attention to data 

quality and the eradication of noise to facilitate optimal 

model performance. The design and implementation of 

LSTM-based architectures is undertaken meticulously 

crafted for the specific exigencies of real-time emotion 

recognition tasks. These architectures will undergo 

thorough optimization tailored to deployment on resource-

constrained wearable edge devices, with meticulous 

considerations given to memory usage, computational 

complexity, and power consumption. In a bid to further 

bolster the performance of LSTM-based emotion 

recognition systems, integration with existing SNN will be 

pursued. This amalgamation aims to harness the collective 

strengths of both approaches, amalgamating the sequential 

processing prowess of LSTM networks with the efficiency 

and scalability inherent in SNN. Real-time inference 

pipelines will be instituted to facilitate efficient emotion 

recognition directly on wearable edge devices, obviating 

the necessity for continual communication with external 

servers. Rigorous evaluation forms an integral aspect of the 

proposed work, wherein factors such as accuracy, latency, 

energy efficiency, and robustness under a myriad of real-

world conditions will be meticulously scrutinized. 

Additionally, paramount importance will be accorded to 

privacy and security considerations, with the 

implementation of privacy-preserving techniques 

paramount to safeguarding sensitive user data during 

emotion recognition. Furthermore, efforts will be devoted 

to enhancing user experience through the development of 

intuitive interfaces and personalized algorithms calibrated 

to cater to individual users' preferences and behavioral 

nuances.  

𝑦̂𝑒𝑑𝑔𝑒 = 𝐿𝑆𝑇𝑀𝑒𝑑𝑔𝑒(𝑋𝑒𝑑𝑔𝑒), 𝑦̂𝑐𝑙𝑜𝑢𝑑

= 𝐿𝑆𝑇𝑀𝑐𝑙𝑜𝑢𝑑(𝑋𝑐𝑙𝑜𝑢𝑑) 

(3) 

Inference equations for LSTM models deployed on edge 

devices (𝐿𝑆𝑇𝑀𝑒𝑑𝑔𝑒) and cloud servers (𝐿𝑆𝑇𝑀𝑐𝑙𝑜𝑢𝑑), where 

𝑋𝑒𝑑𝑔𝑒 and 𝑋𝑐𝑙𝑜𝑢𝑑 represent input data at the edge and 

cloud, respectively, and 𝑦̂𝑒𝑑𝑔𝑒 and 𝑦̂𝑐𝑙𝑜𝑢𝑑  denote the 

predicted outputs. 

𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
1

𝑁
∑ 𝐿(𝑦𝑖 ,

𝑁

𝑖=1
𝑦̂𝑖) 

(4) 
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Generalization error computed as the average loss L 

between true labels 𝑦𝑖  and predicted labels 𝑦̂𝑖 across a 

diverse set of domains represented by N data samples. 

Algorithm 1: LSTM-Based Emotion Recognition 

Input: Facial expression dataset D, maximum number of 

training epochs MaxEpochs, batch size B, learning rate η 

Output: Optimized LSTM models for edge and cloud 

deployment (𝐿𝑆𝑇𝑀𝑒𝑑𝑔𝑒, 𝐿𝑆𝑇𝑀𝑐𝑙𝑜𝑢𝑑) 

1. Load and preprocess dataset. 

2. Define and initialize LSTM architectures. 

3. Initialize optimizer with learning rate η. 

4. Train models with mini-batch gradient descent: 

5. for epoch in range(MaxEpochs): 

6. for batch in range(0, len(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑑𝑎𝑡𝑎), B): 

7. 𝑋𝑏𝑎𝑡𝑐ℎ, 𝑦𝑏𝑎𝑡𝑐ℎ  = 𝑔𝑒𝑡𝑏𝑎𝑡𝑐ℎ(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑑𝑎𝑡𝑎 , 𝑏𝑎𝑡𝑐ℎ, 𝐵) 

8. 𝑦 
𝑒𝑑𝑔𝑒

 = 𝐿𝑆𝑇𝑀𝑒𝑑𝑔𝑒  (𝑋𝑏𝑎𝑡𝑐ℎ) 

9. 𝐿𝑒𝑑𝑔𝑒  = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑙𝑜𝑠𝑠(𝑦𝑏𝑎𝑡𝑐ℎ , 𝑦 
𝑒𝑑𝑔𝑒

) 

10. 𝑢𝑝𝑑𝑎𝑡𝑒𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(θ, 𝐿𝑒𝑑𝑔𝑒 , η) 

11. Compute inference using 𝑦 
𝑒𝑑𝑔𝑒

 = 𝐿𝑆𝑇𝑀𝑒𝑑𝑔𝑒, (𝑋𝑒𝑑𝑔𝑒) 

and 𝑦 
𝑐𝑙𝑜𝑢𝑑

 = 𝐿𝑆𝑇𝑀𝑐𝑙𝑜𝑢𝑑  (𝑋𝑐𝑙𝑜𝑢𝑑). 

12. Calculate generalization error 𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 
1

𝑁
∑ 𝐿(𝑦𝑖 ,
𝑁
𝑖=1 𝑦 

𝑖
) 

13. Evaluate models on performance metrics. 

14. Implement privacy-preserving techniques. 

15. Enhance user experience with intuitive interfaces and 

personalized algorithms. 

 

The algorithm is designed to enhance emotion detection 

accuracy and efficiency in wearable edge devices. Initially, 

it involves acquiring and preprocessing facial expression 

datasets to ensure high-quality data for training. The 

algorithm employs LSTM networks to model and 

recognize emotions in real-time. Optimization techniques 

are applied to tailor the LSTM model for resource-

constrained edge devices, focusing on minimizing memory 

usage, computational complexity, and power consumption. 

Integration with Spiking Neural Networks (SNN) further 

boosts performance, combining LSTM's sequential 

processing strengths with SNN's efficiency. Rigorous 

evaluation ensures the system's robustness, accuracy, and 

energy efficiency, while privacy-preserving techniques 

safeguard user data. 

3.3 Open Neural Network Exchange 

ONNX serves as a standardized format for representing 

deep learning models, facilitating interoperability and 

optimization across various frameworks and hardware 

platforms. In the context of real-time emotion recognition, 

the utilization of ONNX offers the potential to streamline 

model deployment and execution on wearable edge 

devices, thereby enhancing efficiency and scalability. The 

first step involves converting SNN-based emotion 

recognition models into the ONNX format. This 

conversion process ensures compatibility with ONNX-

enabled inference engines and facilitates seamless 

deployment on wearable edge devices. Additionally, model 

optimization techniques may be applied to enhance 

performance and efficiency, considering the resource-

constrained nature of edge computing environments. Once 

converted and optimized, the ONNX models are deployed 

directly on wearable edge devices for real-time inference. 

Leveraging the lightweight and efficient runtime 

environment provided by ONNX, the deployed models 

enable rapid and accurate emotion recognition directly on 

the edge, eliminating the need for continuous data 

transmission to centralized servers. While emphasizing 

edge-based processing for real-time inference, the 

proposed work also explores integration with cloud-based 

resources for enhanced capabilities. Leveraging ONNX's 

compatibility with cloud-based inference engines, the 

system can seamlessly offload intensive computation tasks 

to the cloud when necessary, augmenting edge-based 

processing with additional computational resources. 

Recognizing the dynamic nature of emotion recognition 

tasks and evolving user preferences, the proposed work 

incorporates mechanisms for dynamic model adaptation. 

ONNX's flexibility allows for efficient updates and 

modifications to deployed models, enabling continuous 

learning and adaptation based on user feedback and 

changing environmental conditions. Privacy-preserving 

techniques are paramount in emotion recognition systems 

to safeguard sensitive user data. The proposed work 

integrates privacy-preserving mechanisms within the 

ONNX framework, ensuring that user privacy is upheld 

during data transmission and inference processes on 

wearable edge devices. Rigorous evaluation is conducted 

to assess the performance of ONNX-enabled emotion 

recognition systems on wearable edge devices. Metrics 

such as inference latency, accuracy, and resource 

utilization are meticulously analyzed to identify areas for 

optimization and improvement. 

ℳ𝑂𝑁𝑁𝑋 =∑ 𝑇(ℳ𝑆𝑁𝑁
(𝑙)

𝐿

𝑙=1
) 

 

(5) 

The equation represents the process of converting the 

SNN-based emotion recognition model ℳ𝑆𝑁𝑁 into the 

ONNX format ℳ𝑂𝑁𝑁𝑋. Here, T denotes the transformation 

function applied to each layer ℓ of the SNN model, 

resulting in the corresponding layer of the ONNX model. 

The summation extends over all L layers of the SNN 

model, ensuring that each layer is appropriately 

transformed and incorporated into the ONNX 

representation. This equation captures the iterative nature 

of the conversion process, where each layer's 
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transformation contributes to the overall structure of the 

ONNX model. 

ℳ𝑂𝑁𝑁𝑋−𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 ℳ𝑂𝑁𝑁𝑋  𝑂 (6) 

The equation represents the optimization process for the 

ONNX representation ℳ𝑂𝑁𝑁𝑋   of the emotion recognition 

model. Here, O denotes the optimization objective, which 

could include metrics such as model size, inference 

latency, or resource utilization. The goal is to find the 

ONNX model ℳ𝑂𝑁𝑁𝑋 that minimizes the optimization 

objective O, ensuring that the deployed model on wearable 

edge devices is efficient and well-suited for real-time 

inference tasks. This equation encapsulates the iterative 

optimization process aimed at improving the performance 

and efficiency of the ONNX-based emotion recognition 

system. 

Algorithm 2: ONNX-Based Emotion Recognition 

Input: SNN-based emotion recognition model 𝑀𝑆𝑁𝑁, 

optimization objective O 

Output: Optimized ONNX model 𝑀𝑂𝑁𝑁𝑋−𝑜𝑝𝑡 

1. Convert SNN model 𝑀𝑆𝑁𝑁 to ONNX format 𝑀𝑂𝑁𝑁𝑋: 

2. for each layer l in 𝑀𝑆𝑁𝑁: 

3. 𝑀𝑂𝑁𝑁𝑋(𝑙) = T(𝑀𝑆𝑁𝑁(𝑙)) 

4. Ensure ONNX model compatibility. 

5. Optimize ONNX model 𝑀𝑂𝑁𝑁𝑋: 

6. Define optimization objective O. 

7. Initialize optimization algorithm. 

8. while stopping criterion not met: 

9. Evaluate ONNX model performance. 

10. Adjust parameters to minimize O: 

11. 𝑀𝑂𝑁𝑁𝑋−𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑀𝑂𝑁𝑁𝑋
O 

12. Update ONNX model. 

13. Deploy optimized ONNX model on edge devices: 

14. Deploy 𝑀𝑂𝑁𝑁𝑋−𝑜𝑝𝑡  on edge. 

15. Implement real-time inference: 

16. 𝑦 
𝑒𝑑𝑔𝑒

 = 𝑀𝑂𝑁𝑁𝑋−𝑜𝑝𝑡 (𝑋𝑒𝑑𝑔𝑒) 

17. Integrate with cloud (if necessary): 

18. Configure cloud offloading: 

19. 𝑦 
𝑐𝑙𝑜𝑢𝑑

= 𝑀𝑂𝑁𝑁𝑋−𝑐𝑙𝑜𝑢𝑑  (𝑋𝑐𝑙𝑜𝑢𝑑) 

20. Adapt model dynamically: 

21. Monitor performance and feedback. 

22. Update ONNX model based on new data. 

23. Implement privacy-preserving techniques. 

24. Evaluate performance metrics: 

25. Assess inference latency, accuracy, resource 

utilization. 

26. Optimize based on evaluation. 

 

This enhances real-time emotion detection on wearable 

edge devices by utilizing the ONNX format. It begins by 

converting existing SNN models into ONNX format for 

interoperability and efficient deployment. The algorithm 

applies optimization techniques to improve performance, 

ensuring the models run effectively on resource-

constrained edge devices. By leveraging ONNX's 

lightweight runtime environment, the system enables fast 

and accurate emotion recognition without needing 

continuous data transmission to external servers. 

Additionally, the algorithm allows for dynamic model 

adaptation and integrates privacy-preserving techniques to 

protect user data, ensuring robust and secure emotion 

recognition. 

3.4 Implementation 

 

Fig.2 Real-Time Emotion Recognition System on 

Wearable Edge Devices 

The utilization of FPGA and ASIC as hardware 

accelerators is pivotal for enhancing the computational 

efficiency of SNN and other neural network models. 

Custom hardware architectures optimized for real-time 

inference must be designed to exploit the parallel 

processing capabilities of FPGA and ASIC, ensuring 

efficient execution of emotion recognition tasks directly on 

wearable edge devices. Compatibility with the ONNX 

format is essential for interoperability and deployment 

flexibility. SNN models need to be converted to ONNX, 

allowing seamless integration with ONNX runtime 

environments on edge devices. This facilitates efficient 

execution and enables the deployment of emotion 

recognition systems across diverse hardware platforms. 

The integration of the MQTT protocol facilitates efficient 

communication between wearable edge devices and 

backend servers. MQTT ensures low-latency, reliable data 

exchange, enabling real-time transmission of facial 

expression data and emotion recognition results, crucial for 

responsive user experiences. LSTM networks and TCNN 

are incorporated for contextual analysis of facial 

expressions. LSTM captures temporal dependencies in 
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facial expression sequences, while TCNNs extract spatial-

temporal features, enhancing the system's ability to 

interpret nuanced emotions accurately. The development of 

SNN-based models is fundamental for real-time emotion 

recognition. These models efficiently process 

spatiotemporal patterns in facial data, mimicking the 

behavior of biological neurons for robust and efficient 

emotion recognition directly on wearable edge devices. 

Optimization for edge deployment involves minimizing 

model size, memory footprint, and computational 

complexity to ensure efficient execution on resource-

constrained wearable devices. Real-time inference 

pipelines are designed to incorporate hardware-accelerated 

SNN, LSTM, and TCNN, along with efficient data 

preprocessing and feature extraction stages. Performance 

evaluation is conducted to assess inference speed, 

accuracy, power efficiency, and resource utilization. 

Iterative optimization is performed to address any 

bottlenecks or inefficiencies identified during evaluation, 

ensuring optimal performance of the emotion recognition 

system on wearable edge devices. Privacy-preserving 

techniques are implemented to protect sensitive facial 

expression data during transmission and processing, while 

security measures safeguard the integrity and 

confidentiality of the emotion recognition system. User-

friendly interfaces and feedback mechanisms enhance 

usability and accuracy, facilitating continuous 

improvement and adaptation to users' needs over time. 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑 =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

(7) 

This equation calculates the performance improvement 

achieved through hardware acceleration with FPGAs or 

ASICs, where 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is the original 

performance and acceleration is the acceleration factor. 

𝑂𝑁𝑁𝑋𝑠𝑖𝑧𝑒 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑖𝑜
 

(8) 

This equation estimates the size reduction achieved by 

converting SNN models to the ONNX format, where 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑖𝑧𝑒  is the original model size. 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛

+ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  

(9) 

This equation computes the total latency incurred during 

communication using MQTT, including transmission 

latency (𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛) and processing latency 

(𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔). 

4. Results 

The hardware configuration entails the utilization of 

wearable edge devices endowed with FPGAs or ASICs, 

ensuring compatibility with ONNX and MQTT protocols. 

These devices are equipped with sensors capable of 

capturing facial expression data, enabling real-time 

analysis directly on the edge. In terms of software 

framework, specialized tools and libraries supporting 

SNNs, LSTM, TCNNs, ONNX, and MQTT are employed. 

Frameworks such as PyTorch or TensorFlow facilitate 

model development, deployment, and evaluation, while 

custom software modules are devised for data 

preprocessing, feature extraction, and inference on the 

edge devices. Dataset selection is a critical aspect, 

involving the choice of appropriate facial expression 

datasets with labeled emotional states. The dataset used 

here is Face expression recognition dataset from the 

kaggle. A meticulously designed preprocessing pipeline is 

employed for facial expression data, encompassing face 

detection, alignment, normalization, and image 

enhancement techniques to ensure data quality and 

consistency. Model training and optimization are 

conducted using the selected dataset, with SNN, LSTM, 

and TCNN models being trained for emotion recognition.  

Hyperparameters, architecture configurations, and training 

strategies are optimized to maximize performance and 

efficiency, with techniques such as compression and 

quantization being employed to reduce model complexity. 

Hardware acceleration setup involves the configuration of 

FPGAs or ASICs for efficient execution of inference tasks, 

with optimized hardware configurations and resource 

allocations being crucial for enhancing performance. The 

communication infrastructure is established using MQTT 

protocol for seamless data transmission between wearable 

edge devices and backend servers, ensuring reliable and 

low-latency communication channels. The experimental 

protocol entails the division of the dataset into training, 

validation, and testing subsets, with experiments being 

conducted to measure performance metrics such as 

accuracy, inference speed, power consumption, and 

resource utilization. Cross-validation and hold-out 

validation techniques are employed to ensure robustness 

and generalization of the models. Ethical considerations 

are paramount throughout the experimental setup, with 

compliance with ethical guidelines for data collection, 

handling, and usage being ensured, along with obtaining 

informed consent from participants and safeguarding 

anonymity and privacy. 

Table.1 Simulated Facial Expression Data 

Image ID Emotion 

Label 

Facial Landmarks 

Detected 

Lighting 

Condition 

1 Happy 68 Daylight 

2 Sad 71 Artificial 

Light 

3 Angry 65 Daylight 

4 Surprise 69 Low Light 

5 Neutral 70 Artificial 

Light 
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Table.2 Model Training Results 

Model 

Type 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

Test 

Accuracy 

(%) 

Model Size 

(minutes) 

SNN 85.3 82.7 80.5 15 

LSTM 89.6 87.2 84.9 25 

TCNN 87.9 84.5 82.1 20 

GRU 88.2 85.9 81.8 22 

MLP 82.5 79.8 77.2 18 

CNN 86.7 83.4 80.9 30 

ResNet 91.3 89.7 87.5 35 

 

 

Fig.3 Training Time of Model 

Figure 3 highlights the training times of various models, 

with DESNN, S-DBN, and event-based SNN representing 

the literature models, and the remaining models 

representing the proposed systems. Among the literature 

models, S-DBN has the highest training time of 180 

minutes, while DESNN and Event-based SNN have 

training times of 120 and 150 minutes, respectively. In 

contrast, the proposed systems show a range of training 

times, with MLP being the fastest at 100 minutes, and 

GRU being the slowest at 160 minutes. The TCNN model 

has the shortest training time among the proposed systems 

at 105 minutes, indicating a potential efficiency advantage. 

The proposed systems demonstrate competitive training 

times compared to the literature models, with some models 

like MLP and TCNN achieving shorter training durations. 

 

Fig.4 Memory Usage for Different Models 

Figure 4 shows that among the literature models, S-DBN 

has the highest memory usage at 220 MB, while DESNN 

and event-based SNN use 180 MB and 200 MB, 

respectively. In comparison, the proposed systems exhibit 

a range of memory usage values. SNN stands out with the 

lowest memory usage at 150 MB, indicating its efficiency 

in terms of memory consumption. Other models like MLP 

(160 MB) and TCNN (180 MB) also show competitive 

memory usage. However, some proposed systems, such as 

CNN (210 MB) and ResNet (195 MB), have higher 

memory usage, comparable to or exceeding that of some 

literature models. The proposed systems demonstrate a 

variety of memory usage profiles, with some models like 

SNN and MLP showing significant efficiency 

improvements. This diversity suggests that while some 

proposed systems are optimized for lower memory usage, 

others may trade off memory efficiency for potentially 

higher performance or other benefits. 

 

Fig.5 Inference Time of Different Models 

Figure 5 clearly indicates that among the literature models, 

S-DBN has the highest inference time at 25 ms, while 

DESNN and event-based SNN have inference times of 15 

ms and 20 ms, respectively.The proposed systems show 

varied inference times. Notably, the SNN model stands out 

with the lowest inference time at 10 ms, suggesting 

significant improvements in efficiency. Other models like 

MLP (12 ms) and TCNN (15 ms) also perform well in 

terms of inference time. However, some proposed systems, 

such as CNN (23 ms) and ResNet (18 ms), have higher 

inference times, which are comparable to or exceed those 

of some literature models. The proposed systems exhibit a 

range of inference times, with some models like SNN and 

MLP showing substantial efficiency gains, suggesting 

advancements in reducing computational delays. This 

diversity in performance underscores the potential for 

optimized models tailored to specific application needs. 

Table.3 Model Evaluation Experiment Results 

Experiment 

ID 
Experiment 

Accuracy 

(%) 

Inference 

Time (ms) 

1 Baseline Model 

Evaluation 

82.4 15 

2 Optimized Model 

Performance 

85.7 12 

3 Low Power 

Consumption Test 

81.9 18 
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4 Real-time Inference 

Validation 

86.3 10 

5 Resource Optimization 

Analysis 

83.5 14 

 

 

Fig.6 Training Time of Different Experiment 

Figure 6 depicts that DESNN shows a fluctuating training 

time across the experiments, with the highest time recorded 

at 170 minutes (experiment 3) and the lowest at 120 

minutes (experiment 1). Overall, the training times for 

DESNN are consistently high. S-DBN consistently records 

the highest training times among the models, peaking at 

180 minutes in experiment 1 and showing relatively high 

times throughout all experiments, with the lowest being 

160 minutes in experiment 3. Event-based SNN 

demonstrates moderate training times, with the highest 

being 155 minutes (experiment 3) and the lowest at 135 

minutes (experiment 5). The training times are lower than 

those of DESNN and S-DBN but still substantial. Proposed 

System consistently shows the lowest training times across 

all experiments. It starts at 110 minutes in experiment 1 

and peaks at 130 minutes in experiment 4. The proposed 

system's training times are notably lower compared to the 

existing models, indicating a significant improvement in 

efficiency. The graph highlights that the proposed system 

outperforms the existing models (DESNN, S-DBN, Event-

based SNN) in terms of training time. The proposed 

system maintains a lower training time across all 

experiments, with times ranging from 110 to 130 minutes. 

In contrast, DESNN, S-DBN, and Event-based SNN 

exhibit higher and more variable training times, with S-

DBN consistently showing the highest times. This 

comparison underscores the efficiency of the proposed 

system, suggesting it requires less computational effort and 

time to train compared to the other models. 

 

Fig.7 Model Complexity of Different Experiment 

Figure 7 illustrates that DESNN exhibits moderate to high 

model complexity across all experiments, with values 

ranging from 0.6 to 0.9. The complexity varies slightly 

between experiments but generally remains within the high 

complexity range. S-DBN shows relatively lower model 

complexity compared to DESNN, with values ranging 

from 0.5 to 0.8. While the complexity fluctuates, it 

generally remains in the moderate complexity range. 

Event-based SNN demonstrates a wide range of model 

complexity, with values ranging from 0.7 to 1.0. It exhibits 

higher complexity compared to DESNN and S-DBN, 

particularly in Experiment 5, where it reaches a complexity 

of 1.0. Proposed System displays varying levels of 

complexity across experiments, with values ranging from 

0.6 to 0.8. While it generally exhibits lower complexity 

compared to DESNN and Event-based SNN, it shows 

comparable complexity to S-DBN. The graph indicates 

that the proposed system maintains moderate to low model 

complexity across different experiments, similar to or 

lower than existing approaches such as DESNN, S-DBN, 

and Event-based SNN. This suggests that the proposed 

system offers a balance between model complexity and 

performance, potentially making it a viable alternative to 

existing approaches. 

 

Fig.8 Power Consumption of Different Experiments 

Figure 8 shows that DESNN and S-DBN exhibit similar 

power consumption levels, ranging from 2.1 W to 2.6 W 

across all experiments. The power consumption remains 

relatively consistent with minor fluctuations between 

experiments. Event-based SNN shows slightly higher 
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power consumption compared to DESNN and S-DBN, 

with values ranging from 2.6 W to 2.8 W. Similar to the 

other models, the power consumption varies slightly across 

different experiments. Proposed System demonstrates the 

lowest power consumption among all models, with values 

consistently around 2.0 W across all experiments. This 

suggests that the proposed system is more energy-efficient 

compared to existing approaches. The graph indicates that 

the proposed system achieves lower power consumption 

compared to existing approaches such as DESNN, S-DBN, 

and Event-based SNN. This suggests that the proposed 

system has the potential to reduce energy consumption and 

improve overall energy efficiency, making it a promising 

alternative in terms of power consumption considerations. 

 

Fig 9 Resource Utilization of Different Experiments 

Figure 9 shows that DESNN and S-DBN demonstrate 

similar levels of resource utilization, ranging from 65% to 

74% and 65% to 69%, respectively, across different 

experiments. The utilization values show minor 

fluctuations but remain relatively consistent. Event-based 

SNN exhibits higher resource utilization compared to 

DESNN and S-DBN, with values ranging from 75% to 

79%. Similar to the other models, there are minor 

variations in utilization across different experiments. 

Proposed System demonstrates lower resource utilization 

compared to existing approaches, with values ranging from 

60% to 64%. This suggests that the proposed system 

utilizes resources more efficiently compared to DESNN, S-

DBN, and Event-based SNN. The graph indicates that the 

proposed system achieves lower resource utilization 

compared to existing approaches such as DESNN, S-DBN, 

and Event-based SNN. This implies that the proposed 

system is more efficient in utilizing resources, which could 

lead to improved performance and potentially lower costs 

associated with resource usage. 

5. Conclusion and Future Work 

A novel approach to real-time emotion recognition from 

facial expressions using SNN on wearable edge devices is 

presented in this research. The experimental results 

indicate that while SNNs demonstrate competitive 

accuracy and moderate inference times, they may require 

further optimization to minimize power consumption and 

resource utilization, especially when deployed on resource-

constrained wearable edge devices. However, the success 

of SNNs in real-time emotion recognition opens up 

promising avenues for future research and development. 

Further investigations could focus on refining SNN 

architectures, leveraging hardware accelerators such as 

FPGAs and ASICs, and exploring advanced optimization 

techniques to enhance efficiency and scalability. The 

experiments showcased an average accuracy of 82.7% on 

validation data, with an inference time of 10 milliseconds, 

underscoring the efficacy of SNNs in real-time emotion 

recognition tasks. Future research endeavors could explore 

novel techniques for optimizing SNN architectures to 

further improve accuracy while simultaneously reducing 

computational complexity. Additionally, investigating the 

integration of multimodal data sources, such as audio and 

physiological signals, holds potential for enhancing the 

robustness and contextual understanding of emotion 

recognition systems deployed on wearable edge devices. It 

also involves investigating the robustness and 

generalization capabilities of SNN-based emotion 

recognition systems across diverse demographic groups, 

cultural backgrounds, and environmental conditions. By 

conducting comprehensive studies and collecting data from 

a more diverse population, researchers can ensure that 

SNN models are capable of accurately recognizing 

emotions across various contexts and user profiles, thus 

enhancing the inclusivity and effectiveness of these 

systems. 
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