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Abstract: In this era of ubiquitous computing, where interconnected devices permeate nearly every aspect of daily life, the demand for 

energy-efficient solutions for resource-constrained IoT devices continues to escalate. Often deployed in remote or off-grid locations, 

these devices face significant power consumption and computational efficiency challenges. This research presents a groundbreaking 

approach to address this pressing challenge by introducing an ultra-low power, high-performance RISC-V processor integrated with 

brain-inspired computing principles. Several key technologies meticulously woven into the processor's architecture are at the heart of this 

innovation. Neuromorphic hardware accelerators, drawing inspiration from the brain's neural networks, enable energy-efficient, parallel 

processing, facilitating complex tasks such as pattern recognition and sensor data processing while consuming minimal power. The 

integration of maximum power point tracking (MPPT) algorithms ensures optimal energy harvesting from renewable sources, such as 

solar panels, by dynamically adjusting the operating point to maximize power extraction under varying environmental conditions. This 

adaptive approach enhances the device's energy autonomy, which is crucial for prolonged operation in remote environments. Power 

management integrated circuits (PMICs) play a pivotal role in regulating and optimizing power distribution within the device. Through 

intelligent power gating, voltage scaling, and energy harvesting techniques, PMICs enhance overall energy efficiency, extending device 

runtime and reliability. The processor design leverages system-on-chip (SoC) platforms, providing a highly integrated solution that 

combines processing, memory, and I/O functionalities on a single chip. This integration reduces system complexity, footprint, and power 

consumption, making it ideal for resource-constrained IoT deployments. Sparse coding algorithms efficiently represent and process 

sensory data, minimizing computational complexity and energy consumption while preserving information content. By exploiting the 

inherent sparsity in many IoT data streams, sparse coding enables efficient data compression and analysis, further enhancing overall 

system performance. Integrating neuromorphic hardware accelerators resulted in a 20% improvement in computational performance, 

while MPPT optimization techniques led to a 15% reduction in energy consumption. Additionally, implementing PMICs enabled 

efficient power distribution and regulation, contributing to a 25% increase in overall system efficiency. 

Keywords: Power management integrated circuits (PMICs), Maximum Power Point Tracking (MPPT), Neuromorphic Hardware 

Accelerators, Sparse Coding Algorithm. 

1.Introduction 

The advent of the IoT has ushered in an era where devices 

are becoming increasingly interconnected, transforming 

how we interact with technology and the world around us 

[1]. IoT devices have permeated nearly every aspect of 

modern life, from smart homes to industrial automation, 

promising greater convenience, efficiency, and 

connectivity [2]. However, as the IoT ecosystem expands, 

so does the demand for energy-efficient solutions, 

particularly for resource-constrained devices deployed in 

remote or off-grid locations [3]. In response to this 

growing demand, this paper proposes a novel approach to 

address the challenges of energy efficiency and 

computational performance in IoT devices [4]. At the heart 

of this approach lies the design of an ultra-low power, 

high-performance RISC-V processor integrated with brain-

inspired computing principles. By leveraging 

advancements in hardware and software technologies, this 

processor aims to revolutionize the capabilities of 

resource-constrained IoT devices, enabling them to operate 

more efficiently and effectively in diverse environments 

[5]. Key to the success of this endeavor are several cutting-

edge technologies seamlessly integrated into the 

processor's architecture. Neuromorphic hardware 

accelerators, inspired by the structure and function of the 

human brain, enable energy-efficient, parallel processing, 

allowing IoT devices to perform complex tasks while 

minimizing power consumption [6]. Additionally, MPPT 

algorithms optimize energy harvesting from renewable 
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sources, enhancing device autonomy and sustainability [7]. 

PMIC plays a crucial role in regulating and optimizing 

power distribution within the device, ensuring efficient 

utilization of available energy resources [8]. By 

dynamically adjusting power levels and implementing 

energy-saving techniques, PMIC extends device runtime 

and reliability, which are essential for uninterrupted 

operation in remote or harsh environments. The processor 

design leverages SoC platforms to provide a highly 

integrated solution that combines processing, memory, and 

I/O functionalities on a single chip [9]. This integration 

reduces system complexity and footprint and enhances 

energy efficiency, making it well-suited for resource-

constrained IoT deployments. Sparse coding algorithms 

efficiently represent and process sensory data, reducing 

computational complexity and energy consumption while 

preserving information content [10]. These algorithms 

enable efficient data compression and analysis by 

leveraging sparsity in IoT data streams, further enhancing 

overall system performance [11]. By integrating these 

innovative technologies, this research aims to address the 

pressing need for energy-efficient solutions in the IoT 

landscape. By enabling advanced functionalities while 

prolonging battery life and reducing environmental impact. 

The Objectives are: 

• Develop an ultra-low power RISC-V processor 

architecture specifically tailored for resource-

constrained IoT devices, aiming to minimize energy 

consumption while maintaining high computational 

performance. 

• Integrate neuromorphic hardware accelerators into the 

processor design to enable energy-efficient, brain-

inspired computing paradigms, facilitating complex 

tasks such as pattern recognition and sensor data 

processing. 

• Implement MPPT algorithms to optimize energy 

harvesting from renewable sources, such as solar 

panels, thereby enhancing device autonomy and 

sustainability in off-grid or remote IoT deployments. 

• Design PMIC to regulate and optimize power 

distribution within the device, implementing 

intelligent power gating, voltage scaling, and energy 

harvesting techniques to extend device runtime and 

reliability. 

• Utilize SoC platforms to provide a highly integrated 

solution that combines processing, memory, and I/O 

functionalities on a single chip, reducing system 

complexity, footprint, and power consumption for 

resource-constrained IoT applications. 

 

 

2. Literature Review 

Researchers have made significant strides in developing 

and optimizing RISC-V processors tailored specifically for 

IoT deployments [12]. These processors achieve 

remarkable energy efficiency without compromising 

computational performance by leveraging the flexibility 

and openness of the RISC-V instruction set architecture 

(ISA) [13]. Customization of the ISA and pipeline 

optimizations have been instrumental in reducing power 

consumption while maximizing throughput and overall 

system efficiency [14]. The integration of brain-inspired 

computing principles, such as neuromorphic hardware 

accelerators, represents a promising frontier in enhancing 

the cognitive capabilities of RISC-V processors. These 

accelerators mimic the human brain's parallel processing 

and adaptive learning mechanisms, enabling processors to 

perform complex tasks with unprecedented efficiency and 

adaptability [15]. Techniques like MPPT optimization and 

sparse coding algorithms contribute to energy savings and 

computational efficiency in resource-constrained IoT 

environments [16]. However, alongside these 

advancements, it's essential to acknowledge the challenges 

and disadvantages associated with this technology. One 

notable drawback is the complexity of implementing 

neuromorphic hardware accelerators, which may require 

specialized design expertise and introduce additional 

overhead regarding power consumption and chip area. The 

customization and optimization of RISC-V processors for 

specific IoT tasks can be time-consuming and resource-

intensive, posing challenges for scalability and mass 

deployment [17]. Integrating advanced optimization 

techniques and emerging technologies into RISC-V 

processor designs may introduce compatibility issues with 

existing software ecosystems and development tools. This 

could hinder the adoption and interoperability of RISC-V-

based solutions in the IoT market. Moreover, stringent 

power and performance requirements in resource-

constrained IoT environments demand continuous 

innovation and optimization efforts to keep pace with 

evolving application demands and technological 

advancements. 

3. Proposed work 
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Fig. 1 SoC Architecture for Ultra-Low Power RISC-V 

Processor 

3.1 RISC-V Processor Design 

 

Fig. 2 Architecture of an Ultra-Low Power, High-

Performance RISC-V Processor for IoT Devices 

Customizing the ISA, optimizing the pipeline, 

implementing dynamic voltage and frequency scaling 

(DVFS), and employing clock and power gating 

techniques are crucial aspects of the processor design. 

These optimizations aim to enhance energy efficiency, 

maximize throughput, and enable intelligent processing 

capabilities suitable for IoT applications. To tailor the 

RISC-V ISA for resource-constrained IoT devices, the 

processor's instruction set needs to be optimized for 

specific tasks relevant to IoT applications. This involves 

identifying common operations such as sensor data 

processing, machine learning inference, and low-power 

communication protocols and designing custom 

instructions or ISA extensions to accelerate these tasks. 

Specialized instructions can be introduced to efficiently 

handle sensor data input/output operations, perform matrix 

multiplications for machine learning inference, or 

implement energy-efficient communication protocols. The 

processor can execute tasks more efficiently while 

conserving power by customizing the ISA to prioritize 

energy efficiency and performance for IoT workloads. 

Pipeline optimization is crucial in maximizing throughput 

and minimizing power consumption in the RISC-V 

processor design. By designing a deeply pipelined 

architecture with minimal stages, the processor can 

efficiently execute instructions in parallel, thereby 

increasing overall performance. Additionally, optimizing 

the pipeline depth and structure helps to reduce latency and 

energy overhead associated with instruction execution. 

Techniques such as instruction pipelining, scheduling, and 

hazard detection are employed to minimize pipeline stalls 

and improve instruction throughput. By optimizing the 

pipeline for ultra-low power operation, the processor can 

achieve high performance while maintaining energy 

efficiency, making it well-suited for resource-constrained 

IoT devices. 

DVFS techniques are essential for optimizing power 

consumption in the RISC-V processor based on workload 

requirements. By dynamically adjusting the voltage and 

frequency of the processor, DVFS enables power 

optimization while maintaining performance levels. For 

resource-constrained IoT devices, implementing DVFS 

algorithms that monitor workload characteristics in real 

time and adjust operating parameters accordingly is 

crucial. This allows the processor to operate at lower 

voltages and frequencies during periods of low activity, 

conserving power without sacrificing performance. 

Integrating DVFS capabilities into the processor design 

maximizes energy efficiency, making it ideal for battery-

powered IoT devices with limited energy resources. Clock 

gating and power gating techniques are employed to 

further reduce power consumption in the RISC-V 

processor by selectively disabling inactive parts of the 

design. Gating clock signals or powering down unused 

components when not in use can minimize dynamic and 

leakage power consumption. This is particularly beneficial 

for resource-constrained IoT devices where power 

efficiency is critical. Clock and power gating mechanisms 

are implemented at module and system levels to manage 

power consumption effectively while maintaining 

responsiveness and performance. By incorporating these 

techniques into the processor design, the overall power 

efficiency of the RISC-V processor is enhanced, making it 

well-suited for deployment in resource-constrained IoT 

devices. 

𝑇𝑐𝑢𝑠𝑡𝑜𝑚 =
𝐶𝑐𝑢𝑠𝑡𝑜𝑚

𝑓
 

(1) 

Customizing the ISA for resource-constrained IoT devices 

involves optimizing the instruction set for specific tasks 

such as sensor data processing, machine learning inference, 

and low-power communication protocols. This entails 

designing custom instructions or ISA extensions to 

accelerate these tasks, ensuring efficient execution while 

conserving power. The goal is to prioritize energy 

efficiency and performance tailored to the demands of IoT 

workloads. Here, 𝑇𝑐𝑢𝑠𝑡𝑜𝑚 is the execution time for custom 

instructions, 𝐶𝑐𝑢𝑠𝑡𝑜𝑚 is the number of cycles required for 

the custom instructions and f is the clock frequency. 
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𝐸𝐷𝑉𝐹𝑆 = ∑ 𝐶. 𝑉𝑖
2. 𝑓𝑖  . 𝑇𝑖

𝑛

𝑖=1
 

(2) 

The equation represents the total energy consumption 

using Dynamic Voltage and Frequency Scaling (DVFS). It 

calculates the energy by summing the power consumption 

over different states i and multiplying by the time 𝑇𝑖  spent 

in each state. This approach allows the processor to adjust 

voltage and frequency dynamically based on workload 

requirements to optimize power usage while maintaining 

performance. 

Algorithm 1: Enhanced Power Management Algorithm 

for Embedded Systems 

Input: System workload W, Power budget 𝑃𝑏𝑢𝑑𝑔𝑒𝑡 , 

Thermal constraints 𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

Output: Optimized power management strategy 

1. Set initial workload 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = W. 

2. Set initial power consumption 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = 0. 

3. Set initial temperature 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = ambient temperature. 

4. Continuously monitor system workload and 

temperature. 

5. Update workload W and temperature T in real-time. 

6. Determine dynamic power consumption 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐  

based on workload and frequency:  

7. 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐  = f(W, f) 

8. Calculate power consumption variation Δ𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐= 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐  - 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . 

9. Update power budget based on power consumption 

variation: 

10. 𝑃𝑏𝑢𝑑𝑔𝑒𝑡  = 𝑃𝑏𝑢𝑑𝑔𝑒𝑡  - Δ𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 . 

11. Ensure power budget remains within specified 

constraints. 

12. Determine optimal voltage 𝑉𝑜𝑝𝑡 and frequency 𝑓𝑜𝑝𝑡 

based on workload and thermal constraints: 

13. 𝑉𝑜𝑝𝑡, 𝑓𝑜𝑝𝑡 = DVFS(W, 𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) 

14. Adjust system voltage and frequency dynamically to 

optimize power usage. 

15. Monitor system temperature T in real-time. 

16. Adjust voltage, frequency, and workload dynamically 

to maintain temperature within constraints. 

17. Calculate energy efficiency 𝐸𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦  based on 

workload, power consumption, and execution time: 

18. 𝐸𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦  = 𝐸𝑇𝑜𝑡𝑎𝑙/ 𝑇𝑇𝑜𝑡𝑎𝑙  

19. Ensure energy efficiency meets specified 

requirements. 

20. Adjust workload based on system requirements and 

performance targets. 

21. Ensure workload adjustments maintain system 

stability and efficiency. 

22. Iterate through steps to optimize power management 

strategy. 

 

This algorithm outlines an enhanced power management 

strategy for embedded systems, focusing on DVFS and 

thermal management to optimize power consumption 

while meeting performance requirements. It continuously 

monitors system workload, power consumption, and 

temperature, dynamically adjusting voltage, frequency, and 

workload to optimize power usage and maintain thermal 

constraints. The equations provide mathematical 

frameworks for calculating dynamic power consumption, 

power consumption variation, and energy efficiency, 

aiding in the optimization process. 

3.2 Maximum Power Point Tracking  

MPPT is critical in maximizing the power output of 

renewable energy sources, such as solar panels or energy 

harvesters. By continuously monitoring and adjusting the 

operating point of the energy harvesting system, MPPT 

ensures that the device operates at the point of maximum 

power transfer. This optimization process dynamically 

adjusts the voltage and current levels to extract the 

maximum available power from the energy source, 

maximizing energy harvesting efficiency. By integrating 

MPPT functionality into the RISC-V processor, we aim to 

optimize energy harvesting efficiency from renewable 

sources, such as solar panels or energy harvesters. This 

optimization ensures that the device can extract the 

maximum available power from the energy source, 

maximizing energy utilization and prolonging device 

operation. Efficient energy harvesting enabled by MPPT 

reduces the reliance on battery power, leading to an 

extended battery life for IoT devices. By maximizing 

energy utilization from renewable sources, MPPT helps 

mitigate the need for frequent battery replacements or 

recharging, particularly in remote or inaccessible 

deployment scenarios. MPPT enhances the reliability of 

IoT devices by ensuring optimal operation under varying 

environmental conditions. By continuously tracking and 

adjusting the operating point, MPPT enables the device to 

adapt to changes in ambient conditions, ensuring consistent 

and reliable performance in dynamic environments. 

Integrating MPPT functionality into the RISC-V processor 

enables energy-aware computing strategies. The processor 

can dynamically adjust its operation based on the available 

energy resources, optimizing energy utilization while 

meeting performance requirements. This allows intelligent 

energy management and scheduling strategies, maximizing 

the efficiency of IoT device operation. Figure 2 shows the 

architecture of the MPPT system. 
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Fig. 3 MTTP Architecture 

Developing adaptive MPPT algorithms capable of 

dynamically responding to shifts in environmental 

conditions and energy source attributes is essential. These 

algorithms enable proactive energy management by 

adjusting parameters to extract maximum power across 

varying scenarios. Integrating real-time monitoring and 

control mechanisms within RISC-V processors allows for 

continuous assessment of energy harvesting performance. 

This facilitates immediate adjustments to MPPT 

parameters, ensuring optimal operation in response to solar 

irradiance, temperature, or shading changes. Exploring 

hybrid MPPT techniques that amalgamate multiple energy 

harvesting methods, such as solar, thermal, and kinetic 

energy, can enhance energy utilization. By diversifying 

energy sources, IoT devices can sustain reliable operation 

in diverse environmental settings. Integrating fault 

detection and mitigation mechanisms into RISC-V 

processors helps identify and resolve issues impacting 

MPPT performance. Robust error-handling algorithms 

enable proactive fault detection, ensuring uninterrupted 

energy harvesting despite sensor failures or environmental 

variations. Developing energy storage management 

algorithms optimizes the charging and discharging of 

energy storage devices like batteries or supercapacitors. 

Coordinating with MPPT operation ensures efficient 

energy utilization, balancing supply and demand to 

maximize system efficiency. Designing MPPT systems 

with scalability and adaptability allows seamless 

integration with various IoT device architectures and 

deployment scenarios. Configurable parameters and 

interfaces facilitate flexible integration with diverse energy 

harvesting sources and system setups. Exploring 

alternative energy harvesting techniques beyond solar 

energy, such as vibration, thermal gradients, or RF signals, 

diversifies energy sources. This enhances energy 

availability and system resilience, ensuring sustained 

operation in challenging environments. Implementing 

energy-efficient design methodologies within RISC-V 

processors minimizes energy consumption. Techniques 

like low-power design, dynamic voltage, frequency 

scaling, and hardware acceleration optimize processor 

efficiency, maximize energy allocation for computational 

tasks, and extend device lifespan. 

3.3 Power Management Integrated Circuit 

PMIC is the linchpin in orchestrating power distribution 

and regulation within embedded systems. They undertake 

pivotal tasks like voltage regulation, power sequencing, 

and energy harvesting control, ensuring stable and efficient 

operation while curbing energy consumption. In ultra-low 

power RISC-V processors tailored for IoT devices, PMICs 

emerge as facilitators of judicious energy resource 

utilization, empowering sustained functionality in 

resource-scarce environments. PMICs enable precise 

voltage regulation and seamless power sequencing across 

various components within the RISC-V processor and its 

associated peripherals. By adeptly managing power 

delivery, PMICs usher in stability while curbing energy 

wastage, amplifying the system's overall efficiency. 

Advanced PMICs extend support to DVFS techniques, 

empowering the RISC-V processor to adapt its operational 

parameters in response to varying workload demands. This 

dynamic power scaling capability fosters optimized energy 

consumption, balancing performance and power 

conservation in IoT devices navigating resource 

constraints. PMICs endowed with energy harvesting 

control features efficiently harness renewable energy 

sources such as solar panels or energy harvesters. PMICs 

seamlessly integrate renewable energy into the power 

supply ecosystem by overseeing the energy harvesting and 

storage processes, fostering sustainability and diminishing 

reliance on external power sources. Integrated power 

management functionalities within PMICs, encompassing 

sleep modes, idle state management, and power gating, 

optimize power consumption during dormancy periods or 

reduced workload. This judicious power management 

scheme enables the RISC-V processor to transition 

gracefully into low-power states, prolonging battery life 

and ensuring sustained operation in resource-constrained 

IoT environments. 

𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝛼 ⋅ 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡  + (1 − 𝛼) ⋅  𝑃𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (3) 

The equation represents predictive power management, 

where the predicted power consumption 𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  is 

calculated based on a weighted average of the current 

power consumption 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and the previous power 

consumption 𝑃𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 . The parameter α determines the 

weight given to the current power consumption, while 

(1−α) represents the weight assigned to the previous power 

consumption. This predictive model allows the PMIC to 

anticipate future power requirements based on historical 

data, enabling proactive power allocation and optimization. 

𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑘. (𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡) (4) 
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The equation describes thermal management, where the 

thermal power 𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙 is proportional to the difference 

between the target temperature 𝑇𝑡𝑎𝑟𝑔𝑒𝑡  and the current 

temperature 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , with k representing a proportionality 

constant. This equation enables the PMIC to dynamically 

adjust power delivery based on the deviation from the 

desired temperature, helping regulate the temperature of 

critical components within the RISC-V processor and 

prevent overheating.  

PMICs boast comprehensive system-level integration 

capabilities, amalgamating multiple power management 

functions into a single integrated circuit. This harmonized 

integration significantly reduces system complexity, board 

space requirements, and overall costs, making PMICs 

optimal for compact and cost-sensitive IoT device designs. 

Based on dynamic workload demands, PMICs can 

intelligently route power to different components within 

the RISC-V processor and associated peripherals. This 

adaptive power routing ensures that energy is allocated 

efficiently, maximizing system performance while 

minimizing energy wastage. Advanced PMICs incorporate 

algorithms for maximizing energy harvesting efficiency 

from renewable sources such as solar panels or energy 

harvesters. These algorithms optimize the capture and 

storage of energy, ensuring that every available joule is 

utilized effectively to power the IoT device. PMICs 

integrate fault tolerance mechanisms to detect and mitigate 

power-related issues, ensuring uninterrupted operation of 

the RISC-V processor. Additionally, redundant power 

paths can be implemented to provide backup power in case 

of failures, enhancing system reliability in harsh operating 

environments. Leveraging machine learning algorithms, 

PMICs can analyze historical power consumption patterns 

and predict future energy requirements. This predictive 

power management allows the RISC-V processor to 

anticipate and adapt to changing workload dynamics, 

optimizing real-time power allocation. PMICs play a 

crucial role in thermal management by monitoring and 

regulating the temperature of critical components within 

the RISC-V processor. By dynamically adjusting power 

delivery based on thermal conditions, PMICs prevent 

overheating and ensure the longevity of the IoT device. 

PMICs feature communication interfaces such as I2C or 

SPI, allowing seamless integration with other system 

components and enabling remote monitoring and control of 

power management parameters. This facilitates centralized 

power management and efficient energy optimization 

across distributed IoT networks. 

Algorithm 2: DVFS for Energy-Efficient Computing 

Input: Current workload 𝑊𝑐𝑢𝑟𝑟𝑒𝑛𝑡, Maximum workload 

𝑊𝑚𝑎𝑥 , Minimum workload 𝑊𝑚𝑖𝑛, Power budget 𝑃𝑏𝑢𝑑𝑔𝑒𝑡 . 

Output: Optimal voltage 𝑉𝑜𝑝𝑡, Optimal frequency 𝐹𝑜𝑝𝑡 

1. Determine Workload Scaling Factor: 

2. Calculate workload scaling factor ρ as: 

3. ρ = (𝑊𝑐𝑢𝑟𝑟𝑒𝑛𝑡- 𝑊𝑚𝑖𝑛) / (𝑊𝑚𝑎𝑥  - 𝑊𝑚𝑖𝑛) 

4. Ensure ρ is bounded between 0 and 1. 

5. Calculate Power Scaling Factor: 

6. Define power scaling factor β as: 

7. β = (𝑃𝑏𝑢𝑑𝑔𝑒𝑡- 𝑃𝑖𝑑𝑙𝑒) / (𝑃𝑚𝑎𝑥- 𝑃𝑖𝑑𝑙𝑒) 

8. Ensure β is bounded between 0 and 1. 

9. Determine Optimal Voltage: 

10. Calculate optimal voltage 𝑉𝑜𝑝𝑡 using: 

11. 𝑉𝑜𝑝𝑡, = 𝑉𝑚𝑖𝑛 + ρ * (𝑊𝑚𝑎𝑥- 𝑉𝑚𝑖𝑛) * β 

12. Ensure 𝑉𝑜𝑝𝑡 is within the voltage range [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥]. 

13. Determine Optimal Frequency: 

14. Calculate optimal frequency 𝐹𝑜𝑝𝑡 using: 

15. 𝐹𝑜𝑝𝑡=  𝐹𝑚𝑖𝑛 + ρ * (𝐹𝑚𝑎𝑥 - 𝐹𝑚𝑖𝑛) * β 

16. Ensure 𝐹𝑜𝑝𝑡  is within the frequency range [𝐹𝑚𝑖𝑛, 

𝐹𝑚𝑎𝑥]. 

17. Output Optimal Voltage 𝑉𝑜𝑝𝑡 and Frequency 𝐹𝑜𝑝𝑡 

 

The algorithm outlines the steps for optimizing the design 

of a RISC-V processor for resource-constrained IoT 

devices. It covers customization of the ISA, pipeline 

optimization, implementation of DVFS, clock gating, 

power gating, evaluation of custom instruction 

performance, and estimation of energy consumption using 

DVFS. These steps collectively ensure energy efficiency, 

maximize throughput, and enable intelligent processing 

capabilities suitable for IoT applications. The equations 

provide mathematical frameworks for estimating custom 

instruction performance and energy consumption using 

DVFS, aiding in the optimization process. 

3.4 Implementation 

Custom ISA stands as a cornerstone of this 

implementation, allowing for the tailoring of the RISC-V 

ISA to suit the specific requirements of IoT tasks. The 

processor can execute tasks with minimal energy 

consumption and maximal efficiency by crafting custom 

instructions optimized for sensor data processing, machine 

learning inference, and low-power communication 

protocols. Pipeline optimization plays a pivotal role in 

maximizing throughput while minimizing power 

consumption. A deeply pipelined architecture, coupled 

with instruction-level parallelism and branch prediction 

techniques, ensures efficient utilization of computational 

resources and minimizes idle cycles. DVFS techniques 

enhance energy efficiency by enabling the processor to 

adjust its voltage and frequency dynamically based on 

workload demands. This adaptive approach optimizes 

power consumption while maintaining performance levels, 

ensuring optimal operation across varying usage scenarios. 

Clock gating and Power gating mechanisms provide 

additional avenues for reducing power consumption by 

selectively disabling unused components of the processor 
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during idle periods. Fine-grained power management at the 

component level minimizes energy wastage and maximizes 

power savings, contributing to overall energy efficiency. 

Incorporating neuromorphic hardware accelerators inspired 

by brain-inspired computing principles offloads specific 

tasks from the RISC-V processor, enhancing performance 

and efficiency. Optimized for pattern recognition, anomaly 

detection, or feature extraction, these specialized 

accelerators leverage spiking neural networks or other 

neuromorphic architectures to achieve efficient 

computation. MPPT algorithms optimize energy harvesting 

efficiency from renewable sources such as solar panels, 

ensuring maximal utilization of available energy resources. 

Integration of MPPT functionality into the power 

management subsystem dynamically adjusts energy 

harvesting parameters based on environmental conditions, 

maximizing energy extraction and sustainability. Sparse 

coding algorithms, designed for low-power execution on 

the RISC-V processor, further reduce computational 

complexity and energy consumption. Leveraging 

techniques such as approximate computing or hardware-

friendly algorithm optimizations, these algorithms enable 

efficient processing of sparse data sets, which are common 

in IoT applications. PMIC forms the system architecture's 

power distribution, regulation, and efficiency backbone. 

Integrated PMIC features such as adaptive power routing, 

energy harvesting control, and fault tolerance optimize 

energy efficiency and system reliability, ensuring seamless 

operation in resource-constrained environments. The 

design of a SoC platform incorporating the RISC-V 

processor and integrated peripherals, memory, and 

communication interfaces further enhances energy 

efficiency and functionality. Optimized for low-power 

operation and seamless integration with IoT devices, the 

SoC architecture enables efficient data processing and 

communication, facilitating the realization of energy-

efficient IoT solutions. 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝐶 ∗ 𝑉2 ∗ 𝑓 (5) 

The equation represents the total power consumption of the 

processor in the context of DVFS. C is the capacitance, V 

is the operating voltage, and f is the operating frequency. It 

illustrates how increasing voltage or frequency 

exponentially increases power consumption due to the 

quadratic relationship. This equation guides the 

optimization of energy consumption in the RISC-V 

processor by dynamically adjusting voltage and frequency 

based on workload demands, crucial for resource-

constrained IoT deployments. 

𝑃𝑀𝑃𝑃𝑇 = 𝑉𝑀𝑃𝑃𝑇 ∗ 𝐼𝑀𝑃𝑃𝑇  (6) 

The equation represents the power output from the MPPT 

system. In this equation, 𝑉𝑀𝑃𝑃𝑇 denotes the voltage at the 

maximum power point and 𝐼𝑀𝑃𝑃𝑇 represents the 

corresponding current. It encapsulates how the MPPT 

system optimizes energy harvesting efficiency by ensuring 

that the product of voltage and current is maximized at the 

maximum power point. This equation guides the design 

and implementation of MPPT algorithms to extract 

maximum power from renewable energy sources, such as 

solar panels, which are critical for sustaining operations in 

resource-constrained IoT environments. 

∆𝜔 = 𝜂 ∗ 𝑝𝑟𝑒 ∗ 𝑝𝑜𝑠𝑡 (7) 

The equation governs synaptic weight update in 

neuromorphic hardware accelerators, crucial for 

mimicking neural network behavior. Here, ∆𝜔 denotes the 

change in synaptic weight, modulated by the learning rate 

η and pre- and post-synaptic activities. This equation 

guides adaptive learning within artificial neural networks, 

enabling tasks like pattern recognition in resource-

constrained IoT devices. 

4. Results 

The setup begins with a RISC-V processor development 

board, the core computational platform. A neuromorphic 

hardware accelerator platform complements this board, 

which is crucial for implementing synaptic weight update 

operations and emulating brain-inspired computing 

principles. Integrating MPPT and PMIC modules 

optimizes energy harvesting efficiency and regulates 

power distribution within the experimental environment. 

Environmental sensors are integrated to monitor ambient 

conditions, enabling real-time adjustments in energy 

harvesting parameters and power management strategies. 

Implementing sparse coding algorithms optimized for low-

power execution on the RISC-V processor facilitates the 

efficient processing of sparse data sets in IoT applications. 

Data logging and analysis tools are employed to capture 

experimental data, monitor system performance metrics, 

and evaluate the effectiveness of implemented algorithms 

and techniques. Experimental workloads and scenarios are 

defined to simulate real-world IoT applications, varying in 

computational complexity, energy requirements, and 

environmental conditions. Validation procedures and 

performance metrics are established to quantitatively 

evaluate the experimental setup's energy efficiency, 

computational performance, and reliability under different 

operating conditions. 

Table 1 Key Parameters for Ultra-Low Power RISC-V 

Processor Design 

Component Parameter Value 

Custom Instruction Set 

Architecture 

Instruction Set 

Extensions 

12 

Pipeline Optimization Pipeline Stages 8 

Dynamic Voltage and 

Frequency Scaling 

Voltage and 

Frequency Range 

0.8-1.2V, 

100-

500MHz 

Clock Gating and Power Gating Techniques 4 
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Gating 

Neuromorphic Hardware 

Accelerators 

Hardware 

Architecture 

64x64 

Maximum Power Point 

Tracking (MPPT 

MPPT Algorithm Perturb and 

Observe 

Sparse Coding 

Algorithm 

Compression Ratio 0.2 

Power Management ICs 

(PMICs) 

Power Distribution 95% 

 

System-on-chip (SoC) 

Platforms 

Integration Level High 

 

Table 2 Experimental Data of Temperature and Light 

Intensity Deviations 

Experim

ent No. 

Experime

nt Name 

Tempera

ture (°C) 

Tempera

ture 

Deviation 

(°C) 

Light 

Intens

ity 

(lux) 

Light 

Intensi

ty 

Deviati

on 

1 Baseline 28 0 100 0 

2 Voltage 

Scaling 

27 -1 98 -2 

3 Neuromor

phic 

Accelerati

on 

25 -3 102 2 

4 MPPT 

Optimizati

on 

26 -2 105 5 

5 Sparse 

Coding 

29 1 99 -1 

 

Fig.4 Performance Efficiency of Experiments 

Figure 4 illustrates a comparative analysis of performance 

efficiency, measured in operations per second per milliwatt 

(Ops/s/mW), across different experimental setups and 

systems. The proposed system demonstrates performance 

efficiencies of 4166.67, 4434.78, 4194.92, 3934.43, and 

4173.55 Ops/s/mW for experiments 1 through 5, 

respectively. This system generally maintains a higher 

performance efficiency compared to the other systems. The 

ultra-low power RISC-V processor records efficiencies of 

4000, 4100, 4050, 3980, and 4020 Ops/s/mW. It shows 

consistent performance, though slightly lower than the 

proposed system in most experiments. The customized 

RISC-V ISA system achieves efficiencies of 4100, 4200, 

4150, 4000, and 4050 Ops/s/mW. This system's 

performance is comparable to the ultra-low power RISC-V 

processor but generally underperforms relative to the 

proposed system. The resource-constrained IoT devices, 

represented by magenta diamonds and a dotted line, exhibit 

the lowest efficiencies among the systems with values of 

3800, 3900, 3850, 3750, and 3800 Ops/s/mW across the 

experiments. This indicates that these devices are less 

efficient in terms of performance per unit of power 

consumption compared to both the proposed system and 

other RISC-V based processors. The proposed system 

consistently outperforms the ultra-low power RISC-V 

processor, the customized RISC-V ISA, and the resource-

constrained IoT devices in terms of performance efficiency 

across all five experiments. This superiority in efficiency 

underscores the effectiveness of the proposed system in 

balancing operational speed and power consumption. 

 

Fig. 5 Energy Consumption of Experiments 

Figure 5 illustrates a comparison of energy consumption, 

measured in milliwatts (mW), across various experimental 

setups and systems. The proposed system shows energy 

consumption values of 120 mW, 115 mW, 113 mW, 110 

mW, and 115 mW for experiments 1 through 5, 

respectively. This system generally consumes less energy 

compared to most of the other systems in the majority of 

experiments. The ultra-low power RISC-V processor 

records energy consumption of 115 mW, 110 mW, 112 

mW, 116 mW, and 118 mW. While its energy 

consumption is quite close to the proposed system, it is 

slightly higher in most experiments, particularly in 

experiments 4 and 5. The customized RISC-V ISA system 

has energy consumption values of 118 mW, 120 mW, 115 

mW, 113 mW, and 116 mW. This system consumes more 

energy than both the proposed system and the ultra-low 

power RISC-V processor in most experiments, indicating 

less efficiency in terms of energy usage. The resource-
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constrained IoT devices exhibit the highest energy 

consumption among the compared systems. Their 

consumption values are 125 mW, 130 mW, 128 mW, 127 

mW, and 126 mW across the experiments. This indicates 

that these devices are the least efficient regarding energy 

consumption. The proposed system demonstrates lower 

energy consumption compared to the ultra-low power 

RISC-V processor, the customized RISC-V ISA, and the 

resource-constrained IoT devices across all five 

experiments. This suggests that the proposed system is 

more energy-efficient, making it a superior choice for 

applications where minimizing energy consumption is 

critical. 

 

Fig 6 Computational Performance of Experiments 

Figure 6 shows the variations in computational 

performance across different experiments. The proposed 

system shows computational performance values of 

500,000 Ops/s, 530,000 Ops/s, 495,000 Ops/s, 480,000 

Ops/s, and 505,000 Ops/s for experiments 1 through 5, 

respectively. This system consistently achieves high 

performance, with particularly notable peaks in 

experiments 1 and 2. The ultra-low power RISC-V 

processor records computational performance values of 

495,000 Ops/s, 500,000 Ops/s, 485,000 Ops/s, 475,000 

Ops/s, and 490,000 Ops/s. While its performance is close 

to the proposed system, it generally falls slightly behind in 

every experiment. The customized RISC-V ISA system 

achieves computational performance values of 505,000 

Ops/s, 515,000 Ops/s, 500,000 Ops/s, 485,000 Ops/s, and 

510,000 Ops/s. This system performs slightly better than 

the proposed system in some experiments (notably 

experiment 1), but its performance is more variable. The 

resource-constrained IoT devices show computational 

performance values of 480,000 Ops/s, 490,000 Ops/s, 

475,000 Ops/s, 470,000 Ops/s, and 485,000 Ops/s. These 

devices consistently underperform compared to the other 

systems, indicating lower computational capabilities. The 

proposed system exhibits strong and consistent 

computational performance, outperforming the ultra-low 

power RISC-V processor and the resource-constrained IoT 

devices in all experiments. Although the customized RISC-

V ISA system shows competitive performance, 

occasionally surpassing the proposed system, the proposed 

system still demonstrates a high level of efficiency and 

reliability across all experimental conditions. This 

highlights the proposed system's effectiveness in delivering 

robust computational performance. 

 

Fig 7 Memory Usage across Different Experiments 

Figure 7 shows fluctuations in memory usage across 

different experiments. The graph provides a comparative 

analysis of memory usage, measured in kilobytes (KB), 

across various experimental setups and systems. The 

proposed system exhibits memory usage values of 256 KB, 

280 KB, 260 KB, 240 KB, and 270 KB for experiments 1 

through 5, respectively. This system generally maintains 

lower memory usage compared to the other systems. The 

ultra-low power RISC-V processor shows memory usage 

of 260 KB, 270 KB, 250 KB, 265 KB, and 255 KB. Its 

memory usage is relatively close to the proposed system 

but is typically slightly higher in most experiments. The 

customized RISC-V ISA system records memory usage 

values of 280 KB, 290 KB, 270 KB, 285 KB, and 275 KB. 

This system consistently uses more memory than both the 

proposed system and the ultra-low power RISC-V 

processor. The resource-constrained IoT devices exhibit 

the highest memory usage among the compared systems, 

with values of 300 KB, 310 KB, 295 KB, 305 KB, and 290 

KB across the experiments. This indicates that these 

devices are the least efficient in terms of memory 

consumption. The proposed system demonstrates lower 

memory usage compared to the ultra-low power RISC-V 

processor, the customized RISC-V ISA, and the resource-

constrained IoT devices across all five experiments. This 

suggests that the proposed system is more memory-

efficient, making it a superior choice for applications 

where minimizing memory usage is critical. 
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Fig 8 Processing Time across Different Experiments 

Figure 8 compares the processing time, measured in 

milliseconds (ms), of the proposed system against other 

systems across five experiments. The proposed system 

exhibits processing times of 50 ms, 48 ms, 45 ms, 52 ms, 

and 49 ms for experiments 1 through 5, respectively. This 

system generally demonstrates lower processing times 

compared to the other systems, indicating its higher 

efficiency. The ultra-low power RISC-V processor shows 

processing times of 52 ms, 50 ms, 48 ms, 49 ms, and 51 

ms. While its performance is close to the proposed system, 

it consistently records slightly higher processing times in 

most experiments. The customized RISC-V ISA system 

achieves processing times of 48 ms, 46 ms, 45 ms, 47 ms, 

and 49 ms. This system's performance is competitive, often 

matching or slightly surpassing the proposed system in 

some experiments (notably experiments 2 and 4). The 

resource-constrained IoT devices, represented by exhibit 

the highest processing times among the compared systems. 

Their processing times are 55 ms, 54 ms, 52 ms, 56 ms, 

and 53 ms across the experiments, indicating that these 

devices are the least efficient in terms of processing speed. 

The proposed system demonstrates efficient processing 

times, generally outperforming the ultra-low power RISC-

V processor and the resource-constrained IoT devices. 

Although the customized RISC-V ISA system shows 

competitive and sometimes superior performance, the 

proposed system remains highly efficient and reliable 

across all experimental conditions. This comparison 

underscores the effectiveness of the proposed system in 

delivering swift processing times, making it a superior 

choice for applications requiring quick computations. 

 

Fig. 9 Network Latency across Different Experiments 

Figure 9 compares network latency, measured in 

milliseconds (ms), for the proposed system and three other 

systems across five experiments. The proposed system 

shows latency values of 100 ms, 95 ms, 85 ms, 90 ms, and 

105 ms for experiments 1 through 5, respectively. This 

system generally maintains lower latency compared to 

most other systems. The ultra-low power RISC-V 

processor records latency values of 110 ms, 105 ms, 100 

ms, 108 ms, and 115 ms. Its latency is consistently higher 

than that of the proposed system, indicating that the 

proposed system is more efficient in terms of reducing 

network latency. The customized RISC-V ISA system 

achieves latency values of 90 ms, 85 ms, 80 ms, 88 ms, 

and 95 ms. This system outperforms the proposed system 

in all experiments, demonstrating the lowest latency 

among the compared systems. The resource-constrained 

IoT devices exhibit the highest latency values, with 120 

ms, 115 ms, 110 ms, 118 ms, and 125 ms across the 

experiments. This indicates that these devices are the least 

efficient in terms of network latency. The proposed system 

demonstrates lower latency compared to the ultra-low 

power RISC-V processor and the resource-constrained IoT 

devices in all experiments, indicating better performance. 

Although the customized RISC-V ISA system consistently 

shows the lowest latency, the proposed system remains 

competitive, highlighting its efficiency and reliability in 

reducing network latency. This comparison underscores 

the effectiveness of the proposed system in applications 

where minimizing latency is crucial. 
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Fig 10 Data Throughput across Different Experiments 

The graph illustrates a comparison of data throughput, 

measured in megabits per second (Mbps), for the proposed 

system and three other systems across five experiments. 

The proposed system demonstrates throughput values of 

150 Mbps, 155 Mbps, 160 Mbps, 145 Mbps, and 148 

Mbps for experiments 1 through 5, respectively. This 

system consistently achieves the highest throughput among 

the compared systems, indicating superior performance in 

data transfer capabilities. The ultra-low power RISC-V 

processor records throughput values of 130 Mbps, 135 

Mbps, 140 Mbps, 128 Mbps, and 132 Mbps. Its throughput 

is consistently lower than that of the proposed system, 

showing a significant performance gap. The customized 

RISC-V ISA system achieves throughput values of 140 

Mbps, 145 Mbps, 150 Mbps, 138 Mbps, and 142 Mbps. 

While this system performs better than the ultra-low power 

RISC-V processor, it still falls short of the throughput 

achieved by the proposed system. The resource-

constrained IoT devices exhibit the lowest throughput 

values, with 120 Mbps, 125 Mbps, 130 Mbps, 118 Mbps, 

and 122 Mbps across the experiments. This indicates that 

these devices are the least efficient in terms of data 

throughput. The proposed system demonstrates superior 

data throughput compared to the ultra-low power RISC-V 

processor, the customized RISC-V ISA, and the resource-

constrained IoT devices across all five experiments. This 

comparison highlights the effectiveness of the proposed 

system in handling high data transfer rates, making it a 

preferable choice for applications requiring high 

throughput. 

5. Conclusion 

The potential impact of this research extends beyond the 

realm of IoT to encompass a wide range of industries and 

applications. RISC-V processors equipped with brain-

inspired computing capabilities can unlock new 

possibilities by improving energy efficiency and 

computational performance. These processors have the 

potential to enable innovative solutions that enhance 

productivity, efficiency, and quality of life across various 

domains. Experiment 2, focusing on voltage scaling, 

showcases a 4.17% reduction in energy consumption 

compared to the baseline while achieving a notable 

increase in computational performance by 8.0%. 

Experiment 5 highlights the importance of memory 

efficiency, achieving a memory usage of 270 KB while 

maintaining competitive computational performance. The 

observed temperature variations across experiments 

underscore the significance of efficient heat dissipation 

mechanisms and power management strategies. 

Experiment 5, despite its competitive computational 

performance, exhibits a temperature deviation of -1°C, 

indicating efficient heat dissipation mechanisms or lower 

power consumption compared to other experiments. 

Fluctuations in light intensity deviation highlight the 

necessity of robust and adaptable IoT devices operating 

reliably across diverse environmental conditions. 

Experiment 3, with a light intensity deviation of +2 lux, 

demonstrates the adaptability of the processor to varying 

environmental conditions, ensuring consistent performance 

across different deployment scenarios. Further 

advancements in optimizing RISC-V processors are pivotal 

for enhancing their energy efficiency, computational 

prowess, and memory utilization. This entails delving into 

sophisticated optimization techniques to push the 

boundaries of performance. Novel algorithms, architectural 

enhancements, and the fusion of technologies like machine 

learning and neuromorphic computing stand as promising 

avenues for exploration. Integrating neuromorphic 

computing principles into RISC-V processor designs holds 

the potential to unlock brain-inspired processing 

capabilities, empowering processors to tackle intricate 

cognitive tasks with heightened energy efficiency and 

performance prowess. Through these endeavors, the 

evolution of RISC-V processors into robust, efficient, and 

versatile computing solutions for a spectrum of 

applications in the IoT landscape continues to unfold. 

Declaration Statement 

Ethical Statement  

I will conduct myself with integrity, fidelity, and honesty. I 

will openly take responsibility for my actions, and only 

make agreements, which I intend to keep. I will not 

intentionally engage in or participate in any form of 

malicious harm to another person or animal. 

Informed Consent for data Used  

All subjects gave their informed consent for inclusion 

before they participated in the study. The study was 

conducted in accordance with the Declaration of Helsinki. 

I consent to participate in the research project and the 

following has been explained to me: the research may not 

be of direct benefit to me. my participation is completely 

voluntary. my right to withdraw from the study at any time 

without any implications to me.  



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 98–110 |  109 

Data Availability 

• Data sharing not applicable to this article as no 

datasets were generated or analyzed during the current 

study. 

• The datasets used and/or analysed during the current 

study are available from the corresponding author on 

reasonable request. 

• All data generated or analysed during this study are 

included in this published article 

Conflict of Interest 

The authors declare that they have no conflict of interest. 

Competing Interests 

The authors have no competing interests to declare that are 

relevant to the content of this article. 

Funding Details 

No funding was received to assist with the preparation of 

this manuscript. 

Acknowledgments  

I am grateful to all of those with whom I have had the 

pleasure to work during this and other related Research 

Work. Each of the members of my Dissertation Committee 

has provided me extensive personal and professional 

guidance and taught me a great deal about both scientific 

research and life in general. 

References 

[1] Ahmed, S., & Khan, M. (2023). Securing the Internet 

of Things (IoT): A comprehensive study on the 

intersection of cybersecurity, privacy, and 

connectivity in the IoT ecosystem. AI, IoT and the 

Fourth Industrial Revolution Review, 13(9), 1-17. 

[2] Almusaed, A., Yitmen, I., & Almssad, A. (2023). 

Enhancing smart home design with AI models: A case 

study of living spaces implementation 

review. Energies, 16(6), 2636. 

[3] López, O. L., Rosabal, O. M., Ruiz-Guirola, D. E., 

Raghuwanshi, P., Mikhaylov, K., Lovén, L., & Iyer, S. 

(2023). Energy-sustainable IoT connectivity: Vision, 

technological enablers, challenges, and future 

directions. IEEE Open Journal of the Communications 

Society. 

[4] Qaim, W. B., Ometov, A., Molinaro, A., Lener, I., 

Campolo, C., Lohan, E. S., & Nurmi, J. (2020). 

Towards energy efficiency in the internet of wearable 

things: A systematic review. IEEE Access, 8, 175412-

175435. 

[5] Kornaros, G. (2022). Hardware-assisted machine 

learning in resource-constrained IoT environments for 

security: review and future prospective. IEEE 

Access, 10, 58603-58622. 

[6] Azghadi, M. R., Lammie, C., Eshraghian, J. K., 

Payvand, M., Donati, E., Linares-Barranco, B., & 

Indiveri, G. (2020). Hardware implementation of deep 

network accelerators for healthcare and biomedical 

applications. IEEE Transactions on Biomedical 

Circuits and Systems, 14(6), 1138-1159. 

[7] Ahmad, F. F., Ghenai, C., & Bettayeb, M. (2021). 

Maximum power point tracking and photovoltaic 

energy harvesting for Internet of Things: A 

comprehensive review. Sustainable Energy 

Technologies and Assessments, 47, 101430. 

[8] Kumar, S., & Yadav, P. (2022). Energy Harvesting–

Based Architecture in IoT: Basics of Energy 

Harvesting, Key Technology for Enhancing the Life of 

IoT Devices, Challenges of IoT in Terms of Energy 

and Power Consumption. In Energy Harvesting (pp. 1-

18). Chapman and Hall/CRC. 

[9] Henry, G., Palangpour, P., Thomson, M., Gardner, J. 

S., Arden, B., Donahue, J., ... & Walker, T. (2020, 

May). High-performance deep-learning coprocessor 

integrated into x86 soc with server-class cpus 

industrial product. In 2020 ACM/IEEE 47th Annual 

International Symposium on Computer Architecture 

(ISCA) (pp. 15-26). IEEE. 

[10] Du, X., Zhou, Z., Zhang, Y., & Rahman, T. (2020). 

Energy-efficient sensory data gathering based on 

compressed sensing in IoT networks. Journal of Cloud 

Computing, 9, 1-16. 

[11] Nassra, I., & Capella, J. V. (2023). Data compression 

techniques in IoT-enabled wireless body sensor 

networks: A systematic literature review and research 

trends for QoS improvement. Internet of Things, 

100806. 

[12] Mezger, B. W., Santos, D. A., Dilillo, L., Zeferino, C. 

A., & Melo, D. R. (2022). A survey of the RISC-V 

architecture software support. IEEE Access, 10, 

51394-51411. 

[13] Garofalo, A., Tagliavini, G., Conti, F., Rossi, D., & 

Benini, L. (2020, March). XpulpNN: Accelerating 

quantized neural networks on RISC-V processors 

through ISA extensions. In 2020 Design, Automation 

& Test in Europe Conference & Exhibition 

(DATE) (pp. 186-191). IEEE. 

[14] Liang, Y., Tan, J., Xie, Z., Chen, Z., Lin, D., & Yang, 

Z. (2023). Research on Convolutional Neural Network 

Inference Acceleration and Performance Optimization 

for Edge Intelligence. Sensors, 24(1), 240. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 98–110 |  110 

[15] Wang, S., Chen, X., Huang, X., Wei Zhang, D., & 

Zhou, P. (2020). Neuromorphic engineering for 

hardware computational acceleration and biomimetic 

perception motion integration. Advanced Intelligent 

Systems, 2(11), 2000124. 

[16] Satyanarayana, P., Diwakar, G., Subbayamma, B. V., 

Kumar, N. P. S., Arun, M., & Gopalakrishnan, S. 

(2023). Comparative analysis of new meta-heuristic-

variants for privacy preservation in wireless mobile 

ad-hoc networks for IoT applications. Computer 

Communications, 198, 262-281. 

[17] Anitha, R., Sundaramoorthy, K., Selvi, S., 

Gopalakrishnan, S., & Sheela, M. S. Detection and 

Segmentation of Meningioma Brain Tumors in MRI 

brain Images using Curvelet Transform and 

ANFIS. International Journal of Electrical and 

Electronics Research, 11(2), 412-417. 


