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Abstract: Short-Term Load Forecasting (STLF) plays a significant role in electrical management systems which provides accurate 

predictions of electricity demand over short-time demands and makes effective resource allocation. STLF makes distribution system 

operators implement effective energy management by engaging energy consumers over the demand-response program in Smart Grids (SG). 

However, STLF is challenging due to load exhibits highly nonlinear patterns which result from different factors like sudden changes in 

consumer behavior, and complex interactions. These nonlinearities make inaccurate forecasting. To address this issue, the Residual Bi-

directional Gated Recurrent Unit with Self-Attention (Rbi-GRU-SA) is proposed to accurately forecast short-term load in SG which 

produces enhanced forecasting performance and reliability. Initially, the data is acquired from the electric load dataset to access the 

proposed approach. The z-score normalization is employed to normalize the dataset’s features in the pre-processing phase which maximizes 

stability and convergence rate. Then, the Rbi-GRU-SA is performed to forecast the electric load in SG which provides more accurate 

forecasting. When compared to existing approaches like Feature Engineering-Wavelet Neural Networks and Self-Adaptive Momentum 

Factor (FE-WNN-SAMF), FE-Adaptive Grasshopper Optimization-based Locally Weighted Support Vector Regression (FE-AGO-

LWSVR), and Gaussian Process Regression (GPR), the Rbi-GRU-SA achieves better MAPE of 0.0978 and 0.1054 for North South Wales 

(NSW) and Victoria (VIC) respectively. 
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1. Introduction 

Electricity is a vital part of our daily lives and has an 

essential impact on activities undertaken by individuals 

across various fields. There is a huge demand for electricity 

because of the rapid growth of the population all over the 

world. Due to the limited abilities of conventional electric 

grid stations, they are being replaced with the latest digital 

system of the power grid called Smart Grid (SG) [1]. SG is 

a new type of power system which is emerged recently and 

is mostly utilized by power-generating companies because 

of its accuracy in power load forecasting [2]. Compared to 

traditional power grids, SG enables more reliable, efficient, 

intelligent, and sustainable power service by employing 

advanced structures [3]. Accurate load forecasts are 

significant for making effective decisions based on energy 

management and dispatch [4]. Load forecasting is split into 

three types: STLF, Mid-Term Load Forecasting (MTLF), 

and Long-Term Load Forecasting (LTLF). SLTF provides 

numerous horizon hours enlarged to a few days [5] [6]. 

MTLF generates forecasts ranging from a week to several 

months, extending its prediction capabilities to encompass 

projections for the year ahead. LTLF is vital for projecting 

energy demand across a multi-decadal time horizon which 

supports capacity expansion planning under uncertain 

policy, climate, and technological changes [7] [8]. The load 

data has characteristics of volatility, randomness, diversity, 

and periodicity [9].   

Accurate load forecasting not only provides society and 

people with economical, sustainable, and reliable power but 

also provides an efficient decision-making basis for 

planning power market investment [10] [11]. Resident’s 

participation in the electricity market requires clear 

boundaries between short-term and long-term 

considerations to inform purchasing decisions effectively 

[12] [13]. Various factors impact the efficiency of STLF: 

i.e., calendar factors can make significant changes in 

electricity load. Weather conditions like humidity and 

temperature bring large uncertainties and nonperiodic 

results. Historical load is utilized to categorize trend 

characteristics and strong randomness of load series [14]. 

DL techniques like neural networks can learn complex 

relationships and patterns automatically from large datasets 

which allows to capture complex dynamics inherent in 

STLF more effectively compared to traditional Machine 

Learning approaches [15]. However, STLF is challenging 

because load exhibits highly nonlinear patterns that result 

from different factors like sudden changes in consumer 

behavior and complex interactions. These nonlinearities 

make inaccurate forecasting. To overcome this problem, the 

Rbi-GRU-SA is proposed to effectively forecast short-term 

load in SG by combining residual connection, bi-directional 

information flow, and self-attention mechanism by 

capturing complex dependencies in data. 
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The main contribution of this research is as follows: 

• Z-score normalization is employed to normalize the 

dataset features by standardizing data distribution 

which allows better load pattern interpretation. 

• Residual connection is used to solve vanishing 

gradient issues, bidirectional data flow is established 

to capture both past and future context by feedbacking 

the data, and self-attention is to dynamically weight 

input features. 

• By combining these components, the Rbi-GRU-SA 

effectively captures complex temporal patterns and 

dependencies in STLF which provides accurate 

forecasting. 

This paper is structured as follows: Section 2 explains about 

literature survey. Section 3 presents a detailed explanation 

of the proposed methodology. Section 4 discusses the results 

of the proposed methodology. Section 5 summarizes the 

conclusion of the paper. 

2. Literature Survey 

The related work about electricity load forecasting is 

discussed in this section with different techniques along 

with their advantages and limitations. This analysis helps in 

forecasting gaps and guiding the development of a more 

accurate and effective forecasting approach. 

Muhammad Zulfiqar et al. [16] presented a Feature 

Engineering-Wavelet Neural Networks and Self-Adaptive 

Momentum Factor (FE-WNN-SAMF) to achieve stability, 

fast convergence, and high accuracy in STLF. FE eliminates 

inappropriate data and shallow features to enable high 

performance of computation. SAMF integrates frequency 

and time domain properties of wavelet transform and 

modifies WNN’s associating parameters. At last, SAMF 

was utilized to tune the WNN’s control parameter by 

initializing random thresholds and weights. By adjusting 

weights and thresholds dynamically via an iterative process, 

optimal parameter values were effectively reached which 

leads to enhanced performance and convergence rate. 

However, wavelet transforms lack interpretability and fail 

to effectively generalize across different load patterns 

because of their complex and multi-scale nature. 

M. Zulfiqar et al. [17] suggested an FE-Adaptive 

Grasshopper Optimization-based Locally Weighted Support 

Vector Regression (FE-AGO-LWSVR) for STLF in SG. 

The HFS was optimized by employing Recursive Feature 

Elimination (RFE) to solve the overfitting issue in FE. Then, 

the significant features were extracted utilizing Radial Basis 

Kernel-based Principal Component Analysis (RBF-KPCA) 

to remove the issue of dimensionality reduction. AGO 

approach tunes the LWSVR’s essential parameters to 

efficiently avoid entrapping into local optimum which 

produces accurate forecasting. The productiveness and 

efficiency of the suggested approach were equally 

differentiated with its stability and convergence rate.  This 

balance makes reliable performance when reaching 

effective optimal solutions which increases the overall 

effectiveness of the suggested approach. However, the 

suggested approach considers only historical short-term 

load and does not consider other factors that impact the 

model's ability to evaluate all appropriate aspects of load 

behavior. 

Anamika Yadav et al. [18] implemented a Gaussian Process 

Regression (GPR) that employs a Bayesian technique to 

forecast electric load. GPR was a non-parametric kernel-

based learning technique that can generate accurate 

forecasts with uncertainty in measurements. This approach 

enhances the accuracy of load forecasting by capturing 

significant non-linear relationships in data which minimizes 

energy waste and increases overall electrical grid efficiency. 

However, GPR relies on a covariance structure defined by 

training data which makes it sensitive to data quality and 

leads to inaccurate forecasting.  

Sang Mun Shin et al. [19] developed a Variational Mode 

Decomposition-based Random Vector Functional Link 

Network (VMD-RVFL) for STLF. The VMD was 

employed for electronic load decomposition into Intrinsic 

Mode Functions (IMFs) which minimizes the non-

stationary and non-linear behavior of electric load. To 

forecast and model each IMF, RVFL was utilized due to its 

rapid and accurate forecasting performance. The developed 

VMD-RVFL achieves less computational time by using 

VMD efficiency in decomposing signals and the simplicity 

of RVFL in learning relationships which produces robust 

and accurate forecasting. However, the VMD-RVFL 

model’s long-term dependencies within time-series data 

were limited due to the decomposition process. 

Ankit Kumar Srivastava et al. [20] introduced an HFS based 

on the Elitist Genetic Algorithm (EGA) and Random Forest 

(RF) technique for STLF. This approach was established 

utilizing the concept of an identical week and for every 

season on a half-hourly basis. STLF was generated by 

employing the M5P forecaster by using the entire input 

feature set and chosen input feature set. By combining EGA 

with RF the model efficiently chooses appropriate features, 

optimizing the forecasting process for enhanced accuracy 

while maintaining interpretability via RF’s decision-making 

process.   However, the introduced approach has an issue in 

managing high-dimensional data due to increased 

redundancy and sparsity.   

In the overall analysis, it is represented that existing 

methods have limitations like lack of interpretability and 

failure to effectively generalize across different load 

patterns due to their complex nature, nonlinear patterns, and 

changing load patterns in STLF. To solve this problem, the 

Rbi-GRU-SA is proposed for STLF in SG by combining 
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residual connections to reduce vanishing gradient problems, 

bidirectional data flow to capture past and future context, 

and self-attention to dynamically weight input features. By 

performing these operations, it collectively makes an 

effective capture of nonlinear load patterns and complex 

load dynamic behavior. 

3. Proposed Methodology 

The Rbi-GRU-SA is proposed to forecast STLF in SG. 

Initially, the data is obtained from the electric load dataset 

and these data are processed using z-score normalization. 

Then, the DWT is performed to extract the features and Rbi-

GRU-SA is employed to forecast short-term load in SG. Fig. 

1 indicates the overview of a block diagram of the proposed 

technique. 

 

Fig. 1. Block diagram for the proposed technique 

3.1. Dataset 

In this research, the electric load dataset sourced from the 

Australian Energy Market Operator (AEMO) is employed 

to evaluate a proposed technique. Actual hourly load data of 

two Australian states are considered: NSW [21] and VIC 

[22] from 2018 to mid-2023 to calculate the model 

effectiveness for STLF. It contains electricity price and 

demand data recorded at 30-minute intervals. It has 5 

columns which have day-ahead load demand, day-ahead 

temperature, real-time congestion, weather conditions, dry-

bulb temperature, dynamic location marginal price, and day-

ahead marginal loss. These data are preprocessed to 

normalize the dataset’s features using z-score 

normalization. 

3.2. Pre-processing 

After obtaining the above data, the z-score normalization 

[23-24] is utilized to normalize the dataset’s features to 

forecast short-term load data. It solves the problem of 

various scales in data by transforming features to have a 

mean of 0 and a standard deviation of 1 effectively in STLF. 

Z-score is less sensitive to outliers and generates a better 

distribution shape which provides clearer data 

interpretation. It effectively varies the distribution of data 

which enables it more appropriate for different scenarios of 

load forecasting. The z-score normalization is formulated in 

(1). 

𝑥′(𝑗) =
𝑥𝑗−𝜇𝑗

𝜕𝑗    (1) 

Where 𝜇 represents the mean and 𝜕 indicates the standard 

deviation. Without using normalization, features with 

various scales may bias the learning process which leads to 

suboptimal model performance. Z-score is effective in 

managing with different scales and enhances model stability 

This process makes all features equally contribute to the 

learning process. Finally, the normalized data are fed into 

the feature extraction process. 

3.3. Forecasting 

The pre-processed data are passed as input to Rbi-GRU with 

self-attention for forecasting electric load data by 

integrating residual connections to reduce vanishing 

gradient problems, bidirectional data flow to capture past 

and future context, and self-attention to dynamically weight 

input features. It effectively captures nonlinear load patterns 

and complex load dynamic behavior. Compared to other 

neural networks, Rbi-GRU with self-attention can capture 

both hierarchical patterns and temporal dependencies 

efficiently in electric load data.  The gating mechanism of 

GRU provides selective data processing which makes the 

network better adapt to the non-linear and dynamic nature 

of electric load data. This leads to improved forecasting 

compared to traditional RNNs due to their gating 

mechanism that makes the network selectively update and 

forget data from the previous time phase. 

This gating approach contains a reset and update gate which 

regulates the data passage through a network which is 

expressed in (2) and (3). 

𝑢𝑡 = 𝜎(𝑊ℎ𝑢ℎ𝑡−1 + 𝑊𝑥𝑢𝑣𝑡 + 𝑏𝑢)    (2) 

𝑟𝑡 = 𝜎(𝑊ℎ𝑟ℎ𝑡−1 + 𝑊𝑥𝑟𝑣𝑡 + 𝑏𝑟)  (3) 

Where 𝑢𝑡 represents update gate at time 𝑡 by utilizing data 

from both present inputs 𝑣𝑡 and prior hidden state ℎ𝑡−1. This 

update decision is determined by the sigmoid activation 

function 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) based on a linear 

combination of hidden and input states with associated 

weight matrix 𝑊ℎ𝑢 and 𝑊𝑥𝑢 and bias term 𝑏𝑢. The 𝑟𝑡 reset 

gate controls how much the network resets or forgets a prior 

hidden state ℎ𝑡−1 depending on the present input 𝑣𝑡. This 

reset decision is managed by an identical components set 

which has a weight matrix 𝑊𝑥𝑢 and 𝑊ℎ𝑢 and bias term 𝑏𝑟. 

These terms make the model adaptively rest and update 

information which is essential for temporal dependencies 

and enhancing forecasting performance in sequential data. 

In bi-GRU [25], 2 GRU generates a sequence of input in 

forward and backward directions, making a network to 

include both previous and future sequence context by time 
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𝑡. It helps forecast electric load data which is sequential by 

nature and generates long-term dependencies. Outcome of 

ℎ𝑡 of Bi-GRU for present time phase 𝑡 is acquired by adding 

forward and backward hidden state ℎ𝑡
⃗⃗  ⃗ and ℎ𝑡

⃐⃗ ⃗⃗  which is 

formulated in (4). 

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗ ;  ℎ𝑡

⃐⃗ ⃗⃗ ]                                                                               

(4) 

The ℎ𝑡
⃗⃗  ⃗ is computed depending on the candidate ℎ𝑡̃ hidden 

state, prior hidden state ℎ𝑡−1, and update the gate 𝑢𝑡 which 

is expressed in (5). ℎ𝑡
⃐⃗ ⃗⃗  is calculated similarly but in the 

opposite direction. 

ℎ𝑡
⃗⃗  ⃗ = (1 − 𝑢𝑡) Θ ℎ𝑡−1 + 𝑢𝑡  Θ ℎ𝑡̃  (5) 

Where ℎ𝑡̃ indicates the candidate's hidden state that is 

calculated depending on the reset gate 𝑟𝑡,   and present input 

vector 𝑣𝑡 which is formulated in (6). 

ℎ𝑡̃ = tanh (𝑊ℎℎ(𝑟𝑡  Θ ℎ𝑡−1) + 𝑊𝑥ℎ𝑣𝑡 + 𝑏𝑟)                              

(6) 

Rbi-GRU contains a residual association with the addition 

of Bi-GRU layers. Residual connections make data sent 

directly among layers. It assists in reducing the issue of 

repetitive gradient multiplications during the 

backpropagation procedure. It generates skip connections 

where the next layer input is acquired by adding the prior 

output layer to a residual. The 𝑖𝑡ℎ layer output with residual 

connections are expressed in (7). 

ℎ𝑖 = 𝐹(𝑊[ℎ𝑖−1, 𝑋] + 𝑏) + 𝑋 

  (7) 

Where ℎ𝑖 indicates 𝑖𝑡ℎ layer output with residual 

connections, 𝑋 determines residual, ℎ𝑖−1 represents the prior 

output layer, 𝑊 illustrates the weight matrix, 𝑏 refers bias 

vector, and 𝐹 indicates the function of non-linear activation 

like Rectified Linear Unit (ReLU). 

3.3.1. Self-attention 

It is a computing mechanism utilized for capturing 

dependencies among various components of a sequence. In 

the context of forecasting, it is employed to capture 

significant parts of load data that contribute to binding 

affinity. Self-attention makes the model dynamically weigh 

the significance of each component by transferring each 

sequence component into a key, a query, and a vector value. 

The attention score is computed utilizing a dot product 

among keys, queries, and vectors to evaluate the 

significance of one component to another which provides 

the identification of appropriate patterns and features for 

load forecasting. Then, the attention score is normalized by 

employing the SoftMax function to obtain the weight of 

attention that is employed for calculating the weighted sum 

of vector value which is expressed in (8). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝑧𝐾𝑧

𝑇

√𝑑𝑘𝑧

) 𝑉𝑧  (8) 

Where 𝐾, 𝑄, and 𝑉 indicate the key, query, and value that is 

calculated from 𝑧 input sequences. 𝑑𝑘𝑧
 represents the key 

vector’s dimension with 𝑧 sequence. Fig. 2 represents the 

structure of Rbi-GRU-SA. 

 

Fig. 2. Structure of Rbi-GRU-SA 

The resulting weight of attention determines the 

significance of each component in a sequence that is later 

fed into a max-pooling layer. It assists in long sequences that 

capture dependencies among different components which is 

significant in electric load data. The self-attention and max-

pooling operations are established to minimize the 

dimensionality of the output layer of self-attention. This 

makes the model focus on salient features of an input’s 

sequences. Involving dropout regularization and batch 

normalization assist in increasing the model’s 

generalization and avoiding overfitting. Fully Connected 

(FC) layers are employed to generate numerical inputs for 

electric load data. Then, the final output layer has a single 

neuron with linear activation which generates electric load 

forecasting. The combination of RBi-GRU with self-

attention generates a robust approach to forecasting electric 

load data which increases forecasting performance and 

assists informed decision-making performance. 

Table 1 shows the notation description 
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Table 1. Notation Description 

 

4. Results 

The Rbi-GRU-SA is simulated utilizing a Python 3.8 

environment with 64 GB RAM, Windows 10 Operating 

System, 1TB memory, and i9 intel processor. The Mean 

Absolute Percentage Error (MAPE), Root Mean Square 

Error (RMSE), R2, and Mean Average Error (MAE) are the 

metrics employed to evaluate the Rbi-GRU-SA 

performance. The MAPE measures the prediction accuracy 

of the forecasting technique and it evaluates the accuracy as 

ratio. RMSE evaluates the average difference between a 

statistical technique’s forecasting values and actual values. 

R2 is a statistical computation that evaluates the interrelation 

degree and dependence among two variables. MAE is an 

error measure among paired observations that expresses the 

same phenomenon. The mathematical formula for these 

metrics is expressed in (9) to (12) 

𝑀𝐴𝑃𝐸 = (
1

𝑚
∑

𝑢𝜏
𝑟−𝑢𝜏

𝛽

|𝑢𝜏
𝑝
|
) × 100𝑚

𝜏−1   (9) 

𝑅𝑀𝑆𝐸 = √
∑ (𝜆𝜏−𝜆𝜏)̂

2𝑚
𝜏=1

𝑚
   (10) 

𝑅2 =
𝑁 ∑𝑥𝑦−∑𝑥 ∑𝑦

√[𝑁 ∑𝑥2−(∑𝑥)
2
][𝑁 ∑𝑦2−(∑𝑦)

2
]

  (11) 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝜆𝜏 − 𝜆̂𝜏

𝑚
𝜏=1 |   (12) 

Where 𝑚 determines the number of data points, 𝜆𝜏 indicates 

actual values, 𝜆̂𝜏 illustrates forecasted values, 𝑢𝜏
𝑟 , 𝑢𝜏

𝛽
 

determines forecasted and mean forecasted values, 𝑁 refers 

number of observations, ∑𝑥 indicates total. of initial 

variable value, ∑𝑦 illustrates total. of second variable value, 

∑𝑥𝑦 determine the sum of the product of the initial and 

second variable values, and (∑ 𝑥)
2
 and (∑ 𝑦)

2
 refers sum of 

squares of the initial, and second variable values 

respectively. 

4.1. Performance Analysis 

The proposed Rbi-GRU-SA performance analysis is 

indicated in Tables 2 to 4. Table 2 shows the performance 

of feature extraction evaluation for NSW. The Principle 

Component Analysis (PCA), Empirical Mode 

Decomposition (EMD), Symbolic Aggregate 

Approximation (SAX), and Continuous Wavelet Transform 

(CWT) are the existing techniques utilized to compare with 

DWT. Compared to these techniques, DWT is effective 

because it can capture both time and frequency-domain data 

at the same time which generates a multi-resolution load 

pattern representation for forecasting. Fig. 3. represents a 

graphical representation of the feature extraction technique 

for NSW. The outcome indicates that DWT achieves a 

better MAPE of 0.0978 compared to other techniques. 

Table 2. Performance of feature extraction evaluation for 

NSW 

Methods MAPE RMSE R2 MAE 

PCA 0.2485 257.2347 2.1587 1.4325 

EMD 0.1857 203.157 2.0657 1.3597 

SAX 0.1764 187.35 1.9354 1.1593 

CWT 0.1286 154.6587 1.8036 0.5469 

DWT 0.0978 104.8746 1.6426 0.1424 
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Fig. 3. Graphical representation of feature extraction 

analysis for NSW 

Table 3 indicates the evaluation of forecasting performance 

for NSW. The performance of Long Short-Term Memory 

(LSTM), Radial Basis Function Neural Network (RBFNN), 

Gated Recurrent Unit (GRU), and Bi-directional-GRU (Bi-

GRU) are compared with Rbi-GRU-SA. Compared to the 

techniques, Rbi-GRU-SA can capture the dependencies of 

long-range, exploit Bi-GRU data flow, and focus more on 

appropriate temporal features by utilizing SA. Fig. 4 

determines a graphical representation of forecasting 

performance for NSW. The results show that Rbi-GRU-SA 

achieves a better MAPE of 0.0978 compared to LSTM, 

RBFNN, GRU, and Bi-GRU techniques. 

Table 3. Evaluation of forecasting performance for NSW 

Methods MAPE RMSE R2 MAE 

LSTM 0.2036 234.0121 2.065 1.0354 

RBFNN 0.1574 129.357 2.015 1.0158 

GRU 0.1357 119.2574 1.998 0.9654 

Bi-GRU 0.1035 109.1458 1.802 0.5230 

Rbi-GRU-

SA 

0.0978 104.8746 1.6426 0.1424 

 

Fig. 4. Graphical representation of forecasting 

performance for NSW 

Table 4 determines the performance of forecasting 

evaluation for VIC. The performance of LSTM, RBFNN, 

GRU, and Bi-GRU are compared with Rbi-GRU-SA. Fig. 5 

indicates a graphical representation of forecasting 

performance for VIC. The outcome represents that Rbi-

GRU-SA achieves a better MAPE of 0.1054 compared to 

existing techniques respectively.  

Table 4. Performance of forecasting performance for VIC 

Methods MAPE RMSE R2 MAE 

LSTM 1.2458 265.3250 2.1584 1.3536 

RBFNN 0.2036 236.4587 2.0658 1.2367 

GRU 0.1936 196.3209 1.9658 1.0398 

Bi-GRU 0.1563 150.0267 1.5893 1.0115 

Rbi-GRU-

SA 

0.1054 128.6214 1.4273 0.0936 

 

Fig. 5. Graphical representation of forecasting 

performance for VIC 

4.2. Comparative Analysis 

Table 5 indicates a comparative analysis with existing 

techniques for NSW and VIC. The existing approaches like 

FE-WNN-SAMF [16], FE-AGO-LWSVR [17], GPR [18], 

and VMD-RVFL [19] are employed to compare with the 

proposed Rbi-GRU-SA. Compared to these techniques, 

Rbi-GRU-SA can capture the dependencies of long-range, 

exploit Bi-GRU data flow, and focus more on appropriate 

temporal features by utilizing SA. Hence, the results show 

that Rbi-GRU-SA achieves better MAPE of 0.0978 and 

0.1054 for NSW and VIC compared to existing techniques 

like FE-WNN-SAMF (1.4942, 1.4942), FE-AGO-LWSVR 

(0.1355, 0.1275), GPR (0.15), and VMD-RVFL (2.33, 3.87) 

respectively.  

Table 5. Comparative analysis with existing techniques for 

NSW and VIC 

Methods Datasets MAPE RMSE R2 

FE-

WNN-

SAMF 

[16] 

NSW 1.4942 20.1891 0.92 

VIC 1.4942 22.1791 0.91 

FE-

AGO-
NSW 0.1355 N/A N/A 
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LWSVR 

[17] 
VIC 0.1275 N/A N/A 

GPR 

[18] 
NSW 0.15 N/A N/A 

VMD-

RVFL 

[19] 

NSW 2.33 248.21 N/A 

VIC 3.87 310.49 N/A 

Proposed 

Rbi-

GRU-SA 

NSW 0.0978 104.8746 1.6426 

VIC 0.1054 128.6214 1.4273 

 

4.3. Discussion 

Here, the advantages of Rbi-GRU-SA and the limitations of 

existing techniques are discussed. The limitations of 

existing techniques are that FE-WNN-SAMF [16] wavelet 

transforms lack interpretability and fail to effectively 

generalize across different load patterns because of their 

intricate and multi-scale nature. GPR [18] relies on a 

covariance structure defined by training data makes it 

sensitive to data quality and representation which leads to 

inaccurate forecasting. VMD-RVFL [19] model’s long-term 

dependencies within time-series data were limited due to the 

decomposition process. The proposed Rbi-GRU-SA 

overcomes these limitations of existing techniques. The 

Rbi-GRU-SA effectively captures temporal dependencies 

which increase the ability of the model to accurately forecast 

short-term load data with non-linear and dynamic load 

patterns. By including residual connections, the proposed 

technique reduces vanishing gradient problems and assists 

with data flow over long sequences. The self-attention 

mechanism is utilized to dynamically weight input features 

which enhances its STLF effectiveness in SG. Therefore, 

the Rbi-GRU-SA achieves better MAPE of 0.0978 and 

0.1054 for NSW and VIC compared to FE-WNN-SAMF, 

FE-AGO-LWSVR, GPR, and VMD-RVFL existing 

techniques. 

5. Conclusion 

In this research, the Rbi-GRU-SA is proposed to forecast 

short-term load in SG. Rbi-GRU-SA is performed for STLF 

which captures intricate temporal dependencies and patterns 

by efficiently combining residual connections, bi-

directional data flow, and self-attention mechanism. 

Residual connections are utilized to reduce vanishing 

gradient problems, And bi-directional data flow and self-

attention mechanisms are employed to capture dynamic 

weight input features. Performing this process makes 

effective capture of non-linear load patterns and complex 

load behavior. Hence, compared to existing approaches like 

FE-WNN-SAMF, FE-AGO-LWSVR, GPR, and VMD-

RVFL, the proposed Rbi-GRU-SA achieves better MAPE 

of 0.0978 and 0.1054 for NSW and VIC. In the future, Long-

Term Load Forecasting (LTLF) will be considered for 

accurate load forecasting. 
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