

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1562–1567 | 1562

Maintaining Minimum Spanning Trees in Fully Dynamic Graphs

Muteb Alshammari1*

Submitted:11/03/2024 Revised: 25/04/2024 Accepted: 02/05/2024

Abstract: Graphs are mathematical structures utilized in a variety of contexts. Numerous applications have emerged in recent years that

require the processing of large dynamic graphs whose structure and properties are continuously evolving. communication, Social, and

transportation networks are examples of such applications. The minimum spanning tree (MST) problem is among the most difficult

challenges in dynamic graphs at a large scale. The MST problem is notoriously difficult to solve with traditional (algorithmically static)

methods, especially on large dynamic graphs that undergo frequent changes. Accordingly, we propose an efficient and fully dynamic MST

algorithm for large dynamic graphs in this paper. In light of this, the purpose of this paper is to present an efficient and fully dynamic MST

algorithm designed for use with large dynamic graphs. First, we describe our algorithm, then we evaluate the proposed solution. In addition,

we present a comprehensive experimental examination of our solution.

Keywords: Minimum Spanning Tree, MST, Dynamic Algorithm.

1. Introduction

Graphs are mathematical structures that are employed in the

representation of the connections that exist between various things.

Vertices are the “objects” that make up a graph, and edges are the

“relationships” that connect the various vertices. Numerous

disciplines, including computer science, chemistry, and biology,

make use of graphs in their respective practices [2]. The majority

of graph literature is focused on static graphs, or graphs which do

not alter over time. However, the underlying data structure of many

modern applications is in the form of dynamic graphs, which

change as the application runs over time [21]. As a result, there has

been a renewed focus on developing more effective algorithms that

can handle the massive size and rapid evolution of graphs essential

to many contemporary applications, such as routing protocols in

communication networks and social graphs. Minimum Spanning

Tree (MST) is a classic problem in graph theory that has a wide

range of practical applications. The MST problem is especially

difficult in the setting of dynamic graphs (DMST). The challenge

lies in figuring out how to efficiently update and maintain the MST

after encountering an update (or series of updates) on the

underlying graph.

Dynamic graph algorithms are characterized according to the type

of supported operations in which they are fully or partially

dynamic. Algorithms that merely allow for the addition (or

deletion) of vertices and edges are referred to as partially dynamic

algorithms. By contrast, fully dynamic algorithms can support

vertices and edge insertion and deletion.

Several scholars have presented solutions to the DMST problem

(e.g., [12, 18, 4, 8, 20]). The time complexity has been the focus of

many of these methods, while the practical considerations have

been neglected. To overcome these limitations, we introduce a

novel DMST algorithm in this paper. The proposed algorithm is

fully dynamic, efficient, scalable, and less complex than earlier

methods.

The remainder of this paper is structured as follows. Section 2

presents related work. The dynamic graph model and related

terminologies are introduced in Section 3. Section 4 presents the

proposed DMST approach. Section 5 describes our experimental

evaluation in detail and discusses our findings. Section 6 brings the

paper to a close.

2. Related Work

The DMST problem has been investigated for three decades and

has received significant attention in recent years. This is due to the

growing demand for new dynamic applications that rely on

dynamic graph techniques. This need has prompted a

reconsideration of the recommended solutions in the literature in

order to further improve the state-of-the-art modules. Other

reasons for implementing efficient dynamic algorithms include

power consumption and restricted resources, such as those found

in embedded systems.

Frederickson proposed in [8] a data structure for DMST

maintenance (called topology trees) that sup√ ports fully dynamic

graphs. The topology trees, theoretically, reduced the MST

updating cost to 𝑂(√𝑚) per update. In [12], Holm et al. proposed

an improvement to the update cost to 𝑂(√𝑛) by deploying the

sparsification technique. Their model supports fully dynamic

graphs and only edge operations. It begins with the assumption of

starting a fully dynamic graph with no edges and a fixed number

of vertices. Ribeiro and Toso in [18] proposed deterministic fully

dynamic algorithms for the DMST based on doubly-linked

dynamic trees with a worst case updating time of O(|E|), where |E|

is the number of edges. The paper included an experimental study

that compares their implementations to [12] and [4].

Considering Las Vegas algorithms, Wulff-Nilsen in [20] proposed

a fully dynamic algorithm with 𝑂(𝑛1/2−𝑐)worst-case updating

time and a probability of at least 1 − 𝑛−𝑑. Nanongkai et al.

Department of Information Technology, Faculty of Computing and

Information Technology, Northern Border University, Arar, Saudi Arabia

ORCHI ID: 0000-0002-3473-5959

*Corresponding Author Email: Muteb.Alshammari@nbu.edu.sa

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1562–1567 | 1563

developed fully dynamic algorithms in [16] that improve the

updating cost of [20] and [11].

The proposed fully deterministic algorithms for the connectivity

problem can also solve the fully dynamic MST. Several algorithms

for the connectivity problem, such as [13], have been proposed in

the literature. In [13], Kapron et al. proposed polylogarithmic fully

dynamic randomized algorithm for the connectivity problem with

a worst case updating time of O(𝑙𝑜𝑔4 n) for each edge insertion,

O(𝑙𝑜𝑔5 n) for each edge deletion, and O(log n/ log log 𝑛) per

query operation.

Giuseppe et al. in [4] implemented several deterministic DMST

algorithms such as [12, 3, 9, 7] and reported their analysis and

findings in a comprehensive experimental study.

3. Model for Dynamic Graphs

In this section, we present a mathematical model for fully dynamic

graphs. We begin by defining an undirected weighted graph G =

{V, E, W}. G consists of finite set of edges and vertices |E| and |V|,

consecutively. G consists of n vertices and m edges where n = |V|

and m = |E|, consecutively. W is a function that returns a real

weight of an edge such that W: E → R. The graph G is dynamic in

which it is under constant updates on vertices and edges. We

assume graph G has no cycles of negative or zero length.

Assume s ∈ V is a source vertex predefined initially with no

constrains. Additionally, consider the function out(v) that return

the set of edges connected to v, where v ∈ V. T is an MST rooted

at vertex s and 𝑻𝒗 is a part of T containing vertex v, where v ∈ V.

To maintain the MST T, we assume that G is updated prior to each

update operation and then invoke the corresponding update

algorithm. Graph G supports update operations on both edges and

vertices. The following operations can be performed on the graph

G:

• Add_vertex(v), where v ∉ V.

• Remove_vertex(v), where v ∈ V.

• Add_edge (x, y, w), where (x, y) ∉ E, x, y ∈ V, and x ≠

y.

• Remove_edge (x, y), where (x, y) ∈ E and x, y ∈ V.

• Weight_decrease (x, y, w), where (x, y) ∈ E, x, y ∈ V,

w < W(x, y).

• Weight_Increase (x, y, w), where (x, y) ∈ E, x, y ∈ V,

and w > W (x, y).

Considering the first operation, the insertion of vertex x to G will

not have any effect because x is not currently connected to any

other vertex. For the removing vertex operation, we will assume

that removing a vertex x from G is equivalent to removing one

edge from out(x) at a time until the vertex in question no longer

has any edges, and only then removing x from the graph. Other

operations are explained in the rest of the paper.

4. Approach

This section describes and introduces the deterministic MST

algorithm for fully dynamic graphs. Our approach consists of two

algorithms: incremental and decremental dynamic algorithm. The

incremental dynamic algorithm (MA_INC) in Section 4.1 supports

insertion and weight decreasing of edges. The decremental

dynamic algorithm (MA_DEC) in Section 4.2 supports deletion

and weight increasing of edges.

4.1. Incremental Dynamic Algorithm

The incremental dynamic algorithm (MA_INC) in Algorithm 1

performs two operations: (a) the insertion of a new edge, and (b)

the increasing of an edge weight. The algorithm begins by

determining whether the edge is a tree edge, after which it returns

with no changes. This is due to the fact that if the edge is a tree

edge, then it will remain a tree edge. Otherwise, regardless of

whether (x, y) is a newly inserted edge or an existing edge, we will

add the edge (x, y) to the tree, introducing a cycle of the form x, y,

. . ., x (note that T is not tree here, but it will be recovered at line

10). The algorithm then invokes the procedure Find_Path(s, x, y)

to determine the path of the cycle x, y, . . . , x and stores it in a

temporary list called Path. Following that, in lines 6-9, we find the

edge with the highest weight in the list Path and delete it in line 10.

The procedure Find_Path(x, y) is a recursive function whose main

objective is to find the cycle x, y, . . . , x and return a list containing

the edges of the cycle. In this function, we use the parameter x for

the recursion base case (i.e., when x = y). The function uses a

simple technique to avoid revisiting scanned edges by coloring

visited edges “red.” Initially, the function will be called with the

edge (x, y) (i.e., the updated edge). The tree edges connected to the

current edge’s end point (i.e., y) are scanned and the function is

called recursively for each neighbor (of y) who has not been visited

(i.e., white edges). Then, the original color of each edge is

recovered. Finally, the current edge is appended to other edges

only if the function reaches the base condition. We note here that

the condition in line 9 is to ensure that we only retain the path that

1: procedure MA_INC(x,y,w)

2: if (x,y) ∈ T then

3: return

4: color(x,y) = red

5: insert(T,x,y)

6: Path = Find path(x,y)

7: max = (x,y)

8: for every (u,v) ∈ Path do

9: if W(u,v) > W(max) then

10: max = (u,v)

11: T.delete(max)

12: color(x,y) = white

Algorithm 1: Inserting or decreasing the weight of edge (x, y)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1562–1567 | 1564

hits the base case of the recursive function.

Algorithm 2: Find path in the cycle x, y, . . . , x

1: procedure Find_Path (x,y)

2: if x == y then

3: return

4: for every v ∈ T.out(y) do

5: if color(v,y) == white then

6: color(v,y) = red

7: found = Find_Path(x,v)

8: color(v,y) = white

9: if found then

10: found.append((v,y))

11: return found

12: return

4.2. Decremental Dynamic Algorithm

The decremental dynamic algorithm (MA_DEC) in Algorithm 3

performs two operations: (a) edge deletion and (b) edge weight

increasing. The algorithm begins by determining whether the edge

is not a tree edge, after which it returns with no changes if it is not

a tree edge. This is due to the fact that if it is not a tree edge, it will

have no effect to the tree T. Then, the updated edge (x, y) is

removed from the tree T. This will separate the tree into two sub-

trees (or cuts): Tx and Ty). Each of which contains a vertex of the

updated edge’s endpoints. We employ a coloring strategy in which

the vertices of the graph are colored either red or white (vertices

originally were white). Therefore, we color vertices in the tree cut

that contains x to red color and the other cut (cut y) will remain

white. This will help in line 12 to differentiate the two cuts. After

that, we iterate over the vertices in cut x and scan all edges

connected to these vertices to find the connected edge with the

minimum weight to vertices in the cut y. After finding the

minimum edge, if it exists, we insert that edge to the tree T. This

will reconnect the two cuts (after we delete (x, y in line 4) and the

MST is recovered. Finally, we recover the original white color to

vertices in the cut y.

Algorithm 3: Deleting the edge (x, y) or increasing its weight

1: procedure MA_DEC(x, y, w)

2: if (x, y) ∈/ T then

3: Return

4: T.delete(x, y)

5: Cutx = ∅

6:

7:

8:

Minw = ∞

for z ∈ Tx∞ do

color(z) = red

9: Cutx.insert(z)

10: for every u ∈ Cutx do

11: for every v ∈ out(u) do

12: if color(u) ≠ color(v) & W(u, v) < Minw then

13: Minw = W(u, v)

14: Minedge = (u, v)

15: if Minedge then

16: insert(T, Minedge)

17: for every v ∈ Cutx do

18: color(v) = white

4.3. Complexity Analysis

Worst-case time complexity analysis in dynamic graph algorithms

is a challenge since many algorithms have no better performance

than recomputing from scratch. As a result, many models, such as

[17, 19, 14, 5, 10], have been proposed in the literature to provide

more accurate time complexity analysis. In this paper, we extend

Ramalingam and Reps model in [17] by computing the difference

between the input and output of the applied algorithms. This model

provides more accurate analysis because it measures the actual

changes by the applied algorithms. In the extended model:

• β is a list of edges that form a cycle in the tree after

inserting an edge of the form x, y, . . . , x into the tree (at

most n edges).

• |β| is the number of edges in β.

• δ is a list of vertices in the cut x caused by deleting the

edge (x, y) from the tree.

• |δ| is the length of δ. i.e. the sum of the number of vertices

in the cut x (at most n − 1).

• ||δ|| is |δ| + number of edges connected to each of those

vertices in δ.

Given the decremental dynamic algorithm, the loops in lines 7-9

and 17-18 will iterate 2 × |δ| times. Lines 10-14 will iterate ||δ||.

The rest of the operations take constant time. Therefore, the

decremental dynamic algorithm requires O(|δ| + ||δ||)

Considering the incremental dynamic algorithm, the algorithm is

primarily depending on Find_Path procedure which recursively

scans the tree edges to find the path x, y, . . . , x that takes |β| time.

The loop in lines 8-10 iterates over the path edges which takes |β|

times. Therefore, the incremental dynamic algorithm requires

O(|β|).

Table 1: Random data sets details

n m Density n m Density

200 1990 0.1 1000 200,000 0.2

200 5970 0.3 1000 400,000 0.4

200 9950 0.5 1000 600,000 0.6

200 13930 0.7 1000 800,000 0.8

200 17910 0.9 2000 800,000 0.2

400 7980 0.1 2000 1,600,000 0.4

400 23940 0.3 2000 2,400,000 0.6

400 39900 0.5 2000 3,200,000 0.8

400 55860 0.7 3000 1,800,000 0.2

400 71820 0.9 3000 3,600,000 0.4

600 17970 0.1 3000 5,400,000 0.6

600 53910 0.3 3000 7,200,000 0.8

600 89850 0.5

600 125790 0.7

600 161730 0.9

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1562–1567 | 1565

5. Experiments

This section describes the experimental study of our approach in

compared to Ribeiro and Toso approach [18] (dynamic version)

and Prim’s algorithm (static version). We consider the algorithms

of [18] since it is lately proved to be faster and more reliable in

compared to the literature. All algorithms implemented in this

paper are coded in Python and executed on AWS virtual machine

[1] with Ubuntu 20.04, 16 vCPUs, and 128 GB of RAM. For the

sake of perfection, we have not used any predefined graph library.

Next, we provide the data sets used in this study along with edge

operations. Then, we give the experimental results on the

performance of the proposed incremental algorithm (MA_INC),

decremental algorithm (MA_DEC), Ribeiro and Toso incremental

algorithm (RIB_INC), Ribeiro and Toso decremental algorithm

(RIB_DEC), and Prim’s Algorithms. For each data set, we

randomly choose 100 edges from the MST. Then, we delete an

edge and apply the corresponding algorithm. After that, we reinsert

the deleted edge and apply the corresponding algorithms. This will

enforce all considered algorithms to update the MST. Our

comparison with Prim’s algorithm is to investigate the time it takes

to only initialize the MST without considering the updates

occurred to the graph. Each reported result is an average of five

distinct runs. All experiments were validated by comparing the

sum of edges on each MST of each algorithm.

5.1 Data Sets

In this experimental study, we take into consideration two different

kinds of data sets: random data sets and real data sets. In the

random data sets, we consider 24 different graphs of sizes from

200 to 3000 vertices and densities ranging from 10% to 90% as

shown in Table 1. In each graph size, we consider different graph

density to better view the performance of different algorithms. The

graph density is defined as follows:

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 2𝑚 /(𝑛 × (𝑛 − 1))

The graph density formula is used to determine the number of

edges in the considered graph as follows:

𝑚 = (𝑛 × (𝑛 − 1)) × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)/2

In the real data sets, we consider autonomous systems connection

(AS) obtained from [6] and road networks of three states collected

from [15]. In AS, we consider 3 graphs of different sizes: 500,

1000, and 1500 vertices as shown in Table 2. Where in road

networks, we consider the available data sets for Pennsylvania

(PA), Texas (TA), and California (CA). For each graph, we choose

100 edge deletions and 100 edge insertions from those who were

chosen as part of the MST.

5.2. Performance Evaluation

The CPU consumption time for different algorithms is discussed

and provided for synthetic and real data sets with varying numbers

of vertices and densities. Across different numbers of vertices

(200, 400, 600, 1000, 2000, and 3000) and densities (0.1, 0.3, 0.5,

0.7, and 0.9), the CPU consumption time increases with an increase

in the number of vertices and density for all algorithms.

Considering graphs with the same number of vertices, as the

density of the graph increases, the CPU consumption time

generally increases across all algorithms, indicating that denser

graphs require more computational resources to process. We have

observed that this is due to the need of these algorithms to scan

more edges (either partially in the case of dynamic algorithms or

Table 2: Random data sets details

Data Set Type n m Density

AS 500

1000

1500

2406

4546

6994

0.019

0.009

0.006

Road network of Pennsylvania (PA) 1,088,092 1,541,898 0.000003

Road network of Texas (TA) 1,379,917 1,921,660 0.000002

Road network of California (CA) 1,965,206 2,766,607 0.0000014

(a) (b)

Figure 1: Experiments on real data sets: (a) Autonomous Systems and (b) Road Networks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1562–1567 | 1566

completely in the case of static algorithm).

Our experiments on real data sets (i.e. Autonomous Systems and

road networks) with various graph sizes are presented in Figure 1.

We can observe the performance of Prim’s algorithm (Figure 1) in

comparison to dynamic algorithms (i.e. RIB_DEC, RIB_INC,

MA_INC and MA_DEC). This is due to the fact that when Prim’s

algorithm is applied, it scans all edges and vertices. MA_INC and

MA_DEC algorithms appear to be 5 to 10 times faster in

comparison to RIB_DEC and RIB_INC. We realized that

MA_INC is the fastest in all data sets because the algorithm is

based primarily on the Find_Path procedure which scans only the

tree edges with a maximum of n edges (i.e., n − 1 for tree edges

plus the inserted edge (x, y)). We observed that RIB_DEC and

RIB_INC exhibits more computational cost to update data

structures used in their method which consists of a linked list for

all edges in the graph. Our experiments show that preparing and

updating such data structures would improve the theoretical time

complexity rather than the computational complexity on

experimental studies.

In addition, to evaluate the cost of different graph densities, we

also take into consideration random data sets of varying densities

from 10% to 90%. Figure 2 shows our experiments on three small

graphs of different vertex sizes: 200, 400, 600, 1000, 2000, and

3000 vertices. Moreover, Figure 3 shows our experiments on three

larger graphs with 1000, 2000, and 3000 vertices with edges

between 200,000 and 7,200,000 edges. A pattern that is analogous

to that of real data sets is repeated.

Among all algorithms, the Prime algorithm consistently exhibits

the highest CPU consumption time, followed by RIB_DEC,

RIB_INC, MA_DEC, and MA_INC, respectively.

In summary, the choice of algorithm, graph size, and density

significantly impact CPU consumption. Optimizing algorithms for

specific scenarios is crucial for efficient resource utilization.

Understanding these trends can help in selecting appropriate

algorithms and optimizing computational resources for graph

processing tasks. The provided data allows for a comparative

analysis of CPU consumption time across different algorithms,

numbers of vertices, densities, and types of data sets.

6. Conclusion

This paper presents a novel, efficient, and less complex approach

for maintaining the minimum spanning tree in fully dynamic

graphs. In addition, a fully dynamic graph model was addressed.

We then presented and analyzed the time complexity of our

algorithms. Finally, we conducted a comprehensive experimental

study utilizing both synthetic and actual data sets. Experiments

conducted on both types of data sets demonstrated that our

algorithms are efficient, fast, and less complex.

Declarations

• Ethics approval Not Applicable.

• Availability of data and materials Available at

https://github.com/muteb-nbu/D_MST.git.

• Authors’ contributions This manuscript is the work of the

single author.

Conflicts of interest

The authors declare no conflicts of interest.

(a) (b) (c)

 Figure 2: Experiments on small random data sets.

 (a) (b) (c)

Figure 3: Experiments on large random data sets

https://github.com/muteb-nbu/D_MST.git
https://github.com/muteb-nbu/D_MST.git

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1562–1567 | 1567

References

[1] Cloud computing services - amazon web services (aws). 5

[2] M Alshammari and Abdelmounaam Rezgui. A single-source

shortest path algorithm for dynamic graphs. AKCE

International Journal of Graphs and Combinatorics,

17(3):1063–1068, 2020. 1

[3] Giuseppe Amato, Giuseppe Cattaneo, and Giuseppe F Italiano.

Experimental analysis of dynamic minimum spanning tree

algorithms. In SODA, volume 97, pages 314–323. Citeseer,

1997. 2

[4] Giuseppe Cattaneo, Pompeo Faruolo, U Ferraro Petrillo, and

Giuseppe F Italiano. Maintaining dynamic minimum spanning

trees: An experimental study. Discrete Applied Mathematics,

158(5):404–425, 2010. 1, 2

[5] Camil Demetrescu and Giuseppe F Italiano. A new approach

to dynamic all pairs shortest paths. Journal of the ACM

(JACM), 51(6):968–992, 2004. 4.3

[6] Camil Demetrescu and Giuseppe F Italiano. Experimental

analysis of dynamic all pairs shortest path algorithms. ACM

Transactions on Algorithms (TALG), 2(4):578–601, 2006. 5.1

[7] David Eppstein, Zvi Galil, Giuseppe F Italiano, and Amnon

Nissenzweig. Sparsification—a technique for speeding up

dynamic graph algorithms. Journal of the ACM (JACM),

44(5):669–696, 1997. 2

[8] Greg N Frederickson. Data structures for on-line updating of

minimum spanning trees. In Proceedings of the fifteenth

annual ACM symposium on Theory of computing, pages 252–

257, 1983. 1, 2

[9] Greg N Frederickson. Ambivalent data structures for dynamic

2-edge-connectivity and k smallest spanning trees. SIAM

Journal on Computing, 26(2):484–538, 1997. 2

[10] Daniele Frigioni, Alberto Marchetti-Spaccamela, and

Umberto Nanni. Fully dynamic algorithms for maintaining

shortest paths trees. Journal of Algorithms, 34(2):251–281,

2000. 4.3

[11] Monika Rauch Henzinger and Valerie King. Fully dynamic 2-

edge connectivity algorithm in polylogarithmic time per

operation. SRC Technical Note, 4, 1997. 2

[12] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup.

Poly-logarithmic deterministic fully-dynamic algorithms for

connectivity, minimum spanning tree, 2-edge, and

biconnectivity. Journal of the ACM (JACM), 48(4):723–760,

2001. 1, 2

[13] Bruce M Kapron, Valerie King, and Ben Mountjoy. Dynamic

graph connectivity in polylogarithmic worst case time. In

Proceedings of the twenty-fourth annual ACM-SIAM

symposium on Discrete algorithms, pages 1131–1142. SIAM,

2013. 2

[14] Valerie King. Fully dynamic algorithms for maintaining all-

pairs shortest paths and transitive closure in digraphs. In 40th

Annual Symposium on Foundations of Computer Science

(Cat. No. 99CB37039), pages 81–89. IEEE, 1999. 4.3

[15] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford

large network dataset collection.

http://snap.stanford.edu/data, June 2014. 5.1

[16] Danupon Nanongkai, Thatchaphol Saranurak, and Christian

Wulff-Nilsen. Dynamic minimum spanning forest with

subpolynomial worst-case update time. In 2017 IEEE 58th

Annual Symposium on Foundations of Computer Science

(FOCS), pages 950–961. IEEE, 2017. 2

[17] Ganesan Ramalingam and Thomas Reps. On the

computational complexity of dynamic graph problems.

Theoretical Computer Science, 158(1–2):233–277, 1996. 4.3

[18] Celso C Ribeiro and Rodrigo F Toso. Experimental analysis

of algorithms for updating minimum spanning trees on graphs

subject to changes on edge weights. In Experimental

Algorithms: 6th International Workshop, WEA 2007, Rome,

Italy, June 6-8, 2007. Proceedings 6, pages 393–405.

Springer, 2007. 1, 2, 5

[19] Mikkel Thorup. Worst-case update times for fully-dynamic

all-pairs shortest paths. In Proceedings of the thirty-seventh

annual ACM symposium on Theory of computing, pages

112–119. ACM, 2005. 4.3

[20] Christian Wulff-Nilsen. Fully-dynamic minimum spanning

forest with improved worst-case update time. In Proceedings

of the 49th Annual ACM SIGACT Symposium on Theory of

Computing, pages 1130–1143, 2017. 1, 2

[21] Aya Zaki, Mahmoud Attia, Doaa Hegazy, and Safaa Amin.

Comprehensive survey on dynamic graph models.

International Journal of Advanced Computer Science and

Applications, 7(2):573–582, 2016. 1

