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Abstract: Graphs are mathematical structures utilized in a variety of contexts. Numerous applications have emerged in recent years that 

require the processing of large dynamic graphs whose structure and properties are continuously evolving. communication, Social, and 

transportation networks are examples of such applications. The minimum spanning tree (MST) problem is among the most difficult 

challenges in dynamic graphs at a large scale. The MST problem is notoriously difficult to solve with traditional (algorithmically static) 

methods, especially on large dynamic graphs that undergo frequent changes. Accordingly, we propose an efficient and fully dynamic MST 

algorithm for large dynamic graphs in this paper. In light of this, the purpose of this paper is to present an efficient and fully dynamic MST 

algorithm designed for use with large dynamic graphs. First, we describe our algorithm, then we evaluate the proposed solution. In addition, 

we present a comprehensive experimental examination of our solution. 
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1. Introduction 

Graphs are mathematical structures that are employed in the 

representation of the connections that exist between various things. 

Vertices are the “objects” that make up a graph, and edges are the 

“relationships” that connect the various vertices. Numerous 

disciplines, including computer science, chemistry, and biology, 

make use of graphs in their respective practices [2]. The majority 

of graph literature is focused on static graphs, or graphs which do 

not alter over time. However, the underlying data structure of many 

modern applications is in the form of dynamic graphs, which 

change as the application runs over time [21]. As a result, there has 

been a renewed focus on developing more effective algorithms that 

can handle the massive size and rapid evolution of graphs essential 

to many contemporary applications, such as routing protocols in 

communication networks and social graphs. Minimum Spanning 

Tree (MST) is a classic problem in graph theory that has a wide 

range of practical applications. The MST problem is especially 

difficult in the setting of dynamic graphs (DMST). The challenge 

lies in figuring out how to efficiently update and maintain the MST 

after encountering an update (or series of updates) on the 

underlying graph. 

Dynamic graph algorithms are characterized according to the type 

of supported operations in which they are fully or partially 

dynamic. Algorithms that merely allow for the addition (or 

deletion) of vertices and edges are referred to as partially dynamic 

algorithms. By contrast, fully dynamic algorithms can support 

vertices and edge insertion and deletion. 

Several scholars have presented solutions to the DMST problem 

(e.g., [12, 18, 4, 8, 20]). The time complexity has been the focus of 

many of these methods, while the practical considerations have 

been neglected. To overcome these limitations, we introduce a 

novel DMST algorithm in this paper. The proposed algorithm is 

fully dynamic, efficient, scalable, and less complex than earlier 

methods. 

The remainder of this paper is structured as follows. Section 2 

presents related work. The dynamic graph model and related 

terminologies are introduced in Section 3. Section 4 presents the 

proposed DMST approach. Section 5 describes our experimental 

evaluation in detail and discusses our findings. Section 6 brings the 

paper to a close. 

2. Related Work 

The DMST problem has been investigated for three decades and 

has received significant attention in recent years. This is due to the 

growing demand for new dynamic applications that rely on 

dynamic graph techniques. This need has prompted a 

reconsideration of the recommended solutions in the literature in 

order to further improve the state-of-the-art modules. Other 

reasons for implementing efficient dynamic algorithms include 

power consumption and restricted resources, such as those found 

in embedded systems. 

Frederickson proposed in [8] a data structure for DMST 

maintenance (called topology trees) that sup√ ports fully dynamic 

graphs. The topology trees, theoretically, reduced the MST 

updating cost to 𝑂(√𝑚) per update. In [12], Holm et al. proposed 

an improvement to the update cost to 𝑂(√𝑛) by deploying the 

sparsification technique. Their model supports fully dynamic 

graphs and only edge operations. It begins with the assumption of 

starting a fully dynamic graph with no edges and a fixed number 

of vertices. Ribeiro and Toso in [18] proposed deterministic fully 

dynamic algorithms for the DMST based on doubly-linked 

dynamic trees with a worst case updating time of O(|E|), where |E| 

is the number of edges. The paper included an experimental study 

that compares their implementations to [12] and [4]. 

Considering Las Vegas algorithms, Wulff-Nilsen in [20] proposed 

a fully dynamic algorithm with 𝑂(𝑛1/2−𝑐)worst-case updating 

time and a probability of at least 1 − 𝑛−𝑑. Nanongkai et al. 
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developed fully dynamic algorithms in [16] that improve the 

updating cost of [20] and [11]. 

The proposed fully deterministic algorithms for the connectivity 

problem can also solve the fully dynamic MST. Several algorithms 

for the connectivity problem, such as [13], have been proposed in 

the literature. In [13], Kapron et al. proposed polylogarithmic fully 

dynamic randomized algorithm for the connectivity problem with 

a worst case updating time of O(𝑙𝑜𝑔4 n)  for each edge insertion, 

O(𝑙𝑜𝑔5 n)   for each edge deletion, and O(log n/ log log 𝑛)   per 

query operation. 

Giuseppe et al. in [4] implemented several deterministic DMST 

algorithms such as [12, 3, 9, 7] and reported their analysis and 

findings in a comprehensive experimental study. 

3. Model for Dynamic Graphs 

In this section, we present a mathematical model for fully dynamic 

graphs. We begin by defining an undirected weighted graph G = 

{V, E, W}. G consists of finite set of edges and vertices |E| and |V|, 

consecutively. G consists of n vertices and m edges where n = |V| 

and m = |E|, consecutively. W is a function that returns a real 

weight of an edge such that W: E → R. The graph G is dynamic in 

which it is under constant updates on vertices and edges. We 

assume graph G has no cycles of negative or zero length. 

Assume s ∈ V is a source vertex predefined initially with no 

constrains. Additionally, consider the function out(v) that return 

the set of edges connected to v, where v ∈ V. T is an MST rooted 

at vertex s and 𝑻𝒗 is a part of T containing vertex v, where v ∈ V. 

To maintain the MST T, we assume that G is updated prior to each 

update operation and then invoke the corresponding update 

algorithm. Graph G supports update operations on both edges and 

vertices. The following operations can be performed on the graph 

G: 

• Add_vertex(v), where v ∉ V. 

• Remove_vertex(v), where v ∈ V. 

• Add_edge (x, y, w), where (x, y) ∉ E, x, y ∈ V, and x ≠ 

y. 

• Remove_edge (x, y), where (x, y) ∈ E and x, y ∈ V. 

• Weight_decrease (x, y, w), where (x, y) ∈ E, x, y ∈ V, 

w < W(x, y). 

• Weight_Increase (x, y, w), where (x, y) ∈ E, x, y ∈ V, 

and w > W (x, y). 

Considering the first operation, the insertion of vertex x to G will 

not have any effect because x is not currently connected to any 

other vertex. For the removing vertex operation, we will assume 

that removing a vertex x from G is equivalent to removing one 

edge from out(x) at a time until the vertex in question no longer 

has any edges, and only then removing x from the graph. Other 

operations are explained in the rest of the paper. 

 

4. Approach 

This section describes and introduces the deterministic MST 

algorithm for fully dynamic graphs. Our approach consists of two 

algorithms: incremental and decremental dynamic algorithm. The 

incremental dynamic algorithm (MA_INC) in Section 4.1 supports 

insertion and weight decreasing of edges. The decremental 

dynamic algorithm (MA_DEC) in Section 4.2 supports deletion 

and weight increasing of edges. 

4.1. Incremental Dynamic Algorithm 

The incremental dynamic algorithm (MA_INC) in Algorithm 1 

performs two operations: (a) the insertion of a new edge, and (b) 

the increasing of an edge weight. The algorithm begins by 

determining whether the edge is a tree edge, after which it returns 

with no changes. This is due to the fact that if the edge is a tree 

edge, then it will remain a tree edge. Otherwise, regardless of 

whether (x, y) is a newly inserted edge or an existing edge, we will 

add the edge (x, y) to the tree, introducing a cycle of the form x, y, 

. . ., x (note that T is not tree here, but it will be recovered at line 

10). The algorithm then invokes the procedure Find_Path(s, x, y) 

to determine the path of the cycle x, y, . . . , x and stores it in a 

temporary list called Path. Following that, in lines 6-9, we find the 

edge with the highest weight in the list Path and delete it in line 10. 

The procedure Find_Path(x, y) is a recursive function whose main 

objective is to find the cycle x, y, . . . , x and return a list containing 

the edges of the cycle. In this function, we use the parameter x for 

the recursion base case (i.e., when x = y). The function uses a 

simple technique to avoid revisiting scanned edges by coloring 

visited edges “red.” Initially, the function will be called with the 

edge (x, y) (i.e., the updated edge). The tree edges connected to the 

current edge’s end point (i.e., y) are scanned and the function is 

called recursively for each neighbor (of y) who has not been visited 

(i.e., white edges). Then, the original color of each edge is 

recovered. Finally, the current edge is appended to other edges 

only if the function reaches the base condition. We note here that 

the condition in line 9 is to ensure that we only retain the path that 

1: procedure MA_INC(x,y,w) 

2: if (x,y) ∈ T then 

3: return 

4: color(x,y) = red 

5: insert(T,x,y) 

6: Path = Find path(x,y) 

7: max = (x,y) 

8: for every (u,v) ∈ Path do 

9: if W(u,v) > W(max) then 

10: max = (u,v) 

11: T.delete(max) 

12: color(x,y) = white 

 

Algorithm 1: Inserting or decreasing the weight of edge (x, y) 
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hits the base case of the recursive function. 

 

Algorithm 2: Find path in the cycle x, y, . . . , x 

1: procedure Find_Path (x,y) 

2: if x == y then 

3: return 

4: for every v ∈ T.out(y) do 

5: if color(v,y) == white then 

6: color(v,y) = red 

7: found = Find_Path(x,v) 

8: color(v,y) = white 

9: if found then 

10: found.append((v,y)) 

11: return found 

12: return 

4.2. Decremental Dynamic Algorithm 

The decremental dynamic algorithm (MA_DEC) in Algorithm 3 

performs two operations: (a) edge deletion and (b) edge weight 

increasing. The algorithm begins by determining whether the edge 

is not a tree edge, after which it returns with no changes if it is not 

a tree edge. This is due to the fact that if it is not a tree edge, it will 

have no effect to the tree T. Then, the updated edge (x, y) is 

removed from the tree T. This will separate the tree into two sub-

trees (or cuts): Tx and Ty). Each of which contains a vertex of the 

updated edge’s endpoints. We employ a coloring strategy in which 

the vertices of the graph are colored either red or white (vertices 

originally were white). Therefore, we color vertices in the tree cut 

that contains x to red color and the other cut (cut y) will remain 

white. This will help in line 12 to differentiate the two cuts. After 

that, we iterate over the vertices in cut x and scan all edges 

connected to these vertices to find the connected edge with the 

minimum weight to vertices in the cut y. After finding the 

minimum edge, if it exists, we insert that edge to the tree T. This 

will reconnect the two cuts (after we delete (x, y in line 4) and the 

MST is recovered. Finally, we recover the original white color to 

vertices in the cut y. 

Algorithm 3: Deleting the edge (x, y) or increasing its weight  

1: procedure MA_DEC(x, y, w) 

2:   if (x, y) ∈/ T then 

  

3: Return   

4: T.delete(x, y)   

5: Cutx = ∅   

6: 

7: 

8: 

Minw = ∞ 

for z ∈ Tx∞ do 

color(z) = red 

  

9: Cutx.insert(z)   

10: for every u ∈ Cutx do   

11: for every v ∈ out(u) do   

12: if color(u) ≠ color(v) & W(u, v) < Minw then   

13: Minw = W(u, v)   

14: Minedge = (u, v)   

15: if Minedge then   

16: insert(T, Minedge)   

17: for every v ∈ Cutx do   

18: color(v) = white   

4.3. Complexity Analysis 

Worst-case time complexity analysis in dynamic graph algorithms 

is a challenge since many algorithms have no better performance 

than recomputing from scratch. As a result, many models, such as 

[17, 19, 14, 5, 10], have been proposed in the literature to provide 

more accurate time complexity analysis. In this paper, we extend 

Ramalingam and Reps model in [17] by computing the difference 

between the input and output of the applied algorithms. This model 

provides more accurate analysis because it measures the actual 

changes by the applied algorithms. In the extended model: 

• β is a list of edges that form a cycle in the tree after 

inserting an edge of the form x, y, . . . , x into the tree (at 

most n edges). 

• |β| is the number of edges in β. 

• δ is a list of vertices in the cut x caused by deleting the 

edge (x, y) from the tree. 

• |δ| is the length of δ. i.e. the sum of the number of vertices 

in the cut x (at most n − 1). 

• ||δ|| is |δ| + number of edges connected to each of those 

vertices in δ. 

Given the decremental dynamic algorithm, the loops in lines 7-9 

and 17-18 will iterate 2 × |δ| times. Lines 10-14 will iterate ||δ||. 

The rest of the operations take constant time. Therefore, the 

decremental dynamic algorithm requires O(|δ| + ||δ||) 

Considering the incremental dynamic algorithm, the algorithm is 

primarily depending on Find_Path procedure which recursively 

scans the tree edges to find the path x, y, . . . , x that takes |β| time. 

The loop in lines 8-10 iterates over the path edges which takes |β| 

times. Therefore, the incremental dynamic algorithm requires 

O(|β|). 

 

Table 1: Random data sets details 

n m Density  n m Density 

200 1990 0.1 1000 200,000 0.2 

200 5970 0.3 1000 400,000 0.4 

200 9950 0.5 1000 600,000 0.6 

200 13930 0.7 1000 800,000 0.8 

200 17910 0.9 2000 800,000 0.2 

400 7980 0.1 2000 1,600,000 0.4 

400 23940 0.3 2000 2,400,000 0.6 

400 39900 0.5 2000 3,200,000 0.8 

400 55860 0.7 3000 1,800,000 0.2 

400 71820 0.9 3000 3,600,000 0.4 

600 17970 0.1 3000 5,400,000 0.6 

600 53910 0.3 3000 7,200,000 0.8 

600 89850 0.5    

600 125790 0.7    

600 161730 0.9    
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5. Experiments 

This section describes the experimental study of our approach in 

compared to Ribeiro and Toso approach [18] (dynamic version) 

and Prim’s algorithm (static version). We consider the algorithms 

of [18] since it is lately proved to be faster and more reliable in 

compared to the literature. All algorithms implemented in this 

paper are coded in Python and executed on AWS virtual machine 

[1] with Ubuntu 20.04, 16 vCPUs, and 128 GB of RAM. For the 

sake of perfection, we have not used any predefined graph library. 

Next, we provide the data sets used in this study along with edge 

operations. Then, we give the experimental results on the 

performance of the proposed incremental algorithm (MA_INC), 

decremental algorithm (MA_DEC), Ribeiro and Toso incremental 

algorithm (RIB_INC), Ribeiro and Toso decremental algorithm 

(RIB_DEC), and Prim’s Algorithms. For each data set, we 

randomly choose 100 edges from the MST. Then, we delete an 

edge and apply the corresponding algorithm. After that, we reinsert 

the deleted edge and apply the corresponding algorithms. This will 

enforce all considered algorithms to update the MST. Our 

comparison with Prim’s algorithm is to investigate the time it takes 

to only initialize the MST without considering the updates 

occurred to the graph. Each reported result is an average of five 

distinct runs. All experiments were validated by comparing the 

sum of edges on each MST of each algorithm. 

 

5.1 Data Sets 

In this experimental study, we take into consideration two different 

kinds of data sets: random data sets and real data sets. In the 

random data sets, we consider 24 different graphs of sizes from 

200 to 3000 vertices and densities ranging from 10% to 90% as 

shown in Table 1. In each graph size, we consider different graph 

density to better view the performance of different algorithms. The 

graph density is defined as follows: 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  2𝑚 /(𝑛 ×  (𝑛 −  1)) 

The graph density formula is used to determine the number of 

edges in the considered graph as follows: 

𝑚 = (𝑛 ×  (𝑛 −  1))  × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)/2    

In the real data sets, we consider autonomous systems connection 

(AS) obtained from [6] and road networks of three states collected 

from [15]. In AS, we consider 3 graphs of different sizes: 500, 

1000, and 1500 vertices as shown in Table 2. Where in road 

networks, we consider the available data sets for Pennsylvania 

(PA), Texas (TA), and California (CA). For each graph, we choose 

100 edge deletions and 100 edge insertions from those who were 

chosen as part of the MST. 

 

5.2. Performance Evaluation 

The CPU consumption time for different algorithms is discussed 

and provided for synthetic and real data sets with varying numbers 

of vertices and densities. Across different numbers of vertices 

(200, 400, 600, 1000, 2000, and 3000) and densities (0.1, 0.3, 0.5, 

0.7, and 0.9), the CPU consumption time increases with an increase 

in the number of vertices and density for all algorithms. 

Considering graphs with the same number of vertices, as the 

density of the graph increases, the CPU consumption time 

generally increases across all algorithms, indicating that denser 

graphs require more computational resources to process. We have 

observed that this is due to the need of these algorithms to scan 

more edges (either partially in the case of dynamic algorithms or 

Table 2: Random data sets details 

Data Set Type n m Density 

AS 500 

1000 

1500 

2406 

4546 

6994 

0.019 

0.009 

0.006 

Road network of Pennsylvania (PA) 1,088,092 1,541,898 0.000003 

Road network of Texas (TA) 1,379,917 1,921,660 0.000002 

Road network of California (CA) 1,965,206 2,766,607 0.0000014 

 

 

(a)                                                              (b) 

Figure 1: Experiments on real data sets: (a) Autonomous Systems and (b) Road Networks 
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completely in the case of static algorithm). 

Our experiments on real data sets (i.e. Autonomous Systems and 

road networks) with various graph sizes are presented in Figure 1. 

We can observe the performance of Prim’s algorithm (Figure 1) in 

comparison to dynamic algorithms (i.e. RIB_DEC, RIB_INC, 

MA_INC and MA_DEC). This is due to the fact that when Prim’s 

algorithm is applied, it scans all edges and vertices. MA_INC and 

MA_DEC algorithms appear to be 5 to 10 times faster in 

comparison to RIB_DEC and RIB_INC. We realized that 

MA_INC is the fastest in all data sets because the algorithm is 

based primarily on the Find_Path procedure which scans only the 

tree edges with a maximum of n edges (i.e., n − 1 for tree edges 

plus the inserted edge (x, y)). We observed that RIB_DEC and 

RIB_INC exhibits more computational cost to update data 

structures used in their method which consists of a linked list for 

all edges in the graph. Our experiments show that preparing and 

updating such data structures would improve the theoretical time 

complexity rather than the computational complexity on 

experimental studies. 

In addition, to evaluate the cost of different graph densities, we 

also take into consideration random data sets of varying densities 

from 10% to 90%. Figure 2 shows our experiments on three small 

graphs of different vertex sizes: 200, 400, 600, 1000, 2000, and 

3000 vertices. Moreover, Figure 3 shows our experiments on three 

larger graphs with 1000, 2000, and 3000 vertices with edges 

between 200,000 and 7,200,000 edges. A pattern that is analogous 

to that of real data sets is repeated. 

Among all algorithms, the Prime algorithm consistently exhibits 

the highest CPU consumption time, followed by RIB_DEC, 

RIB_INC, MA_DEC, and MA_INC, respectively. 

In summary, the choice of algorithm, graph size, and density 

significantly impact CPU consumption. Optimizing algorithms for 

specific scenarios is crucial for efficient resource utilization. 

Understanding these trends can help in selecting appropriate 

algorithms and optimizing computational resources for graph 

processing tasks. The provided data allows for a comparative 

analysis of CPU consumption time across different algorithms, 

numbers of vertices, densities, and types of data sets. 

6. Conclusion 

This paper presents a novel, efficient, and less complex approach 

for maintaining the minimum spanning tree in fully dynamic 

graphs. In addition, a fully dynamic graph model was addressed. 

We then presented and analyzed the time complexity of our 

algorithms. Finally, we conducted a comprehensive experimental 

study utilizing both synthetic and actual data sets. Experiments 

conducted on both types of data sets demonstrated that our 

algorithms are efficient, fast, and less complex. 
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(a)                                                                 (b)                                                                      (c) 

   Figure 2: Experiments on small random data sets. 

 

      (a)                                                              (b)                                                           (c) 

Figure 3: Experiments on large random data sets 
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