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Abstract: Increasing the efficiency of algorithms for fundamental computations can have a wide-ranging impact on the performance of a 

large number of computations. A search algorithm is one such primitive task, occurring in many systems for identifying the shortest path 

from the start to the goal. The paper reports a fundamental searching algorithm for traversing a graph with degree level ordering. The 

adjacency list representation of the graph is used by the algorithm because it is effective in terms of storage and makes it simple to figure 

out the degree of each node. Without requiring any additional templates, the approach may be applied to both connected and 

disconnected graphs. The results highlight an efficient graph traversal algorithm and elucidated how the proposed algorithm can be used 

to solve Maze problem. 

Keywords: Graph traversal, Degree Level Search algorithm, Ascendant Node First Search algorithm, Descent Node First Search 

algorithm.  

1. Introduction 

It is becoming more and more crucial to analyze and 

comprehend social interaction data, relational data in 

general, complex engineered systems like the power grid 

and the Internet, communication data like email and phone 

networks, and biological systems using graph abstractions. 

These application fields frequently encounter graph-

theoretic issues including identifying and rating significant 

entities, seeing unusual patterns or rapid changes in 

networks, locating strongly connected clusters of entities, 

and others. For issues like discovering spanning trees, 

shortest paths, biconnected components, matching, and 

flow-based computations in these graphs, traditional 

techniques are frequently used as solutions. A traversal is a 

methodical exploration of each vertex and edge in a graph. 

The primary objective is to address the fundamental task of 

searching algorithm by utilising the concept of degree of a 

node for efficient graph traversal. The proposed algorithm 

follows a degree level order when traversing the graph, 

whereas the conventional graph traversal algorithms BFS 

and DFS traverse the graph in the horizontal and vertical 

directions, respectively [1, 2, 3]. Thus, with respect to 

computational efficiency, the Degree Level Search (DLS) 

algorithm outperforms existing algorithms in terms of 

execution time. This computational procedure explores two 

search strategies, namely the Ascendant First Search and 

the Descent First Search. The algorithm is developed to 

overcome the constraints of current search algorithms, 

even though graph traversals such as Breadth First Search 

and Depth First Search form the basis for numerous 

advanced graph analysis tools. It is impossible to find a 

useless or ineffective path as the Breadth First Search 

checks levels by levels [4].  

  A stack is used in Depth First Search to hold a group of 

old vertices with prospective unexplored edges, and its 

complexity relies on the quantity of pathways [5]. The 

shortest path cannot be guaranteed by Depth First Search, 

and it cannot check for duplicate nodes. DFS is used for 

locating elements deeper in the ground, while BFS is 

preferred for locating components closer to the root [1]. 

Instead, we choose the node with the highest or lowest 

degree while traversing a node to traverse the graph. 

  We formulate the graph searching algorithm discovery 

procedure as a single-player game, called Maze solution. 

At each step of the Maze game, the player selects a path 

from the entrance to the exit without hitting the wall. The 

agent can only see cells in the Maze that are nearest to it, 

making this a hard game. We create a DLS agent to find 

the path with highest number of entrances. We create a 

faster graph traversal algorithm with degree level ordering 

to choose the maximum path with other nodes in order to 

solve the Maze game. The Degree Level Search Algorithm 

selects the vertex that has the highest or lowest edge, and 

then it traverses all of neighboring vertices of the selected 

vertex. In order to choose the node in the order of degree, 

the algorithm keeps an additional array called Degree. 

When the node is visited, the Degree element of the node 

is set to zero and all of the Degree elements of the 

neighboring nodes will be reduced by one. Based on the 

selection of node with the maximum or minimum degree, 

the degree level search algorithm can be classified as 

Ascendant Node First Search Algorithm and Descent Node 

First Search Algorithm (Fig 1).  
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Fig 1. Degree Level Search algorithm procedure. a) The 

initial graph and the visited nodes and adjacent nodes in the 

Ascendant First Search Algorithm. b) The main constraint of 

the algorithm- the array Degree and changes   the value of 

elements in the array while visiting the nodes c) The visited 

nodes and adjacent nodes in the Ascendant First Search 

algorithm. d) The array Degree and changes the value of 

elements in the array while visiting the nodes in descending 

order. e) The visited nodes and adjacent nodes in the Descent 

First Search algorithm. 

2. Algorithm for traversal with Degree Level  

Ordering 

The Degree Level Traversal Algorithm implicitly searches 

all the vertices from a given source vertex of a graph G = 

(V, E). This computation is achieved by traversing in the 

order of degree of nodes of the graph.  

2.1 Ascendant Node First Search algorithm 

We cast the problem of finding a method for traversing a 

graph using adjacency list. The algorithm initializes with 

the source node, then find out all of the adjacent nodes of 

the source node and continue with the ascendant node as 

the current node. In Ascendant Node First Search 

algorithm (ANFS algorithm), there is an additional array to 

store the degrees of the vertices and the main constraint in 

the algorithm is to check whether the array becomes 

empty. 

         

 2.2  Descent Node First Search algorithm 

In Descent Node First Search algorithm (DNFS algorithm), 

instead of starting from the Ascendant node, it starts from 

the Descent node.                  

            

3. Maze path solution 

One of the most frequent issues in daily life is figuring out 

the best path from one place to another. It affects us when 

we move around a city, distribute things, clean a house, 

and in many other situations[6, 7]. Many technological 

advancements have been made to simplify the solution to 

this issue. However, when the area being explored is 

unknown, the destination is not clearly defined, or there are 

barriers and closed paths in the way, thus the route 

planning becomes a particularly challenging one[6,8,9]. An 

agent operates the Maze solving issue and  uses 

exploration strategies to discover a way out.   We cast the 

problem of finding the path or collection of paths, typically 

from an entry to exit based on the graph analytics 

techniques. An undirected graph can be used to describe a 

Maze by having vertices for the beginning, end, dead ends, 

and spots where more than one path can be selected 

[10,11]. The vertices are then connected in accordance 

with the paths in the Maze. Mazes can be created in a 

range of densities, from extremely sparse to dense.  There 

are not many 

walls in a sparse Maze; instead, there are a lot of open 

spaces, which creates a variety of paths that connect one 

junction to a distant junction [12].  

                    

4. Method 

The following instructions outline the steps for engaging in 

the Maze game: In the Degree Level Search algorithm, the 

cell located at [0, 0] is analogous to position S in the game. 
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At every iteration of the game, the agent modifies the 

adjacent cells of the visited location and the count of 

available pathways of the neighboring cells. As 

demonstrated in Algorithms 1 and 2, the DLS algorithm 

employs an adjacency list data structure to maintain the 

graph's information, and it initiates its traversal from the 

node with the maximum or minimum degree. The array 

“Degree” can be utilized to store the degree of nodes. This 

array is a constituent of the graph data structure 

recommended by Algorithms 1 and 2, along with the 

vertex list, visited list, and edge list. The nodes in the Maze 

graph will be represented with array of two elements. 

When the agent at node  (i, j), neighbors are: (i−1, j), (i+1, 

j),  (i, j−1), (i, j+1). Every time the agent must select 

between the available directions, the value of (i, j) is 

updated with the value of the relevant Maze cell.               

Setting the degree of the visited cells to zero and 

decrementing the degree of surrounding cells by one will 

avoid backtracking as the agent moves through the Maze 

cells. The algorithm will keep running till the goal is met 

(Fig 2).    

 

Fig 2. Depicts the output of the Maze solution using the 

DLS algorithm 

Theorem 1. 

Consider the graph G = (V, E), where V represents the set 

of all vertices {V1,V2,…, Vn}, and E represents the set of 

all edges {E1,E2, ..,.Em}. Let Vi denote a set of vertices 

connected by an edge to Vj, where i=j. Then, the degree of 

a given vertex Vi, denoted as deg(Vi), is equal to the 

cardinality of set Vi, i.e.,deg(Vi)=∣Vi∣. 

Proof. 

Let Vi be a set of vertices that are connected by an edge to 

Vj. By the definition of vertex degree, each edge 

contributes precisely one unit of degree to the 

corresponding vertex. Let Vj be an element of the set Vi. It 

follows that each element in the set Vi contributes one 

degree to the vertex Vi. Let Vi be a vertex in a graph. We 

can define the set Vi as the set of all elements adjacent to 

Vj. Therefore, the total number of elements in the set Vi 

provides the degree of the vertex Vi. 

Furthermore, we can extend this concept to characterize 

the degree of Vi within the context of the entire graph G. 

The degree of a vertex Vi is influenced by the connectivity 

of its adjacent vertices, as each connection contributes to 

the degree of Vi. This relationship elucidates the 

significance of vertex degree in understanding the 

structural properties of the graph and its implications for 

various graph algorithms and analyses. 

Corollary. 

Let |V1| = n1, | V2| = n2,…… |Vi| = ni……..|Vn| = nn  if ni is 

greater than all other nj,  where j = 1,2,…n and  i ≠ j then 

Vi is the vertex with maximum degree. 

Theorem 2.  

Let G = (V, E) be the graph where V = {V1, V2,.., Vn} be 

the set of all vertices and  E = {E1, E2,  .., Em} be the set of 

all edges. A sequence of vertices v1, v2, v3,  ….vn  traversed 

with respect to the order of degree of vertices with 

computational time O(m +           n logn). 

Proof. 

Given a graph G = (V, E), where V represents the set of all 

vertices and E represents the set of all edges. Let G be a 

graph with m edges. In the first step of the algorithm, we 

partition G into subsets based on the number of edges. This 

partitioning can be done in O(m2) . Theorem 1 says that the 

time complexity for determining the degree is O(n). By 

virtue of the corollary, it follows that the selection of the 

vertex with the highest degree can be accomplished in 

O(n). Based on the analysis, the time complexity of the 

searching the nodes in the adjacency list is asymptotically 

equal to O(n logn). Hence the total computational time is 

equivalent to O(m+ nlogn). 

4.1 Discovery of Graph Searching Algorithm 

The algorithm for searching the degree level is discovered 

by representing the graph as an adjacency list and 

processing it in the order of the node’s degree. The 

determination of vertex degrees can be readily achieved 

through the utilization of the adjacency list representation. 

The Degree Level Search algorithm employs a strategy of 

selecting vertices with the highest or lowest edge and 

subsequently traversing all vertices in their proximity. The 

analysis will involve determining the vertex degree of 

every adjacency node connected to the source node, 

followed by the processing of each of these adjacency 

nodes. The degree of a given node that has been visited is 

reduced to zero, while the degrees of its neighboring nodes 

are decreased by one. The algorithm iteratively examines 

the degree of each node in a given list, allowing for its 

direct application to disconnected graphs.  

4.2 Computational complexity of the Degree Level 

Search algorithm 

The first stage of the methodology involves partitioning 

the complete graph based on the solvability of its edges, 

which necessitates a time complexity of O(m). The 

algorithm selects the vertex with the maximum degree in 

O(n). At the conclusion of the procedure, the entirety of 

the graph is partitioned into distinct sections, and solely 
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those sections are subjected to further processing. The 

Degree Level Searching algorithm possesses an average 

time complexity of O(m+ nlogn). 

5. Experiment 

The algorithm implemented in the Maze domain, where an 

agent needs to navigate from top left to bottom right 

through a maze made up of barriers and open areas.  We 

implemented Maze solver in Python 3.9.0 

(tags/v3.9.0:9cf6752) [MSC v.1927 64 bit (AMD64)] on 

win32. The experiments were run on Microsoft Windows 

10 Pro with Processor Intel(R) Core(TM) i5-8265U CPU 

@ 1.60GHz, 1800 MHz, 4 Core(s), 8 Logical Processor(s) 

and 6 MB L2 and L3 cache, respectively.  

5.1 Comparison of Degree Level Search (DLS) algorithm 

with BFS and DFS  

The Breadth First Search algorithm is a widely used method 

for analysing graphs. It involves traversing all vertices in a 

graph, starting from a specified source vertex, and exploring 

all levels of the graph. The Degree Level Search algorithm 

initiates its search by identifying the vertex with the highest 

number of edges, rather than commencing from the root 

node. It then proceeds to explore all adjacent vertices of the 

selected vertex. In the context of graph theory, both the 

efficiency of storage is high when using an adjacency list 

due to the requirement  of storing edge values.  Within the 

context of Degree Level Search algorithm, an adjacency list 

is utilized as a data structure to contain the values pertaining 

to the edges.  In the context of Breadth First Search, it is 

necessary to utilize a queue data structure to maintain a 

record of the child nodes that have been examined but not 

yet traversed. DFS algorithm employs a stack data structure 

to maintain a set of traversed vertices that may contain 

unexplored edges. Depth First Search and Breadth First 

Search algorithms are incapable of identifying the location 

of a node within a disconnected graph. The DLS algorithm 

utilises an auxiliary array to store and compare the degrees 

of the nodes in the main array for node selection. This 

feature enables its applicability to disconnected graphs. The 

data presented in Fig 3 illustrates the distinctions in the 

duration of execution for implementing randomly generated 

graph with 1000 nodes.  

         

Fig 3  Displays a comparison of the execution time for 

Depth-First Search (DFS), Breadth-First Search (BFS) and 

Degree Level Search (DLS) algorithms 

6. Conclusion and future work 

In this paper we proposed the graph traversal algorithm 

with degree level ordering. The result explores the 

efficiency of the Degree Level Search algorithm by solving 

Maze problem. The method that developed is being 

compared to the Depth First Search and Breadth First 

Search algorithms. In future work, the Degree Level 

Searching algorithm's ability to expedite path discovery 

apply on a variety of problems including autonomous 

driving, warehouse robots, and biological systems using 

graph abstractions and in other graph analytical 

applications. 
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