

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1643–1647 | 1643

Faster Graph Traversal Algorithm with Degree Level Ordering

Shyma PV1, Sanil Shanker K P*1

Submitted:13/03/2024 Revised: 28/04/2024 Accepted: 05/05/2024

Abstract: Increasing the efficiency of algorithms for fundamental computations can have a wide-ranging impact on the performance of a

large number of computations. A search algorithm is one such primitive task, occurring in many systems for identifying the shortest path

from the start to the goal. The paper reports a fundamental searching algorithm for traversing a graph with degree level ordering. The

adjacency list representation of the graph is used by the algorithm because it is effective in terms of storage and makes it simple to figure

out the degree of each node. Without requiring any additional templates, the approach may be applied to both connected and

disconnected graphs. The results highlight an efficient graph traversal algorithm and elucidated how the proposed algorithm can be used

to solve Maze problem.

Keywords: Graph traversal, Degree Level Search algorithm, Ascendant Node First Search algorithm, Descent Node First Search

algorithm.

1. Introduction

It is becoming more and more crucial to analyze and

comprehend social interaction data, relational data in

general, complex engineered systems like the power grid

and the Internet, communication data like email and phone

networks, and biological systems using graph abstractions.

These application fields frequently encounter graph-

theoretic issues including identifying and rating significant

entities, seeing unusual patterns or rapid changes in

networks, locating strongly connected clusters of entities,

and others. For issues like discovering spanning trees,

shortest paths, biconnected components, matching, and

flow-based computations in these graphs, traditional

techniques are frequently used as solutions. A traversal is a

methodical exploration of each vertex and edge in a graph.

The primary objective is to address the fundamental task of

searching algorithm by utilising the concept of degree of a

node for efficient graph traversal. The proposed algorithm

follows a degree level order when traversing the graph,

whereas the conventional graph traversal algorithms BFS

and DFS traverse the graph in the horizontal and vertical

directions, respectively [1, 2, 3]. Thus, with respect to

computational efficiency, the Degree Level Search (DLS)

algorithm outperforms existing algorithms in terms of

execution time. This computational procedure explores two

search strategies, namely the Ascendant First Search and

the Descent First Search. The algorithm is developed to

overcome the constraints of current search algorithms,

even though graph traversals such as Breadth First Search

and Depth First Search form the basis for numerous

advanced graph analysis tools. It is impossible to find a

useless or ineffective path as the Breadth First Search

checks levels by levels [4].

 A stack is used in Depth First Search to hold a group of

old vertices with prospective unexplored edges, and its

complexity relies on the quantity of pathways [5]. The

shortest path cannot be guaranteed by Depth First Search,

and it cannot check for duplicate nodes. DFS is used for

locating elements deeper in the ground, while BFS is

preferred for locating components closer to the root [1].

Instead, we choose the node with the highest or lowest

degree while traversing a node to traverse the graph.

 We formulate the graph searching algorithm discovery

procedure as a single-player game, called Maze solution.

At each step of the Maze game, the player selects a path

from the entrance to the exit without hitting the wall. The

agent can only see cells in the Maze that are nearest to it,

making this a hard game. We create a DLS agent to find

the path with highest number of entrances. We create a

faster graph traversal algorithm with degree level ordering

to choose the maximum path with other nodes in order to

solve the Maze game. The Degree Level Search Algorithm

selects the vertex that has the highest or lowest edge, and

then it traverses all of neighboring vertices of the selected

vertex. In order to choose the node in the order of degree,

the algorithm keeps an additional array called Degree.

When the node is visited, the Degree element of the node

is set to zero and all of the Degree elements of the

neighboring nodes will be reduced by one. Based on the

selection of node with the maximum or minimum degree,

the degree level search algorithm can be classified as

Ascendant Node First Search Algorithm and Descent Node

First Search Algorithm (Fig 1).

1Department of Information Technology, Kannur University, Kerala, India

* Corresponding Author Email: sanil@kannuruniv.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1643–1647 | 1644

Fig 1. Degree Level Search algorithm procedure. a) The

initial graph and the visited nodes and adjacent nodes in the

Ascendant First Search Algorithm. b) The main constraint of

the algorithm- the array Degree and changes the value of

elements in the array while visiting the nodes c) The visited

nodes and adjacent nodes in the Ascendant First Search

algorithm. d) The array Degree and changes the value of

elements in the array while visiting the nodes in descending

order. e) The visited nodes and adjacent nodes in the Descent

First Search algorithm.

2. Algorithm for traversal with Degree Level

Ordering

The Degree Level Traversal Algorithm implicitly searches

all the vertices from a given source vertex of a graph G =

(V, E). This computation is achieved by traversing in the

order of degree of nodes of the graph.

2.1 Ascendant Node First Search algorithm

We cast the problem of finding a method for traversing a

graph using adjacency list. The algorithm initializes with

the source node, then find out all of the adjacent nodes of

the source node and continue with the ascendant node as

the current node. In Ascendant Node First Search

algorithm (ANFS algorithm), there is an additional array to

store the degrees of the vertices and the main constraint in

the algorithm is to check whether the array becomes

empty.

 2.2 Descent Node First Search algorithm

In Descent Node First Search algorithm (DNFS algorithm),

instead of starting from the Ascendant node, it starts from

the Descent node.

3. Maze path solution

One of the most frequent issues in daily life is figuring out

the best path from one place to another. It affects us when

we move around a city, distribute things, clean a house,

and in many other situations[6, 7]. Many technological

advancements have been made to simplify the solution to

this issue. However, when the area being explored is

unknown, the destination is not clearly defined, or there are

barriers and closed paths in the way, thus the route

planning becomes a particularly challenging one[6,8,9]. An

agent operates the Maze solving issue and uses

exploration strategies to discover a way out. We cast the

problem of finding the path or collection of paths, typically

from an entry to exit based on the graph analytics

techniques. An undirected graph can be used to describe a

Maze by having vertices for the beginning, end, dead ends,

and spots where more than one path can be selected

[10,11]. The vertices are then connected in accordance

with the paths in the Maze. Mazes can be created in a

range of densities, from extremely sparse to dense. There

are not many

walls in a sparse Maze; instead, there are a lot of open

spaces, which creates a variety of paths that connect one

junction to a distant junction [12].

4. Method

The following instructions outline the steps for engaging in

the Maze game: In the Degree Level Search algorithm, the

cell located at [0, 0] is analogous to position S in the game.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1643–1647 | 1645

At every iteration of the game, the agent modifies the

adjacent cells of the visited location and the count of

available pathways of the neighboring cells. As

demonstrated in Algorithms 1 and 2, the DLS algorithm

employs an adjacency list data structure to maintain the

graph's information, and it initiates its traversal from the

node with the maximum or minimum degree. The array

“Degree” can be utilized to store the degree of nodes. This

array is a constituent of the graph data structure

recommended by Algorithms 1 and 2, along with the

vertex list, visited list, and edge list. The nodes in the Maze

graph will be represented with array of two elements.

When the agent at node (i, j), neighbors are: (i−1, j), (i+1,

j), (i, j−1), (i, j+1). Every time the agent must select

between the available directions, the value of (i, j) is

updated with the value of the relevant Maze cell.

Setting the degree of the visited cells to zero and

decrementing the degree of surrounding cells by one will

avoid backtracking as the agent moves through the Maze

cells. The algorithm will keep running till the goal is met

(Fig 2).

Fig 2. Depicts the output of the Maze solution using the

DLS algorithm

Theorem 1.

Consider the graph G = (V, E), where V represents the set

of all vertices {V1,V2,…, Vn}, and E represents the set of

all edges {E1,E2, ..,.Em}. Let Vi denote a set of vertices

connected by an edge to Vj, where i=j. Then, the degree of

a given vertex Vi, denoted as deg(Vi), is equal to the

cardinality of set Vi, i.e.,deg(Vi)=∣Vi∣.

Proof.

Let Vi be a set of vertices that are connected by an edge to

Vj. By the definition of vertex degree, each edge

contributes precisely one unit of degree to the

corresponding vertex. Let Vj be an element of the set Vi. It

follows that each element in the set Vi contributes one

degree to the vertex Vi. Let Vi be a vertex in a graph. We

can define the set Vi as the set of all elements adjacent to

Vj. Therefore, the total number of elements in the set Vi

provides the degree of the vertex Vi.

Furthermore, we can extend this concept to characterize

the degree of Vi within the context of the entire graph G.

The degree of a vertex Vi is influenced by the connectivity

of its adjacent vertices, as each connection contributes to

the degree of Vi. This relationship elucidates the

significance of vertex degree in understanding the

structural properties of the graph and its implications for

various graph algorithms and analyses.

Corollary.

Let |V1| = n1, | V2| = n2,…… |Vi| = ni……..|Vn| = nn if ni is

greater than all other nj, where j = 1,2,…n and i ≠ j then

Vi is the vertex with maximum degree.

Theorem 2.

Let G = (V, E) be the graph where V = {V1, V2,.., Vn} be

the set of all vertices and E = {E1, E2, .., Em} be the set of

all edges. A sequence of vertices v1, v2, v3, ….vn traversed

with respect to the order of degree of vertices with

computational time O(m + n logn).

Proof.

Given a graph G = (V, E), where V represents the set of all

vertices and E represents the set of all edges. Let G be a

graph with m edges. In the first step of the algorithm, we

partition G into subsets based on the number of edges. This

partitioning can be done in O(m2) . Theorem 1 says that the

time complexity for determining the degree is O(n). By

virtue of the corollary, it follows that the selection of the

vertex with the highest degree can be accomplished in

O(n). Based on the analysis, the time complexity of the

searching the nodes in the adjacency list is asymptotically

equal to O(n logn). Hence the total computational time is

equivalent to O(m+ nlogn).

4.1 Discovery of Graph Searching Algorithm

The algorithm for searching the degree level is discovered

by representing the graph as an adjacency list and

processing it in the order of the node’s degree. The

determination of vertex degrees can be readily achieved

through the utilization of the adjacency list representation.

The Degree Level Search algorithm employs a strategy of

selecting vertices with the highest or lowest edge and

subsequently traversing all vertices in their proximity. The

analysis will involve determining the vertex degree of

every adjacency node connected to the source node,

followed by the processing of each of these adjacency

nodes. The degree of a given node that has been visited is

reduced to zero, while the degrees of its neighboring nodes

are decreased by one. The algorithm iteratively examines

the degree of each node in a given list, allowing for its

direct application to disconnected graphs.

4.2 Computational complexity of the Degree Level

Search algorithm

The first stage of the methodology involves partitioning

the complete graph based on the solvability of its edges,

which necessitates a time complexity of O(m). The

algorithm selects the vertex with the maximum degree in

O(n). At the conclusion of the procedure, the entirety of

the graph is partitioned into distinct sections, and solely

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1643–1647 | 1646

those sections are subjected to further processing. The

Degree Level Searching algorithm possesses an average

time complexity of O(m+ nlogn).

5. Experiment

The algorithm implemented in the Maze domain, where an

agent needs to navigate from top left to bottom right

through a maze made up of barriers and open areas. We

implemented Maze solver in Python 3.9.0

(tags/v3.9.0:9cf6752) [MSC v.1927 64 bit (AMD64)] on

win32. The experiments were run on Microsoft Windows

10 Pro with Processor Intel(R) Core(TM) i5-8265U CPU

@ 1.60GHz, 1800 MHz, 4 Core(s), 8 Logical Processor(s)

and 6 MB L2 and L3 cache, respectively.

5.1 Comparison of Degree Level Search (DLS) algorithm

with BFS and DFS

The Breadth First Search algorithm is a widely used method

for analysing graphs. It involves traversing all vertices in a

graph, starting from a specified source vertex, and exploring

all levels of the graph. The Degree Level Search algorithm

initiates its search by identifying the vertex with the highest

number of edges, rather than commencing from the root

node. It then proceeds to explore all adjacent vertices of the

selected vertex. In the context of graph theory, both the

efficiency of storage is high when using an adjacency list

due to the requirement of storing edge values. Within the

context of Degree Level Search algorithm, an adjacency list

is utilized as a data structure to contain the values pertaining

to the edges. In the context of Breadth First Search, it is

necessary to utilize a queue data structure to maintain a

record of the child nodes that have been examined but not

yet traversed. DFS algorithm employs a stack data structure

to maintain a set of traversed vertices that may contain

unexplored edges. Depth First Search and Breadth First

Search algorithms are incapable of identifying the location

of a node within a disconnected graph. The DLS algorithm

utilises an auxiliary array to store and compare the degrees

of the nodes in the main array for node selection. This

feature enables its applicability to disconnected graphs. The

data presented in Fig 3 illustrates the distinctions in the

duration of execution for implementing randomly generated

graph with 1000 nodes.

Fig 3 Displays a comparison of the execution time for

Depth-First Search (DFS), Breadth-First Search (BFS) and

Degree Level Search (DLS) algorithms

6. Conclusion and future work

In this paper we proposed the graph traversal algorithm

with degree level ordering. The result explores the

efficiency of the Degree Level Search algorithm by solving

Maze problem. The method that developed is being

compared to the Depth First Search and Breadth First

Search algorithms. In future work, the Degree Level

Searching algorithm's ability to expedite path discovery

apply on a variety of problems including autonomous

driving, warehouse robots, and biological systems using

graph abstractions and in other graph analytical

applications.

Author contributions

Shyma PV: Investigation, Methodology, Literature

review, Writing- Original draft preparation.

Sanil Shanker KP: Investigation, Methodology, Writing-

Reviewing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Maharshi J. Pathak, Ronit L. Patel, Sonal P.

Rami,2018, “Comparative Analysis of Search

Algorithms”, International Journal of Computer

Applications (0975 – 8887) Volume 179 – No.50.

[2] Samanta, D, 2004, Classic Data Structures,

9788120318748, Prentice Hall India Pvt . Limited,

Second edition.

[3] Cheng, Y., Park, J., & Sandhu, R.2016, An Access

Control Model for Online Social Networks Using

User-to-User Relationships. IEEE Transactions on

Dependable and Secure Computing, 13(4), 424–436 .

[4] Aho. A.V. and Hopcroft J.E. and Ullman J.D ,1974,

The Design and Analysis of Computer Algorithms,

9780201000290, 74003995, Addison-Wesley series

in computer science and information processing,

Addison-Wesley Publishing Company, Fourth

Edition .

[5] Galimberti, E., Bonchi, F., Gullo, F., & Lanciano, T,

2020, Core Decomposition in Multilayer Networks.

ACM Transactions on Knowledge Discovery from

Data, 14(1), 1–40 .

[6] Camilo Alaguna and Jonatan Gomez. 2018, Maze

Benchmark for Testing Evolutionary Algorithms. In

GECCO ’18 Companion: Genetic and Evolutionary

Computation Conference Companion, July 15–19,

Kyoto, Japan. ACM, New York, NY, USA, 8 pages.

[7] G. Klančar, S. Blažič, and A. Zdešar.2017, C2-

continuous path planning by combining bernstein-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1643–1647 | 1647

bézier curves. ICINCO - Proceedings of the 14th

International Conference on Informatics in Control,

Automation and Robotics 2.

[8] Paul Hyunjin Kim, Jacob Grove, Skylar Wurster, and

Roger Crawfis August 26–30, 2019,Design-Centric

Maze Generation. In The Fourteenth International

Conference on the Foundations of Digital Games

(FDG’19), San Luis Obispo, CA, USA. ACM, New

York, NY, USA, 9 pages.

[9] Chengshan Qian, Xinfeng Shen, Yonghong Zhang,

Qing Yang, Jifeng Shen, and Haiwei Zhu. 2017,

Building and Climbing based Visual Navigation

Framework for Self-Driving Cars. Mobile Networks

and Applications 1–1

[10] John R. Koza.1992, Genetic Programming On the

Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge .

[11] Alexander Schrijver,2010, On the History of the

Shortest Path Problem, Mathematics Subject

Classification: 01A60, 05-03, 05C38, 05C85, 90C27.

[12] Omidshafiei, S., Tuyls, K., Czarnecki, W.M. et

al. 2020, Navigating the landscape of multiplayer

games. Nature Commun 11,5603.

