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Abstract: With the continuous improvement of people's living standards, the frequency of home fires is increasing. This paper proposes a 

method for identifying smoke-type fires involving image processing of monitoring screens. Suspected smoke areas are roughly identified 

based on the gray value of images. Then the local binary variance and the relative energy of high and low frequencies in suspected smoke 

areas are extracted using the LBP algorithm and wavelet transform algorithm. Using the collected fire smoke images, extract corresponding 

feature data using the algorithm in this article, and manually calibrate the fire label to obtain the corresponding training data. BP neural 

network is employed in this paper for smoke and fire recognition. However, under limited training data, the recognition results using only 

the neural network are poor, with experimental results showing a prediction accuracy of only 64.5% for the pure BP neural network. Given 

this situation, this paper utilizes a genetic algorithm to optimize the internal topology of the BP neural network. By encoding the weight 

thresholds of the network structure into binary code as population individuals of the genetic algorithm and performing continuous iterative 

optimization, experimental results demonstrate that the prediction accuracy of fire recognition by the optimized BP neural network is 

improved to 94%. 

Keywords: Genetic Algorithm, BP Neural Network, Home Fire Recognition, Intelligent Recognition System. 

1. Introduction 

 With the increasing population density, especially in 

urban areas, the problems brought about by population 

density are becoming increasingly apparent. The decrease in 

per capita land area means accommodating more people in 

the same space. Home fires can be triggered by various 

reasons such as electrical faults, cooking accidents, 

smoking, ignition sources, electrical wiring issues, and 

more. Regardless of the cause, fires can spread rapidly, 

posing a threat to home safety. 

 In the field of fire detection, numerous studies have 

focused on enhancing accuracy by analyzing the color 

characteristics and dynamic behavior of flames. Calderara 

et al. combined smoke color and energy features, employing 

a novel Bayesian method to identify smoke regions in 

images, and used a Gaussian mixture model to construct an 

image energy statistical model, thereby improving smoke 

detection effectiveness [1]. Although Haar-like features are 

commonly employed together with other feature extractor 

such as a cascaded Haar [2], Kim et al. extracted Haar-like 

features and statistical features from images, formulating 

smoke recognition rules based on an AdaBoost classifier 

[3]. Yuan F et al. improved the detection of small smoke 

targets in forest fires by using Haar-like features and 

statistical features, coupled with step search techniques and 

a dual-threshold adaptive enhancement algorithm [4]. Zhao 

et al. analyzed motion regions extracted from adjacent 

frames of smoke videos and used the CS Adaboost 

algorithm to process spatial color, motion, flicker, and 

image energy features of smoke, proposing a method for 

early detection of thin smoke in forests [5]. Ye et al. 

developed an algorithm that detects both smoke and flames 

in static videos, enhancing detection stability through 

complex steps including morphological processing and 

chaotic motion estimation [6]. In traditional machine 

learning, researchers relied on manually extracted flame 

features and machine learning classifiers to identify flames. 

Frizzi and Zhang et al. developed efficient end-to-end fire 

detection systems that significantly improved detection 

efficiency and accuracy. These systems included training 

with deep generative adversarial networks combined with 

spatiotemporal flame evolution data, further reducing false 

alarm rates [7][8]. Chi Yuan et al. identified the distribution 

characteristics of smoke pixels in the RGB color space and 

input these features into a Kalman filter and morphological 

algorithm to determine the presence of smoke in images [9]. 

Zeng et al. constructed a forest fire smoke recognition 

model based on Faster RCNN, SSD, and R-FCN algorithms 

and conducted comparative analysis using public datasets. 

The experimental results showed that the SSD model 

combined with MobileNet had a faster smoke recognition 

speed but lower accuracy [10]. Lee et al. proposed a robust 

Faster RCNN algorithm based on local and global features 

of smoke images [11]. Saima Majid et al. trained a shallow 
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neural network model using an attention-based CNN and 

attention mechanisms to improve model performance, 

achieving more accurate visualization and localization of 

smoke in forest fire images [12]. These advancements not 

only mark significant technological leaps but also provide 

powerful tools for early fire detection. 

However, fires can occur for various reasons. In situations 

where flames are not visible, smoke continues to 

accumulate, eventually evolving into a tragic fire incident. 

The aforementioned flame detection algorithms and 

methods become ineffective. Therefore, this paper proposes 

an algorithm for identifying and detecting smoke-type fires. 

By extracting feature data such as local binary variance and 

relative energy of high and low frequencies from suspected 

smoke areas, the accuracy of smoke detection and 

identification is enhanced using a method that optimizes BP 

neural networks with genetic algorithms.  

2. Research Methodology  

The process of intelligent monitoring of home fires 

proposed in this paper is illustrated in Figure 1. In cases 

where flames are not detected, further detection and 

identification of smoke are necessary. This paper 

specifically elaborates on the process of smoke-fire 

recognition as in Figure 1: 

2.1. Extraction of feature data from fire smoke images 

 

Fig. 1. Diagram of the Intelligent Recognition System for 

Home Fires 

2.1.1. Collection of training data for fire smoke images 

The fire smoke training data mainly comes from two 

aspects: first, laboratory video data collection, and second, 

monitoring data collection of actual fire scenes. 

1. Laboratory video data collection focuses on simulating 

various types of fire scenarios by controlling environmental 

conditions, to obtain diverse flame and smoke image data. 

The laboratory video collection scene is illustrated in Figure 

2.  

 

Fig.2. Laboratory Data Collection Scene 

2. Data collection in actual fire scenes focuses on capturing 

the characteristics of flames and smoke under real fire 

conditions, enhancing the model's adaptability and 

recognition accuracy to real-world scenarios. The data 

collection scene at fire sites is depicted in Figure 3. 

 

Fig. 3. Fire Scene Data Collection Scene 

2.1.2. Image preprocessing 

After obtaining the initial fire training data, data quality is 

improved through image preprocessing steps, including 

image denoising, color space conversion, gray-scale 

processing, and binarization. Image noise reduction 

involves using median filtering techniques to reduce random 

noise during the image capture process. The color space 

conversion transforms the RGB color space into the HSI 

color space, which is more suitable for extracting flame and 

smoke features. Subsequently, further simplification of the 

image data is achieved through gray-scale processing and 

binarization, highlighting the morphological features of 

flames and smoke. 

1. Image filtering 

Median filtering is a non-linear smoothing technique. Its 

basic principle is to sort the pixel values around the central 

point of the image by magnitude, replacing the value with 

the median of that domain. Its major advantages lie in its 

simplicity, speed, and effective noise reduction. It 

significantly eliminates isolated noise points. In this paper, 

a 3×3 template is used for sliding [13]. 

2. RGB to HSI conversion 

HSI color space, derived from the human visual system, 

describes colors using Hue, Saturation (or chroma), and 

Intensity (or brightness). The HSI color space can be 

described using a cone-shaped model. While this cone 
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model to describe the HSI color space is quite complex, it 

effectively illustrates variations in hue, brightness, and color 

saturation [14]. 

The conversion from RGB to HSI model involves 

transforming from a unit cube based on the Cartesian 

coordinate system to a double cone based on cylindrical 

coordinates. The conversion formula is as in: 

𝑟 =
𝑅

𝑅 + 𝐺 + 𝑅 ⋅ 𝑔
=

𝐺

𝑅 + 𝐺 + 𝐵
, 𝑏 =

𝐵

𝑅 + 𝐺 + 𝐵
 

ℎ = 𝑐𝑜𝑠−1⁡{
0.5[(𝑟−𝑔)+(𝑟−𝑏)]

[(𝑟−𝑔)2+(𝑟−𝑏)(𝑔−𝑏)]1/2
}  ℎ ∈ [0, 𝜋] for 𝑏 ≤ 𝑔 (1) 

ℎ = 2𝜋 − 𝑐𝑜𝑠−1⁡{
0.5[(𝑟−𝑔)+(𝑟−𝑏)]

[(𝑟−𝑔)2+(𝑟−𝑏)(𝑔−𝑏)]1/2
}  ℎ ∈ [𝜋, 2𝜋] for 

𝑏 >

𝑔

     

      

(

2

) 

𝑠 = 1 − 3 ⋅ 𝑚𝑖𝑛(𝑟, 𝑔, 𝑏): ⁡𝑠 ∈ [0,1] (3) 

𝐼 = (𝑅 + 𝐺 + 𝐵) ≠ (3 ⋅ 255): ⁡𝑖 ∈ [0,1] (4) 

𝐻 = ℎ × 180/𝜋: ⁡𝑆 = 𝑠 × 100: ⁡𝐼 = 𝑖 × 255 

3. Filtering of suspected smoke areas 

Based on the color characteristics of smoke, we utilize the 

HSI color matrix and RGB color matrix to filter suspected 

smoke areas in the monitoring footage[15]. Firstly, filtering 

is performed in the HSI color space using the formula shown 

in (5), and then filtering is conducted in the RGB color space 

using formula (6): 

80 ≪ 𝐼(𝑥𝑦) ≪ 200  (5) 

𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑚𝑖𝑛(𝑅, 𝐺, 𝐵) ≪ 20 (6) 

By using the above formulas, the approximate identification 

of suspected smoke areas in the monitoring footage is 

achieved, and non-suspected smoke areas are set to black, 

for subsequent feature data extraction. 

4. Image Morphological Processing 

Image morphological processing extracts and separates 

regions of interest by using dilation and erosion operations. 

Dilation is used to fill small holes, connect neighboring 

elements, or enlarge boundaries, while erosion "erodes" 

objects in the image to remove small objects, break object 

bridges, or shrink boundaries [16]. This paper primarily 

employs the closing operation, which involves dilation 

followed by erosion. 

2.1.3. Extraction of Smoke Features 

Extraction of smoke features focuses on analyzing gray 

distribution, texture, and motion patterns. It identifies 

smoke features from subtle texture variations using the 

Local Binary Patterns (LBP) algorithm and wavelet 

transform technique. 

Smoke exhibits characteristics of uniform gray distribution 

and slow diffusion outward. After preprocessing the images, 

we extract the texture images of smoke using the LBP 

detection algorithm, then proceed to extract local binary 

variance feature data and relative energy feature data in high 

and low frequencies. 

1. Extraction of Local Binary Variance Feature Data 

(1) LBP algorithm 

The basic LBP operator can only cover a fixed region and is 

not suitable for textures of different scales. Therefore, 

extending the LBP operator to arbitrary-sized circular 

neighborhoods achieves gray and rotation invariance, 

adapting to texture features of different scales [17]. The 

improved LBP operator can define multiple evenly spaced 

sampling points within a circular neighborhood of any 

radius, as shown in Figure 4. 

 

(a) LBP8
1 (b) LBP16

2  (c) LBP8
2 

Fig. 4. Circular LBP Operator 

Figure 4-(a) shows the LBP operator with a radius of 1 and 

sampling points of 4, denoted as LBP8
1; Figure4- (b) shows 

the LBP operator with a radius of 2 and sampling points of 

16, denoted as LBP16
2 ; Figure4- (c) shows the LBP operator 

with a radius of 2 and sampling points of 8, denoted as 

𝐿𝐵𝑃8
2. The operator radius and sampling points can be any 

number. The calculation formula for sampling points is as 

follows： 

𝑥𝑝 = 𝑥𝑐 + 𝑅𝑐𝑜𝑠⁡
2𝜋𝑝

𝑃
  (7) 

𝑦𝑝 = 𝑦𝑐 − 𝑅𝑠𝑖𝑛⁡
2𝜋𝑝

𝑃
  (8) 

In the formula: 

- (xP, yp) represents the coordinates of the p-th sampling 

point. 

- (xc, yc) represents the coordinates of the window center. 

- 𝑝 denotes the p-th sampling point. 

- 𝑃 denotes the total number of sampling points. 

- 𝑅 denotes the radius of the neighborhood. 

Since the sampling points in the circular LBP algorithm are 

distributed along the circumference, it cannot guarantee that 
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the coordinates of each sampling point are integers. 

Therefore, bilinear interpolation is needed to address this 

issue. For points with non-integer coordinates, their 

coordinates are rounded up and down, denoted as x0, x1, y0, 

y1, resulting in four coordinates: (x0, y0), (x1, y0), (x0, y1), 

and ( x1 , y1 ). The calculation is done according to the 

following formula9: 

𝑓(𝑥𝑝, 𝑦𝑝) = [𝑥1 − 𝑥𝑝 𝑥𝑝 − 𝑥0] 

× [
𝑓(𝑥0, 𝑦0) 𝑓(𝑥0, 𝑦1)

𝑓(𝑥1, 𝑦0) 𝑓(𝑥1, 𝑦1)
] [
𝑦1 − 𝑦𝑝
𝑦𝑝 − 𝑦0

] (9) 

For pixels with integer coordinates, calculating them using 

the above formula can significantly reduce programming 

difficulties. The final LBP image is shown in Figure 5: 

  

(a) The original image (b)The LBP image 

Fig.5. Original Image and LBP Image 

(2) Local Binary Variance Feature Data Extraction 

The LBPV operator combines local variance as weights to 

extract local variance features from images, addressing the 

issue of contrast being ignored when describing image 

spatial structures using the LBP operator. The LBP operator 

represents the texture frequency of the image, while the 

LBPV operator introduces variance to reflect contrast. High 

variance regions indicate significant texture variations, thus 

providing more detailed texture information. The formula10 

for variance is: 

𝑉𝐴𝑅 = ⁡𝑃
1∑𝑃=0

𝑃−1  (𝑔𝑝 − 𝑢)
2
  (10) 

In the equation: 

- ⁡𝑢 =𝑃
1 ∑𝑃=0

𝑃−1  𝑔𝑝 

- gprepresents the gray value of the central pixel. 

- 𝑃 represents the number of neighborhood pixels. 

2. Extraction of High-Low Frequency Relative Energy 

Feature Data 

(1) Wavelet Transform Feature Data Extraction 

The wavelet transform algorithm decomposes signals at 

different scales to obtain a series of approximation and 

detail signals, representing the characteristics of the signals 

at various scales. Analyzing these features helps in 

understanding the intrinsic structure and developmental 

trends of the signal. The reconstructed image using wavelet 

transform is shown in Figure 6. Given the scaling function 

φ(x) and the wavelet function Ψ(x) at a given scale, a two-

dimensional scaling function and three two-dimensional 

wavelet functions are combined, as shown respectively in 

equations (11) and (12): 

𝜑(𝑥, 𝑦) = 𝜑(𝑥)𝜑(𝑦)  (11) 

𝛹𝐻(𝑥, 𝑦) = 𝛹(𝑥)𝛹(𝑦),𝛹𝑌(𝑥, 𝑦) =

𝛹(𝑥), 𝛹(𝑦)𝛹𝐷(𝑥, 𝑦) = 𝛹(𝑥)𝛹(𝑦) 

 (12) 

 
 

(a) Original image (b) Single Wavelet 

Reconstructed Image 

  

(c) Double Wavelet 

Reconstructed Image 

(d) Triple Wavelet 

Reconstructed Image 

Fig. 6. Wavelet Reconstructed Image Results 

(2) Extraction of High-Low Frequency Relative Energy 

Feature Data 

Extraction of high-low frequency energy features is an 

important step in signal processing and pattern recognition. 

By analyzing the energy distribution of signals across 

different frequency ranges, we can understand the frequency 

characteristics and structures of signals. A commonly used 

method for this purpose is wavelet transform. Wavelet 

transform decomposes signals into components at different 

scales and frequencies. High-frequency wavelet coefficients 

correspond to rapidly changing parts of the signal, while 

low-frequency wavelet coefficients correspond to slowly 

changing parts of the signal. By calculating the energy 

within each frequency band (scale), we can obtain features 

of high and low-frequency energy.  

2.2. Determination and Optimization of Neural 

Networks 

This paper aims to use a BP neural network to identify 

smoke-type fire incidents, based on two extracted feature 

data: local binary variance and high-low frequency relative 

energy as input parameters, and fire incident labels as output 

parameters [18]. Due to limited training data, the BP neural 

network is prone to local convergence, resulting in large 

prediction errors in the final training network structure. 

Given that the initial weights and thresholds of the BP neural 
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network have a significant impact on the final training 

results, this paper adopts a genetic algorithm to optimize the 

weights and thresholds of the BP neural network. The 

individual with the highest final prediction accuracy is 

selected as the network structure model for smoke and fire 

incident recognition in this paper. The flowchart of the 

genetic algorithm optimizing BP neural network is shown in 

Figure 7.  

The above flowchart mainly consists of three modules: 

a. Creation of the topology structure of the smoke 

recognition neural network. 

b. Training of the neural network and calculation of 

prediction errors. 

c. Iterative optimization of initial weights and thresholds 

using genetic algorithm after binary encoding. 

 

Fig. 7. Flowchart of Genetic Algorithm Optimizing BP 

Neural Network 

2.2.1. Creation of the Topology Structure of the Smoke 

Recognition Neural Network 

1. Creation of the Neural Network 

Using a three-layer neural network model (input layer, 

hidden layer, and output layer)[19], the formula for the 

relationship between the number of neurons n2 in the hidden 

layer and the number of neurons n1 in the input layer is 

shown in equation (13):  

𝑛2 = 2 × 𝑛1 + 1  (13) 

In the fire smoke incident recognition system model, the 

input parameters are local binary variance and high-low 

frequency relative energy, thus the number of neurons in the 

input layer is 𝑛1 = 2. The output parameters are the fire 

recognition result (0/1), so the number of neurons in the 

output layer is 𝑛3 = 1. Using formula (13), we can calculate 

that the number of neurons in the hidden layer is 𝑛3 = 5. 

Therefore, the structure of this neural network is 2-5-1. 

From this structure, it can be inferred that the total number 

of connection weights within the neural network is: 2 × 5 +

5 × 1 = 15, and the number of thresholds is: 5 + 1 = 6. 

The number of parameters within this neural network is 

shown in Table 1. 

Table 1 Topological Structure Data of Smoke Recognition 

System 

The input layer and hidden layer connection 

weights 
10 

The number of hidden layer thresholds 5 

The number of connection weights between the 

hidden layer and the output layer 
5 

The number of output layer thresholds  1 

 

2. Initialization of Neural Network Weights and Thresholds 

According to the neural network topology data in Table 1, 

there are a total of 21 (10+5+5+1=21) weights and 

thresholds, the initial weights and thresholds of the neural 

network are randomly set between [-0.5, 0.5]. Since the 

initial weights and thresholds have a significant impact on 

the final convergence results of neural network training, all 

weights and thresholds are concatenated into a single 

column and used as individuals in the genetic optimization 

algorithm. This string is shown in Figure 8. 

 

Fig. 8. String of Weights and Thresholds 

2.2.2. Training of the neural network and calculation of 

prediction errors 

Neural network training involves continuously adjusting 

weights and thresholds to reduce output errors, while 

automatically adjusting the learning rate. The training is 

conducted using the transig function and an adaptive 

learning rate method. The parameters are set as follows: 

training for 1000 epochs, the learning goal of 0.01, the initial 

learning rate of 0.05, and an adaptation parameter of 1.05. 

In this study, a total of 86 sets of smoke and fire incident 

images were collected. Among them, 40 sets were randomly 

selected as training data for the neural network, 5 sets were 

randomly selected for prediction error calculation, which 
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primarily serves as the fitness function for the subsequent 

genetic algorithm. The remaining 31 sets were used for 

calculating the accuracy of smoke recognition.  

The training images are subjected to feature extraction, 

resulting in corresponding feature data of 40 sets of local 

binary variance and high-low frequency relative energy, 

along with their respective fire incident labels. The neural 

network is trained based on the set training parameters. The 

feature data of the test samples are inputted into the trained 

neural network, and the prediction errors of the neural 

network are calculated based on the predicted results and 

actual fire incidents. The formula for calculating prediction 

error is shown in equation (14): 

𝜀 = ∑𝑖=1
5  |𝑇1𝑖 − 𝑇2𝑖|/5  (14) 

In the equation: 

- 𝑇1𝑖represents the predicted fire incident result. 

- T2irepresents the actual fire incident result. 

- 𝑖  denotes the sequence number of the prediction error 

calculation sample. 

2.2.3. The training Image Labeling 

The neural network topology structure is based on the input 

parameters of local binary variance and high-low frequency 

relative energy, obtained through image preprocessing and 

the LBPV algorithm, as well as wavelet transform. The 

output parameter represents whether a fire incident occurs 

or not. This is manually labeled, where a fire is labeled as 1 

and no fire is labeled as 0 [20]. 

2.2.4. Model Creation for Genetic Algorithm Optimized 

BP Neural Network 

1. Population initialization 

Based on the smoke and fire feature data created above and 

the neural network topology for smoke and fire, the string 

formed by the initialized weights and thresholds of the 

neural network serves as individuals in the genetic 

algorithm population. The initialized weight and threshold 

strings are encoded into binary, with each value encoded 

using 10 binary bits. The length of the string representing 

weights and thresholds is 21 bits, so after decoding, each 

individual is a binary string of length 210 bits. The binary 

representation of an individual is illustrated in Figure 10, 

where: 

- Bits 1 to 100 represent the decoding of connection weights 

between the input layer and the hidden layer. 

- Bits 101 to 150 represent the decoding of the thresholds of 

the hidden layer. 

- Bits 151 to 200 represent the decoding of connection 

weights between the hidden layer and the output layer. 

- Bits 201 to 210 represent the decoding of the thresholds of 

the output layer. 

The population size of the genetic algorithm is set to 50. 

Therefore, the binary string representation of the population 

individuals and the results of the population initialization 

are illustrated in Figure 9 and Figure 10. 

 

Fig. 9. Schematic Representation of Population Individual 

Binary Strings 

 

Fig. 10. Population Initialization Illustration 

2. Fitness Function 

The fitness value of a population individual is an important 

criterion for assessing the excellence of an individual in the 

genetic algorithm optimization process [21]. After each 

individual is decoded, the decoded values are sequentially 

assigned to the newly created BP neural network, and 

training is conducted using the training data. The error test 

data from groups 41-45 is then input into the trained 

network, and the testing error is used as the fitness function 

for that individual, as shown in equation (15): 

𝑓𝑖 = 𝜀𝑖  (15) 

In the equation: 

- 𝑓𝑖  represents the fitness value corresponding to the 

individual. 

- εi represents the prediction error of the compiled neural 

network corresponding to the individual. 

3. Optimization Operators of Genetic Algorithm 

Crossover Operator and Mutation Operator: After 

calculating the fitness of each individual using the above 

formula, crossover and mutation operators are applied 

iteratively to ensure the diversity of the population. The 
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process of crossover and mutation operators is illustrated in 

Figure 11. 

 

 

 

Fig. 11. Flowchart of Crossover and Mutation Operators 

2.2.5. Genetic Algorithm Parameter Settings 

The genetic algorithm utilizes the genetic toolbox developed 

with Sheffield, where the toolbox itself provides the code 

for operations such as selection, crossover, and mutation. 

The fitness function is autonomously coded based on the 

formula. The internal optimization parameter settings for 

the multi-population genetic algorithm are shown in Table 

2. 

Table 2 Internal Optimization Parameter Settings for 

Multi-Population Genetic Algorithm 

Population Size 50 

Maximum Iteration Count  50 

Individual Length  210 

Crossover Probability 0.7 

Mutation Probability  0.02 

Selection Parameters  0.95 

 

3. Experimental Validation 

According to the method flow described above, the 

following experimental results are extracted. 

3.1. Smoke Feature Extraction Results  

When flames cannot be detected, further smoke detection is 

required in the monitoring scene, as illustrated in Figure 12. 

 

Fig. 12. Fire Smoke Feature Extraction Process 

3.1.1. Preprocessing Results of Fire Smoke Images 

From the original image to the gray image, and then to the 

denoised filtered image, each step aims to clearly display the 

presence of smoke and reduce false alarms. This is crucial 

for designing effective fire alarm systems, as it can improve 

the accuracy of early fire detection. The results are shown 

in Figure 13. 

 

Fig. 13. Image preprocessing of current frame image 

3.1.2. RGB to HSI Color Space Conversion and 

Determination of Suspected Smoke Areas 

As shown in Figure 14, suspected smoke areas are initially 

filtered based on the I matrix of the HSI image, which better 

separates the color characteristics because HSI is closer to 

human color perception. In this image, hue is used to 

represent the type of color, saturation indicates the purity of 

color, and brightness reflects the lightness of the color. This 

processing is helpful for identifying and analyzing specific 

color features, such as flames or smoke. Regions with I 

values exceeding 220 or falling below 80 are set to black, 

preliminarily screening out suspected smoke areas, as 

shown in Figure 15. The image displays the areas suspected 

of containing smoke, separating the smoke from other areas. 

Smoke typically appears in images as regions with specific 

textures and gray levels, different from the pixel intensities 

of other areas. 

 

Fig. 14. Conversion from RGB Image to HSI Image 
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Fig. 15. Suspected Smoke Areas 

3.1.3. Calculation Results of Local Binary Variance 

Through the LBP algorithm, the images of suspected smoke 

areas are processed to obtain corresponding texture images. 

The identification of suspected smoke areas is shown in 

Figure 16. LBP can highlight the irregular textures of 

smoke, contrasting them with other areas. This helps the 

system identify smoke or fire, especially in fire detection 

systems, by assisting in detecting abnormal patterns in the 

images and issuing early warnings. 

  

(a) Original image (b) Suspected Smoke 

Area 

Fig. 16. The result of LBP Algorithm Processing on The 

Suspected Smoke Area 

Based on the texture images of suspected smoke areas 

obtained from the figure 16, the Local Binary Pattern 

Variance (LBPV) algorithm is applied to calculate the local 

binary variance of the images. Subsequently, the vertical 

mean of the local binary variances is computed, which 

serves as the feature data for smoke recognition. These 

computed LBP variance values, as shown in Table 3, 

represent the degree of local texture variation. Variance 

values close to 0 indicate minimal local texture variation, 

while higher values (e.g., 6.81, 6.1, 6.62, 6.83) indicate 

significant texture variation in that area. From the numerical 

perspective, most regions exhibit LBP variance values close 

to 0, suggesting minimal texture variation in those areas. 

However, regions indexed 15-21, 22-28, 36-42, and 43-49 

show significant local texture variation, indicating the 

richest or most complex texture areas in the image, and 

potentially representing suspected smoke or other abnormal 

conditions. 

Table 3 Vertical Mean of Local Binary Variance 

Numbe

r 
Local binary variance value 

1-7 0 0.30 0 0 
0.7

1 
0 

5.3

8 

8-14 0 0 0 0 
0.6

6 
0 

4.7

9 

15-21 0 
6.81

0 
0 0 0 0 0 

22-28 0 0.14 0 
6.

1 
0 

6.0

6 
0 

29-35 
0.4

6 
0 0 0 0 0 0 

36-42 0 0 
4.6

1 
0 

6.6

2 
0 0.6 

43-49 0 0 0 0 0 0 
6.8

3 

50-56 0 0.49 0 0 0 0 0.6 

Local 

binary 

variance 

8242 

 

3.1.4. Calculation Results of High-Low Frequency 

Relative Energy 

The Uniform Distribution of Low-Frequency Coefficients 

in the Suspected Smoke Area after Wavelet Transform, as 

shown in Figure 17, may indicate consistent texture or color 

characteristics of the background. Meanwhile, significant 

texture differences are exhibited in the high-frequency 

coefficients, suggesting the presence of smoke. Coefficient 

images in horizontal, vertical, and diagonal directions are 

depicted in Figure 18 (a), (b), and (c). Any high-frequency 

fluctuations occurring in these areas may indicate smoke 

interference. Applying these findings in practice offers a 

method to enhance the accuracy of early fire detection, 

aiding in the development of more sensitive and timely fire 

alarm systems. The application of this technique is not 

limited to smoke identification; it is equally applicable in 

various image processing domains, including but not limited 

to image enhancement, image de-noising, and feature 

extraction, demonstrating the potential of wavelet 

transforms as a versatile tool. 
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Fig. 17. Low-frequency Coefficient Result Image   

   

Horizontal Level 

1 

Horizontal Level 

2 

Horizontal Level 

3 

(a)  High-frequency Horizontal Directional Coefficient 

Image 

   

Vertical Direction 

1 

Vertical Direction 

2 

Vertical Direction 

3 

（b）High-Frequency Vertical Direction Coefficient 

Image 

   

Oblique Direction 

1 

Oblique Direction 

3 

Oblique Direction 

3 

(c) High-Frequency Oblique Direction Coefficient Image 

Fig. 18. High-Frequency Coefficient Result Image 

By calculating the low-frequency energy coefficient and 

high-frequency energy coefficient, corresponding high-

frequency energy Nh and low-frequency energy Ni are 

computed. The relative energy value of high and low 

frequencies Nr is then calculated using the formula Nr = Nh 

/ Ni. These values are sequentially used as feature data for 

suspected smoke areas. The calculation results are shown in 

Table 4. 

Table 4 Relative Energy Feature Values of High and Low 

Frequencies 

Nh Ni Nr 

6679.4 1002935 0.0068 

3.2. Neural network training and error calculation 

results  

3.2.1. Obtain training data for recognizing smoke neural 

networks  

To obtain training images and corresponding feature data 

for the neural network of real-life smoke and fire 

recognition scenarios, a segment of monitoring video 

containing smoke and fire incidents is selected. Forty frames 

are randomly chosen from it as training samples, and two 

frames are selected as test samples for training error. The 

specific information of the monitoring video for smoke and 

fire incidents is provided in Table 5. 

Table 5 Information of Smoke and Fire Incident 

Monitoring Video 

Duration 107 s 

Contains Flame Situation  NO 

Contains Smoke Situation YES 

Total Frames  2157 

 

The process described above is used to extract local binary 

variance and high-low frequency relative energy feature 

data from the randomly selected 40 frames. The results are 

shown in Table 6 . 
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Table 6 Extraction Table of Local Binary Variance and High-Low Frequency Relative Energy Feature Data 

Frame 

Number 

Local 

Binary 

Variance 

High-Low 

Frequency 

Relative 

Energy 

Frame 

Number 

Local 

Binary 

Variance 

High-Low 

Frequency 

Relative 

Energy 

Frame 

Number 

Local 

Binary 

Variance 

High-Low 

Frequency 

Relative 

Energy 

1 1071 0.0433 27 1210 0.0433 652 1240 0.0448 

3 1078 0.0433 29 1234 0.0435 702 1175 0.0449 

5 1121 0.0437 102 1196 0.0436 752 1159 0.0440 

7 1139 0.0435 152 1246 0.0460 802 1143 0.0453 

9 1159 0.0436 202 1184 0.0438 852 1206 0.0460 

11 1191 0.0439 252 1264 0.0445 902 1126 0.0459 

13 1207 0.0444 302 1190 0.0434 952 1211 0.0462 

15 1208 0.0442 352 1232 0.0442 1002 1107 0.0454 

17 1202 0.0443 402 1181 0.0442 1052 1158 0.0471 

19 1216 0.0442 452 1187 0.0441 1102 1134 0.0464 

21 1149 0.0424 502 1117 0.0443 1152 1144 0.0468 

23 1164 0.0425 552 1203 0.0450 1202 1102 0.0468 

25 1187 0.0429 602 1150 0.0436 1252 1168 0.0482 

26 1195 0.0435       

Based on the selected smoke images, manual annotations 

are made for the smoke and fire situation, where fire 

incidents are labeled as 1 and no fire incidents are labeled as 

0. Due to the large number of training images, only a few 

annotated sample images are displayed. The results are 

shown in Table 7. 

Table 7 Illustration of Fire Incident Annotation Results for 

Training 

Training Images 

Fire 

Situ

atio

n 

Training Images 

Fire 

Situa

tion 

 

0 

 

1 

 

0 

 

1 

 

0 

 

1 

 

3.2.2. Neural Network Training Results  

The obtained 40 sets of local binary variance and high-low 

frequency relative energy feature data, along with their 

corresponding fire incident annotations, are imported into 

the created neural network for training. The training 

parameters are set according to the specifications in section 

2.2 above. The training results are shown in Figures 19 and 

20. 

In Figure 19, the variation of the error metric during the 

training process is displayed. The annotation "Best Training 

Performance" at the last epoch indicates that although the 

error has decreased, it did not reach the initial training goal 

of 0.01. Training stopped after reaching the maximum 

number of training cycles. Figure 20 is the linear regression 

plot of the training results, which is crucial for evaluating 

the model's generalization performance. A higher regression 

coefficient indicates a   better fit of the neural network 

model to all training data. The regression coefficient of the 

neural network alone is only 0.62. 
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Fig. 19. Training Error Iteration Graph  

 

Fig. 20. Linear Regression Plot of Training Results   

3.2.3. Prediction Accuracy Calculation Results 

Import 31 sets of test data into the trained neural network 

for prediction, compare the predicted smoke and fire results 

with the actual smoke and fire results, and calculate the 

prediction accuracy of the network. The feature values of 

the test images, along with the actual fire situation and the 

predicted fire situation, the results are shown in Table 8. 

 

 

Table 8 Comparison Table of Predicted and Actual Values for 31 Test Samples 

Frame 

Numbe

r 

Local 

Binary 

Varianc

e 

High-

Low 

Frequenc

y 

Relative 

Energy 

Annotatio

n 

Predictio

n 

Frame 

Numbe

r 

Local 

Binary 

Varianc

e 

High-

Low 

Frequenc

y 

Relative 

Energy 

Annotatio

n 

Predictio

n 

3 1079 0.0434 0 0 759 1205 0.0445 1 1 

66 1218 0.0446 1 0 822 1133 0.0459 1 1 

129 1218 0.0451 1 1 885 1164 0.0460 1 1 

192 1249 0.0446 1 1 948 1171 0.0464 1 0 

255 1276 0.0446 1 1 1011 1146 0.0457 1 1 

318 1250 0.0450 1 1 1074 1168 0.0458 1 1 

381 1163 0.0445 1 1 1137 1185 0.0480 1 1 

444 1133 0.0439 1 0 1200 1141 0.0474 1 1 

507 1202 0.0452 1 1 1263 1111 0.0477 1 0 

570 1168 0.0448 1 1 1326 1099 0.0447 1 1 

633 1237 0.0436 1 0 1389 1076 0.0463 1 0 

696 1189 0.0451 1 1 1452 1115 0.0473 1 0 

1 1072 0.0433 0 0 10 1179 0.0439 0 1 

4 1093 0.0435 0 0 13 1207 0.0444 0 1 

7 1139 0.0435 0 0 16 1204 0.0444 0 1 

19 1217 0.0442 0 1      
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The comparison between predicted fire incidents and actual 

fire incidents is illustrated in Figure 21. 

 

Fig. 21. Comparison Plot of Predicted Fire Incidents vs. 

Actual Fire Incidents  

From Figure 21 and Table 8, it can be observed that out of 

31 test samples, there are 11 instances where the predicted 

results do not match the actual results. Thus, the prediction 

accuracy is only 64.5%. This indicates that relying solely on 

neural networks for prediction yields poor accuracy and 

may converge prematurely. 

3.3. Genetic Algorithm Optimization of Neural 

Networks  

3.3.1. Optimal Neural Network Structure Parameters  

According to the set parameters, optimization is performed 

to obtain the final optimal neural network structure. The 

internal weights and thresholds of the optimal neural 

network structure are shown in Tables 9 and 10. 

Table 9 The Internal Weights 

Input layer and hidden layer connection weights 

-0.57 994.77 

-0.14 18.23 

-0.01 -393.65 

-0.14 -1309.96 

-0.03 1056.72 

 

Table 10 Thresholds 

Hidden Layer Thresholds 

424.86 92.94 -298.14 -407.41 11.90 

Hidden layer and output layer connection weights 

642.69 162.78 24.76 223.57 -42.87 

Output Layer Thresholds 

-132.2 

 

During the iterative optimization process of genetic 

algorithm, the fittest individual, i.e., the one with the lowest 

testing error, is selected at each generation. After 50 

generations of evolutionary iterations, the optimal neural 

network structure parameters mentioned above are obtained. 

The best individual during the iteration process is depicted 

in Figure 22. 

 

Fig. 22. Optimization Iteration Process Diagram   

3.3.2. Validation of Optimized Neural Network Fire 

Smoke Prediction Accuracy  

The 31 predicted samples shown in the table are imported 

into the optimized neural network for prediction accuracy 

calculation. The results are shown in Table 11. 
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Table 11 Comparison Table of Predicted and Actual Values for 31 Test Samples 

Frame 

Numbe

r 

Local 

Binary 

Varianc

e 

High-

Low 

Frequenc

y 

Relative 

Energy 

Annotatio

n 

Predictio

n 

Frame 

Numbe

r 

Local 

Binary 

Varianc

e 

High-

Low 

Frequenc

y 

Relative 

Energy 

Annotatio

n 

Predictio

n 

3 1079 0.0434 0 0 759 1205 0.0445 1 0 

66 1218 0.0446 1 1 822 1133 0.0459 1 1 

129 1218 0.0451 1 1 885 1164 0.0460 1 1 

192 1249 0.0446 1 1 948 1171 0.0464 1 1 

255 1276 0.0446 1 1 1011 1146 0.0457 1 1 

318 1250 0.0450 1 1 1074 1168 0.0458 1 1 

381 1163 0.0445 1 1 1137 1185 0.0480 1 1 

444 1133 0.0439 1 1 1200 1141 0.0474 1 1 

507 1202 0.0452 1 1 1263 1111 0.0477 1 1 

570 1168 0.0448 1 1 1326 1099 0.0447 1 1 

633 1237 0.0436 1 0 1389 1076 0.0463 1 1 

696 1189 0.0451 1 1 1452 1115 0.0473 1 1 

1 1072 0.0433 0 0 10 1179 0.0439 0 0 

4 1093 0.0435 0 0 13 1207 0.0444 0 0 

7 1139 0.0435 0 0 16 1204 0.0444 0 0 

19 1217 0.0442 0 0      

 

The comparison between predicted fire incidents and actual 

fire incidents is illustrated in Figure 23. 

From Table 11 and Figure 23, it can be observed that out of 

the 31 test samples, there are 2 instances where the predicted 

results do not match the actual results. Thus, the prediction 

accuracy is approximately 94%. This indicates that the 

smoke and fire recognition neural network optimized using 

a genetic algorithm has significantly improved prediction 

accuracy. 

 

Fig. 23. Comparison Plot of Predicted and Actual Values 

4. Conclusion 

This study proposes a method for smoke and fire 

recognition, with the following innovations: 

1. Smoke Feature Extraction: Through preprocessing of 

smoke and fire images and conversion to the HSI color 

space, local binary variance and high-low frequency relative 
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energy feature data of smoke images are extracted using the 

LBP algorithm and wavelet transform algorithm. Smoke 

recognition is performed using a BP neural network. 

2. Genetic Algorithm Optimized BP Neural Network: 

Utilizing a genetic algorithm to optimize the weights and 

thresholds of the neural network effectively addresses the 

issues of local optima and premature convergence in BP 

neural networks, significantly improving the accuracy of 

smoke and fire recognition. Experimental results show that 

the recognition accuracy of the neural network alone is only 

64.5%, whereas the recognition accuracy of the neural 

network optimized by genetic algorithm can reach 94%. 

3.This intelligent recognition system can improve the 

accuracy of fire and smoke detection systems by 

compensating for situations where there is no flame, thus 

reducing the probability of fire occurrence. 
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