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Abstract: Mammography is an essential diagnostic tool for early detection of breast cancer. Advances in deep learning, including transfer
learning models and hybrid Convolutional Neural Network (CNN) classifiers, have shown promise in improving diagnostic accuracy. This
study compares the classification performance of transfer learning models and a hybrid CNN classifier without segmentation to a dedicated
computer-aided diagnosis (CAD) system with segmentation on mammographic images. The objective is to evaluate the effectiveness of
standalone models versus integrated CAD systems in detecting breast cancer. The contribution of this paper can be summarised as follows:
the initial phase involved preprocessing, which included image contrast improvement technique CLAHE (Contrast Limited Adaptive
Histogram Equalization), resizing, normalisation, and image augmentation. The second step is classifying pre-processed images without
segmentation using VGG16, MobileNet, ResNet152V2, ResNet50V2, and four hybrid models H1, H2, H3, and H4 as benign and
malignant. The suggested hybrid methods exhibit improved performance in comparison to the corresponding transfer learning models,
capitalising on the combined benefits of both networks. Furthermore, the incorporation of a probability-based weight factor (w) and
threshold value (B) is essential for achieving optimal hybridisation. The empirically discovered optimal threshold value (8) improves the
speed and accuracy of the system. Significantly, in contrast to conventional deep learning techniques, the suggested framework
demonstrates exceptional performance. Finally, the images are segmented using the MultiResUNet++ model, and the obtained segmented
masses are classified using the four hybrid models. In this paper, the classification of the mammography images was compared with and
without segmentation. The experimental results demonstrate the superiority of the proposed VGG16- ResNet50V2 scheme over the current
state-of-the-art methods, with a precision of 98.94%, accuracy of 98.42%, Recall of 97.89%, F1 Score of 98.41% and ROC score of 98.54%.
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1. Introduction generally transparent appearance. Calcification can be
defined by several qualities such as a rougher shape, a
grainy shape, a popcorn-like shape, or a ring-like shape.
Furthermore, the calcification exhibits a greater density and
a more extensive dispersion. Malignant tumours typically
exhibit a needle-like morphology with irregular and
frequently indistinct margins. Malignant tumours are very
dangerous. There are a variety of forms and sizes, and the
distribution of calcification is frequently dense or packed in
a linear pattern [4]. The calcification morphology is
primarily composed of microscopic sand-like particles that
are either linear or branching. Medical experts face
difficulties in accurately diagnosing early breast cancer
based on mammography scans due to the complexity and
low contrast of the images. Given this, it is imperative to
enhance the diagnostic capabilities of medical practitioners
by employing the computer-aided diagnostics (CAD)
system that relies on deep learning.

The advancement of processing digital images and Artificial

With the current state of affairs, breast cancer has emerged
as one of the most prevalent forms of malignant tumours in
females, and the incidence of this disease is increasing in
both developed and developing nations. In clinical practice,
malignant tumors are typically classified as positive, while
benign tumors are classified as negative. Several imaging
technologies, including as mammography
examinations, Computed Tomography (CT), photoacoustic
scans, nuclear magnetic resonance imaging, and microwave
scanning [5], are used, and others, are currently being
utilised to diagnose breast cancer [1,2]. Out of all these
methods, mammography is one of the most effective
methods for identifying breast cancer [3]. On
mammograms, the most prominent signs of breast cancer
are masses and calcifications. Both of these are considered
to be symptoms of the disease. When viewed from the mass,
benign tumours often have a spherical, smooth, and
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actively tackling. CAD [7] systems function by examining
mammography pictures to detect patterns and irregularities
that could suggest the existence of tumours. Algorithms and
machine learning approaches are employed to aid
radiologists in making accurate and prompt diagnoses. This
technique has gained prominence and importance due to its
capacity to enhance the precision and effectiveness of breast
cancer detection. In addition, CAD systems are used to
identify and categorize microcalcifications and masses in
mammography pictures. Microcalcifications are minuscule
accumulations of calcium that can serve as early signs of
breast cancer. Computer-aided detection (CAD) systems [7]
can assist radiologists in identifying these minor alterations
that may go unnoticed during a human examination.
Incorporating digital image processing and artificial

intelligence  technology into CAD systems has
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fundamentally transformed breast cancer diagnostics,
enhancing its precision, efficiency, and reliability.
Segmenting masses [8] from mammograms is difficult
because of their various properties, including shape, border,
texture, and density. Segmenting mass using machine
learning requires carefully selecting features, which can be
time-intensive. On the other hand, deep learning approaches
enable the automatic acquisition of features straight from
the training data. Utilizing fully convolutional neural
networks, such as U-Net [9], has proven highly successful
in biomedical picture semantic segmentation. U-Net is a
supervised learning approach that incorporates encoder and
decoder layers. Over time, several versions of U-Nets have
appeared, incorporating transfer learning techniques, skip-
connection configurations, attention processes, and visual
transformer-based U-Net structures [10],[11],[12],[13],[14].
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Fig.1. Proposed frame work

This research makes two important contributions: a
classification phase that employs multiple deep models, and
a segmentation phase that comes before the classification
shown in Fig 1. Initially, various models such as VGG16,
MobileNet, and ResNet152V2, ResNet50V2 and hybdird
models are utilized to categorize the images in our Mini-
DDSM dataset as either benign or malignant. Furthermore,
the MultiResUNet++ modified U-Net model is employed in
the segmentation phase to extract the Region of Interest
(ROI). This step is crucial in optimizing the images for input
into the classification phase and the system's performance.
Following the segmentation step, our deep-learning models
identify the segmented images as benign or malignant. Data
augmentation is used on dataset to address the limited
availability of datasets. In addition, transfer learning is
employed to reduce both the time required and the
computational resources consumed.

2. Related Work

Machine learning surpasses the traditional method of
manually creating techniques. It aids in the identification of
the most crucial elements. Deep learning is crucial for
improving advancements in biomedical engineering,
namely in the area of Deep Convolutional Neural Networks
(CNNSs), which have demonstrated exceptional efficiency
when implemented. Shrestha et al. devised a new algorithm
to characterize deep learning [16]. J. Arevalo et al. [17]
explain several Convolutional Neural Networks (CNNs)
used for mass detection. The researchers conducted their
experiments utilizing the Breast Cancer Digital Repository

Film Mammography (BCDR-FM) dataset. In their research,
D. Abdelhafiz et al. [18] introduced a system that utilized a
pre-trained Convolutional Neural Network (CNN) on the
DDSM database. The authors, L. Tsochatzidis et al. [19],
have developed a breast cancer classification algorithm
from the beginning. This algorithm enhances the capability
to differentiate between normal and abnormal breast tissue
by utilizing deep-learning medical imaging technology.

The U-Net model is the primary model used for image
segmentation. O. Ronneberger et al. proposed a U-Net
model to segment biomedical images [9]. N. Alam et al. [20]
devised an automated method for segmenting biological
pictures. The researchers manually extracted the region of
interest (ROI) and then used a wavelet-based procedure to
enhance the spatial picture's frequency. The shape of the
calcified area was determined

using a segmentation technique used in the study by S.
Duraisamy et al. [21]. The improved U-Net model was used
to perform segmentation and extract the region of interest
(ROI), with a specific focus on the breast area and the
removal of any undesired regions. This approach has been
documented in several articles focusing on the classification
of breast cancer [22-26].

The data augmentation technique generates additional
samples for the training data set by applying random
transformations to the existing datasets [27]. This has
numerous consequences, such as expediting the
convergence process and preventing overfitting. A practical
method for tiny datasets is applying simple transformations
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such as translation, zooming, flipping, mirroring, rotation,
etc. Transfer learning refers to employing a pre-trained
model instead of starting the model training process from
scratch. Developing the neural network initially requires
significant data and computer resources [28]. The
classification procedure utilized the following models:
VGG16, ResNet152V2, MobileNetV2, ResNet50v2 [29—
31, 49].

3. Proposed Architecture for Segmentation and
Classification

Training data is necessary for the implementation of deep
learning models. An automated mass segmentation model
necessitates the inclusion of ground truth images that
radiologists have annotated. The mini-DDSM dataset is
publicly accessible and contains annotations for
mammaography images [32]. The collection contains cranio-
caudal (CC) and mediolateral obliqgue (MLO) images of
both the right and left breast, saved in 16-bit .JPEG format.
The dataset includes data on the ground truth provided by
specialists for each image, classifying them as either benign
or Malignant. The current study randomly selects a subset
of 2200 mammography pictures from the Mini-DDSM
dataset. This subset is employed to evaluate the efficacy of
the suggested model using a limited dataset.

3.1. MultiResUNet++

The MultiResUNet++ architecture is a combination of the
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Fig. 4. Shows the rp (Respath) that is present in the structure
of the MultiResUNet++ model.

MultiResUNet and UNet++ designs. The approach aimed to
overcome constraints in both systems, specifically in
efficiently managing distant relationships and accurately
capturing intricate features in segmentation tasks.

The MultiResUNet++ architecture is a combination of the
MultiResUNet and UNet++ designs. The approach aimed to
overcome constraints in both systems, specifically in
efficiently managing distant relationships and accurately
capturing intricate features in segmentation tasks. The
architecture of the MultiResUNet++ model is illustrated in
Fig 2. MultiResUNet++ preserves the basic encoder-
decoder architecture of MultiResUNet while incorporating
more connections, influenced by UNet++, to enhance the
information exchange between various model layers.

The MultiResUNet++ model incorporates the fundamental
UNet structure, which consists of an encoder and a decoder.

The encoder performs downsampling of the input image to
extract higher-level features, while the decoder utilises
upsampling layers to reconstruct fine-grained information
and provide a segmentation mask. Typically, each level of
an encoder is composed of convolutional layers, followed
by pooling layers. This arrangement helps to improve the
extraction of features. MultiResUNet++ is a modified
version of UNet++ that includes additional skip connections
between the encoder and decoder layers. These connections
allow for the seamless combination of low and high-level
information, which is beneficial for segmentation tasks.

Additionally, it has a hierarchical structure in which each
level of the encoder is connected to the decoder through
layered skip connections. This enables the thorough
incorporation of characteristics at various scales and
facilitates accurately representing local and global contexts.
The network’s interconnection allows it to overcome
difficulties associated with long-range interdependence and
the acquisition of fine-grained details in segmentation tasks.
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Fig. 2. Structure of MultiResUNet++ model
MultiRes Block

The MultiResUNet++ design relies on the MultiRes blocks,
depicted in Fig 2. and referred to as multiRes block (mrb),
as the fundamental components for its multi-resolution
analysis capabilities. The blocks shown in Fig 3. deviate
from conventional convolutional layers by incorporating
concurrent convolutional processes with different kernel
sizes. Furthermore, the progressive increase in the quantity
of filters in each subsequent layer allows the network to
extract spatial characteristics from various scales with
greater efficiency. This novel method not only improves the
precision of segmenting but also reduces the limitations of
memory, hence optimizing the overall performance.

Respath

Moreover, the architecture specifically tackles the semantic
disparity that exists between the characteristics of the
encoder and decoder in the UNet framework. Fig 2.
incorporates Respathways, which are denoted as rp. The
ResPath, as shown in Fig 4, incorporates convolutional
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layers selectively along shortcut connections to enhance the
alignment of features between the encoder and decoder
stages. The Respathways, together with residual
connections, are crucial for maintaining spatial information
during the segmentation process, hence improving the
overall resilience and effectiveness of the network.

The U-Net and MultiResUNet architectures establish a
direct connection between the encoder and decoder,
allowing the decoder to receive feature maps directly from
the encoder. MultiResUNet++ incorporates a dense
convolution block, with the number of blocks varying
depending on the pyramid level. The purpose of this block

is to synchronize the semantic level of encoder feature maps
with those in the decoder. The hypothesis is that having a
tighter semantic likeness between these feature maps makes
optimization easier for the optimizer. MultiResUNet++
differs from UNet and UNet++ in four crucial aspects: 1)
The model effectively incorporates MultiRes blocks to
extract spatial features from multiple scales. 2) It introduces
Respaths to preserve spatial information throughout the
segmentation process. 3) MultiRes blocks are used on skip
pathways to connect the encoder and decoder feature maps
and bridge the semantic gap. 4) Dense skip connections are
employed on skip pathways to improve the flow of
gradients.
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Fig. 3. Shows the mrb that is present in the structure of the MultiResUNet++ model.

3.2. Hybrid Model

In this study, we have employed four novel deep hybrid
networks [47], namely H1, H2, H3, and H4, to enhance the
precision of breast cancer diagnosis. Fig 5. displays the
diagram of the proposed work. This study aims to enhance
performance accuracy while improving computing efficiency.
P1 and P2 denote the chances of class membership forecasted
by the hybrid network's initial classifier. P1 and P2 represent
the probabilities of normal and malignant, correspondingly.
Class 1 represents benign, while class 2 represents malignant.
The weight factor is crucial for ensuring optimal performance
and improving computational efficiency. The weight factor
(w) is mathematically represented as follows:

w=Y"_ Pclog,(uPy)

for zznumber of classes.

)

Given that cancer detection is a problem with two possible
outcomes, u is defined as two. The proposed mixed framework
amalgamates the benefits of both classifier 1 and classifier
2 networks. The threshold value is essential for attaining an
ideal balance between capability and computational
effectiveness. When P1=0.5, the probability of the item being
assigned to class 1 is 0.5, while the probability of it being
assigned to class 2 is likewise 0.5. Here, P1 and P2 represent
the probability of class 1 and class 2, respectively.
Consequently, it leads to misdiagnosis. When P1 = 0.9, the
probability of an item being classed as class 1 is 0.9, while the
probability of it being classified as class 2 is 0.1. Similarly, if
P1=0.1, the probability of an item belonging to class 1 is 0.1,

whereas the probability of an object belonging to class 2 is 0.9.
In both scenarios, the likelihood of misclassification (classifier
1) is comparatively lower, resulting in improved classification.
In this context, we calculate the value of w based on P1 and
P2, as described in Equation (1). The relationship between P1,
P2 and w is seen in Table 1. The weight factor (w) remains
constant when the values of P1 and P2 are interchanged.
Therefore, at w = 0, the chance of misclassification reaches its
highest point, with P1 = P2 = 0.5. With an increased value of
w, the likelihood of misdiagnosis in classifier 1 is
comparatively lower. Therefore, the second network only
engages when the first classifier performs relatively subpar.
Based on the observation of Fig. 6, it is evident that the second
network is only involved when the weight factor (w) is less
than or equal to the threshold value (B). If the weight factor w
is greater than S, subsequently, the activation of the second
network is unnecessary. The network2 operates exclusively
when the networkl exhibits comparatively subpar
performance. This maximizes the utilization of the second
network by eliminating the requirement to activate both
networks for every test image. Applying this notion enhances
the suggested framework's computational efficiency and
overall performance. Therefore, the threshold value (B) is
essential in attaining an ideal balance between performance
and computational effectiveness. To fulfill this objective, the
value of S is determined by experimental means. To create
effective hybrid schemes, two classifiers, namely classifier 1
and classifier 2, are selected from a pool of five base
classifiers: VGG16, VGG19, ResNet50V2, MobileNetV2, and
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ResNet152V2. The hybrid schemes that have been suggested

are displayed in Table 2.

Table 1. Variation of P1 and P2 with w

P1 P2 w
0.5 0.5 0
0.4070 0.5930 0.025
0.3690 0.6310 0.05
0.3400 0.66 0.075
0.3160 0.6840 0.1
0.2145 0.7855 0.25
0.18 0.82 0.3
0.11 0.89 0.5
0.00001 0.9999 1
Table 2. Hybrid Frameworks
Hybrid
Classifier 1 Classifier 2
H1 ResNet152V2 VGG16
H2 ResNet50V2  VGG19
H3 MobileNet ResNet50V2
H4 VGG16 ResNet50V2

4. Results and Evaluation
4.1. Dataset and Preprocessing

The DDSM [41] collection is free. It is distributed by the
University of South Florida Computer Science and
Engineering Department, Sandia National Laboratories, and
MGH [42]. The Mini-DDSM dataset is a sample of the
larger DDSM dataset. It may have been chosen to be easy to
reach and simple. A popular mammography source is the
DDSM. It contains metadata and annotations for several
mammography pictures. Researchers can test a small
portion of this useful dataset with the Mini-DDSM subset.
This study selected 2200 Mini-DDSM tumor-bearing
mammograms. After reviewing them, 1810 were randomly
selected for training, 200 for validation, and 190 for testing.
Images were rotated and turned to increase the training
collection. Data utilized to train the models become more
stable and diverse.

A poor signal-to-noise ratio in mammograms is unfixable.
For accurate identification, preprocessing is crucial.
Increasing contrast with Contrast Limited Adaptive
Histogram Equalization (CLAHE) helped picture lines
stand out. When working with limited datasets like
mammograms, adding data made deep learning models

more valuable and dependable. Rotating and flipping were
used for augmentation. The model learns stable traits and
trends by changing certain sections of the source
photographs. It performs better and reduces overfitting.
Growing: Many forms can be transformed into pictures.
With the revised shape, each is 256 tall and wide. Pictures
altered shape (256, 256, 1). A 1 form shows one channel, or
a grayscale picture. Before using deep learning to
distinguish images, normalization is necessary. The
segmentation model must perform properly and stay stable
to ensure that the data fed in has the same values. Projects
that segment photographs with varied lighting, contrast, and
intensity can provide extremely different pixel values. This
may hinder learning and reduce segmentation model
effectiveness.

4.2. Performance Metrics

The performance of the recommended model was assessed
using various metrics, including overall accuracy,
specificity, sensitivity, precision, fl-score, confusion
matrix. The fl-score value provides a straightforward way
to calculate the harmonic mean of recall and precision
values. The consideration of extreme instances is the
rationale behind the preference for a harmonic mean over a
simple mean. In a scenario where a simple average
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computation is used, a model that has a recall value of 1 and Precision = —~ (5)
.. . TP+FP

a precision value of 0 could potentially have a f1-score of

0.5, which can be misleading [43-46]. The mathematical F1 — Score =

representations are defined in equations (2) to (6) as follows:

2 Precision*Sensitivity (6)

Precision + Sensitivity

4.3. Experimental Results and Discussion
TP+TN

Accuracy = TP+FN+TN+FP @ i ; ; i
The discussion includes the segmentation and
Specificity = Py (3) class.ifi(?ation findings, such as the segmentatiqn .model's
qualitative results, the accuracy plots for training and
Sensitivity(Recall) = TPZPFN 4) validation, the plots for loU and loss, and the plots for

ROC and precision and recall curves.

Test images Pl and P2 . .
. . . Weight (w) Yes Classl if P1=P2
Classifier 1 ’ ‘ Estimation Estimation Class2 otherwise
No
Estimation
Test images for . of Updated Class1 if P1=P2
which w=f7 Classifier 2 PI and P2 Class2 otherwise

Fig. 5. displays a diagram illustrating the hybrid model that has been proposed.

4.3.1. Segmentation Results Intersection over Union (loU) of 97.68%, and a loss value
of 0.00113. The plots of training and validation accuracy,
training and validation loU, and loss plots are given in Fig
6., and also the qualitative results are shown in Fig 7.

Segmentation using MultiResUNet++ model
experimental results attained an accuracy of 99.78%, an

Fig. 6. displays the Loss, Accuracy, and loU graphs for both the training and validation dataset

Input Image Ground Truth MultiResUNet++

Fig. 7. Qualitative results of MultiResUNet++ showing segmentation of mammogram images
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4.3.2. Classification Results

After the segmentation, the resulting images were sent as
input to the different classifier models. The performance
metrics of these transfer learning models without and with
segmentation were compared, as shown in Table 3 and
Table 4 respectively. which means the classification output
was evaluated both without segmentation and with
segmentation. The results showed that the accuracy and
ROC measurements improved when the classification was
performed after segmentation. The proposed approach is
subjected to a quantitative performance study, along with
other comparative methods. This analysis is conducted
using  metrics such as, precision, recall, F1 score,
specificity, accuracy, and ROC. The comparison table
clearly illustrates the superiority of the proposed method,
which exhibits greater accuracy and precision than its
competitors. The graphical depiction of the results in the
mini-DDSM database and the confusion matrix for the H4
model are depicted in Fig 8. and 9, respectively. Based on
the provided table, it can be concluded that the suggested
hybrid technique performs better than previous techniques
in terms of all performance metrics. Specifically, it achieves
a precision of 98.94%, accuracy of 98.42%, recall of
97.89%, specificity of 98.95%, F1 score of 98.41%, and

ROC of 99.54%. The threshold value is crucial in both
hybridization and achieving optimal outcomes. This value
is selected through empirical experimentation. Furthermore,
it is necessary to optimize the threshold value to achieve
exceptional detection accuracy. Table 5 illustrates the
performance comparison when using various threshold
values to detect begin or malignant. Based on the data
presented in this table, it can be concluded that the proposed
hybrid framework performs better with a threshold value of
0.3. Once the threshold value reaches a certain point,
performance begins to deteriorate and then remains
constant. The proposed hybrid models exploit the second
classifier in cases where the performance of the first
classifier is below standard, leading to improved success by
using the strengths of both basic classifiers: classifiers 1 and
2. However, there is a possibility of false detection
occurring when the second classifier, used for testing, also
produces erroneous detection. Although the likelihood of
this problem occurring is low, it can happen occasionally (in
rare cases). Therefore, there is need for additional
improvement. The section closes by asserting that the
suggested  hybrid  strategy  achieves  outstanding
performance in categorizing benign-malignant breast
pictures on mammograms, while maintaining similar
computational costs.

Receiver Operating Characteristic (ROC) Curve
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Fig. 9. Displays the ROC curve of H4 model

Table 3. Comparison of different transfer learning models classification performance of mammogram images as
benign and malignant without segmentation

Classification before Precision Recall Accuracy Specificity ROC F1 Score

Segmentation

MobileNet 97.12 91.00 93.38 96.45 98.21 93.56

VGG16 98.23 92.12 94.34 95.85 98.36 95.08

ResNet152V2 98.66 93.81 94. 86 97.78 99.67 95.65

ResNet50V2 98.67 95.56 95.37 98.96 99.81 96.01

H1 model 97.48 96.67 96.45 98.67 98.46 97.76

H2 model 98.33 97.53 97.39 97.89 97.56 97.38
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H3 model 98.65 94.89

H4 model 98.13 97.82

97.88
98.19

98.79 98.79 97.41

98.56 99.16 98.32

Table 4. Comparison of different transfer learning models classification performance of mammogram images as
benign and malignant after segmentation

Classification Precision Recall Accuracy Specificity ROC F1 Score
after 0
i % % % % %

Segmentation (%) (%) (%) (%) (%) (%)

H1 model 95.88 97.89 96.84 95.79 99.10 96.88

H2 model 97.87 96.84 97.37 97.89 98.89 97.35

H3 model 98.91 95.79 97.37 97.89 99.42 97.33

H4 model 98.94 97.89 98.42 98.95 99.54 98.41

5. Conclusion compare the performance of classification models with and

This paper presents a novel hybrid deep learning framework
that utilizes various deep learning models. The proposed
framework employs the MultiResUNet++ architecture for
segmentation, while a hybrid model is formed by combining
transfer learning models for classification. The hybrid
model H4, which combines VGG16 for classifierl and
ResNet50V2 for classifier2, achieves superior

performance. A comparison analysis is conducted to

without segmentation. The experimental results show that
classification using H4 model without segmentation
achieved an accuracy of 98.19%, an ROC of 99.16%, a
recall of 97.82%, a precision of 98.13%, and an F1 score of
98.32%. On the other hand, classification with segmentation
achieved an accuracy of 98.42%, an ROC of 99.54%, a
recall of 97.89%, a precision of 98.94%, and an F1 score of
98.41%. Segmentation enhances the performance of
classification, especially when dealing with a tiny dataset.

Confusion Matrix

True labels

80

60

- 40

20

Predicted labels

Fig. 8. Confusion matrix for H4 model

Table 5. Performance comparison using various threshold levels for malignancy detection after segmentation

Precision Recall Accuracy Specificity ROC F1 Score
Model (%) (%) (%) (%) (%) (%)
0.025 95.74 94.74 95.26 95.79 99.18 95.24
0.05 95.79 95.79 95.79 95.79 99.87 95.79
0.075 Hi 95.79 95.79 95.79 95.79 98.86 95.79
model
0.1 95.79 95.79 95.79 95.79 98.86 95.79
0.25 95.79 95.79 95.79 95.79 98.86 95.79
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0.3 95.88 95.88 96.84 95.79 99.1 96.88
0.5 95.88 95.88 96.84 95.79 99.2 96.88
0.025 97.83 94.74 96.32 97.89 98.56 96.26
0.05 97.85 95.79 96.84 97.89 99.65 96.81
0.075 96.81 95.79 96.32 96.84 98.56 96.3
0.1 H2 96.81 95.79 96.32 96.84 98.56 96.3
model
0.25 97.83 94.74 96.32 97.89 97.45 96.26
0.3 97.87 96.84 97.37 97.89 99.89 97.35
0.5 97.87 96.84 97.37 97.89 99.86 97.35
0.025 98.91 95.79 97.37 98.95 99.21 97.33
0.05 98.91 95.79 97.37 98.95 99.21 97.33
0.075 98.91 95.79 97.37 98.95 98.87 97.33
0.1 :idel 98.91 95.79 97.37 98.95 99.11 97.33
0.25 96.81 95.79 96.32 96.84 98.64 96.3
0.3 97.85 95.79 96.84 97.89 99.49 96.81
0.5 97.85 95.79 96.84 97.89 99.49 96.81
0.025 97.89 97.89 97.89 97.89 99.12 97.89
0.05 97.89 97.89 97.89 97.89 99.24 97.89
0.075 97.89 97.89 97.89 97.89 99.24 97.89
0.1 :idel 98.94 97.89 98.42 98.95 98.89 98.41
0.25 98.94 97.89 98.42 98.95 99.46 98.41
0.3 98.94 97.89 98.42 98.95 99.54 98.41
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