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Abstract: Mammography is an essential diagnostic tool for early detection of breast cancer. Advances in deep learning, including transfer 

learning models and hybrid Convolutional Neural Network (CNN) classifiers, have shown promise in improving diagnostic accuracy. This 

study compares the classification performance of transfer learning models and a hybrid CNN classifier without segmentation to a dedicated 

computer-aided diagnosis (CAD) system with segmentation on mammographic images. The objective is to evaluate the effectiveness of 

standalone models versus integrated CAD systems in detecting breast cancer. The contribution of this paper can be summarised as follows: 

the initial phase involved preprocessing, which included image contrast improvement technique CLAHE (Contrast Limited Adaptive 

Histogram Equalization), resizing, normalisation, and image augmentation. The second step is classifying pre-processed images without 

segmentation using VGG16, MobileNet, ResNet152V2, ResNet50V2, and four hybrid models H1, H2, H3, and H4 as benign and 

malignant. The suggested hybrid methods exhibit improved performance in comparison to the corresponding transfer learning models, 

capitalising on the combined benefits of both networks. Furthermore, the incorporation of a probability-based weight factor (𝑤) and 

threshold value (𝛽) is essential for achieving optimal hybridisation. The empirically discovered optimal threshold value (𝛽) improves the 

speed and accuracy of the system. Significantly, in contrast to conventional deep learning techniques, the suggested framework 

demonstrates exceptional performance. Finally, the images are segmented using the MultiResUNet++ model, and the obtained segmented 

masses are classified using the four hybrid models. In this paper, the classification of the mammography images was compared with and 

without segmentation. The experimental results demonstrate the superiority of the proposed VGG16- ResNet50V2 scheme over the current 

state-of-the-art methods, with a precision of 98.94%, accuracy of 98.42%, Recall of 97.89%, F1 Score of 98.41% and ROC score of 98.54%. 
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1. Introduction 

With the current state of affairs, breast cancer has emerged 

as one of the most prevalent forms of malignant tumours in 

females, and the incidence of this disease is increasing in 

both developed and developing nations. In clinical practice, 

malignant tumors are typically classified as positive, while 

benign tumors are classified as negative. Several imaging 

technologies, including as mammography 

examinations, Computed Tomography (CT), photoacoustic 

scans, nuclear magnetic resonance imaging, and microwave 

scanning [5], are used, and others, are currently being 

utilised to diagnose breast cancer [1,2]. Out of all these 

methods, mammography is one of the most effective 

methods for identifying breast cancer [3]. On 

mammograms, the most prominent signs of breast cancer 

are masses and calcifications. Both of these are considered 

to be symptoms of the disease. When viewed from the mass, 

benign tumours often have a spherical, smooth, and 

generally transparent appearance. Calcification can be 

defined by several qualities such as a rougher shape, a 

grainy shape, a popcorn-like shape, or a ring-like shape. 

Furthermore, the calcification exhibits a greater density and 

a more extensive dispersion. Malignant tumours typically 

exhibit a needle-like morphology with irregular and 

frequently indistinct margins. Malignant tumours are very 

dangerous. There are a variety of forms and sizes, and the 

distribution of calcification is frequently dense or packed in 

a linear pattern [4]. The calcification morphology is 

primarily composed of microscopic sand-like particles that 

are either linear or branching. Medical experts face 

difficulties in accurately diagnosing early breast cancer 

based on mammography scans due to the complexity and 

low contrast of the images. Given this, it is imperative to 

enhance the diagnostic capabilities of medical practitioners 

by employing the computer-aided diagnostics (CAD) 

system that relies on deep learning. 

The advancement of processing digital images and Artificial 

Intelligence (AI) technologies has resulted in a notable 

transformation in the medical domain, specifically breast 

cancer detection [5] and diagnosis. Computer-aided 

detection and diagnosis (CAD) systems are now considered 

valuable tools that assist radiologists in accurately 

categorising benign and malignant breast tumours [6]. This 

improvement is not merely theoretical but a practical and 

urgent scientific problem that healthcare specialists are 
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actively tackling. CAD [7] systems function by examining 

mammography pictures to detect patterns and irregularities 

that could suggest the existence of tumours. Algorithms and 

machine learning approaches are employed to aid 

radiologists in making accurate and prompt diagnoses. This 

technique has gained prominence and importance due to its 

capacity to enhance the precision and effectiveness of breast 

cancer detection. In addition, CAD systems are used to 

identify and categorize microcalcifications and masses in 

mammography pictures. Microcalcifications are minuscule 

accumulations of calcium that can serve as early signs of 

breast cancer. Computer-aided detection (CAD) systems [7] 

can assist radiologists in identifying these minor alterations 

that may go unnoticed during a human examination. 

Incorporating digital image processing and artificial 

intelligence technology into CAD systems has 

fundamentally transformed breast cancer diagnostics, 

enhancing its precision, efficiency, and reliability. 

Segmenting masses [8] from mammograms is difficult 

because of their various properties, including shape, border, 

texture, and density. Segmenting mass using machine 

learning requires carefully selecting features, which can be 

time-intensive. On the other hand, deep learning approaches 

enable the automatic acquisition of features straight from 

the training data. Utilizing fully convolutional neural 

networks, such as U-Net [9], has proven highly successful 

in biomedical picture semantic segmentation. U-Net is a 

supervised learning approach that incorporates encoder and 

decoder layers. Over time, several versions of U-Nets have 

appeared, incorporating transfer learning techniques, skip-

connection configurations, attention processes, and visual 

transformer-based U-Net structures [10],[11],[12],[13],[14]. 

 

Fig.1. Proposed frame work 

This research makes two important contributions: a 

classification phase that employs multiple deep models, and 

a segmentation phase that comes before the classification 

shown in Fig 1.  Initially, various models such as VGG16, 

MobileNet, and ResNet152V2, ResNet50V2 and hybdird 

models are utilized to categorize the images in our Mini-

DDSM dataset as either benign or malignant. Furthermore, 

the MultiResUNet++ modified U-Net model is employed in 

the segmentation phase to extract the Region of Interest 

(ROI). This step is crucial in optimizing the images for input 

into the classification phase and the system's performance. 

Following the segmentation step, our deep-learning models 

identify the segmented images as benign or malignant. Data 

augmentation is used on dataset to address the limited 

availability of datasets. In addition, transfer learning is 

employed to reduce both the time required and the 

computational resources consumed. 

2. Related Work 

Machine learning surpasses the traditional method of 

manually creating techniques. It aids in the identification of 

the most crucial elements. Deep learning is crucial for 

improving advancements in biomedical engineering, 

namely in the area of Deep Convolutional Neural Networks 

(CNNs), which have demonstrated exceptional efficiency 

when implemented. Shrestha et al. devised a new algorithm 

to characterize deep learning [16]. J. Arevalo et al. [17] 

explain several Convolutional Neural Networks (CNNs) 

used for mass detection. The researchers conducted their 

experiments utilizing the Breast Cancer Digital Repository 

Film Mammography (BCDR-FM) dataset. In their research, 

D. Abdelhafiz et al. [18] introduced a system that utilized a 

pre-trained Convolutional Neural Network (CNN) on the 

DDSM database. The authors, L. Tsochatzidis et al. [19], 

have developed a breast cancer classification algorithm 

from the beginning. This algorithm enhances the capability 

to differentiate between normal and abnormal breast tissue 

by utilizing deep-learning medical imaging technology.  

The U-Net model is the primary model used for image 

segmentation. O. Ronneberger et al. proposed a U-Net 

model to segment biomedical images [9]. N. Alam et al. [20] 

devised an automated method for segmenting biological 

pictures. The researchers manually extracted the region of 

interest (ROI) and then used a wavelet-based procedure to 

enhance the spatial picture's frequency. The shape of the 

calcified area was determined  

using a segmentation technique used in the study by S. 

Duraisamy et al. [21]. The improved U-Net model was used 

to perform segmentation and extract the region of interest 

(ROI), with a specific focus on the breast area and the 

removal of any undesired regions. This approach has been 

documented in several articles focusing on the classification 

of breast cancer [22–26].  

The data augmentation technique generates additional 

samples for the training data set by applying random 

transformations to the existing datasets [27]. This has 

numerous consequences, such as expediting the 

convergence process and preventing overfitting. A practical 

method for tiny datasets is applying simple transformations 
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such as translation, zooming, flipping, mirroring, rotation, 

etc. Transfer learning refers to employing a pre-trained 

model instead of starting the model training process from 

scratch. Developing the neural network initially requires 

significant data and computer resources [28]. The 

classification procedure utilized the following models: 

VGG16, ResNet152V2, MobileNetV2, ResNet50v2 [29–

31, 49]. 

3. Proposed Architecture for Segmentation and 

Classification 

Training data is necessary for the implementation of deep 

learning models. An automated mass segmentation model 

necessitates the inclusion of ground truth images that 

radiologists have annotated. The mini-DDSM dataset is 

publicly accessible and contains annotations for 

mammography images [32]. The collection contains cranio-

caudal (CC) and mediolateral oblique (MLO) images of 

both the right and left breast, saved in 16-bit .JPEG format. 

The dataset includes data on the ground truth provided by 

specialists for each image, classifying them as either benign 

or Malignant. The current study randomly selects a subset 

of 2200 mammography pictures from the Mini-DDSM 

dataset. This subset is employed to evaluate the efficacy of 

the suggested model using a limited dataset. 

3.1. MultiResUNet++  

The MultiResUNet++ architecture is a combination of the  

 

Fig. 4. Shows the rp (Respath) that is present in the structure 

of the MultiResUNet++ model. 

MultiResUNet and UNet++ designs. The approach aimed to 

overcome constraints in both systems, specifically in 

efficiently managing distant relationships and accurately 

capturing intricate features in segmentation tasks. 

The MultiResUNet++ architecture is a combination of the 

MultiResUNet and UNet++ designs. The approach aimed to 

overcome constraints in both systems, specifically in 

efficiently managing distant relationships and accurately 

capturing intricate features in segmentation tasks. The 

architecture of the MultiResUNet++ model is illustrated in 

Fig 2. MultiResUNet++ preserves the basic encoder-

decoder architecture of MultiResUNet while incorporating 

more connections, influenced by UNet++, to enhance the 

information exchange between various model layers. 

The MultiResUNet++ model incorporates the fundamental 

UNet structure, which consists of an encoder and a decoder. 

The encoder performs downsampling of the input image to 

extract higher-level features, while the decoder utilises 

upsampling layers to reconstruct fine-grained information 

and provide a segmentation mask. Typically, each level of 

an encoder is composed of convolutional layers, followed 

by pooling layers. This arrangement helps to improve the 

extraction of features. MultiResUNet++ is a modified 

version of UNet++ that includes additional skip connections 

between the encoder and decoder layers. These connections 

allow for the seamless combination of low and high-level 

information, which is beneficial for segmentation tasks.  

Additionally, it has a hierarchical structure in which each 

level of the encoder is connected to the decoder through 

layered skip connections. This enables the thorough 

incorporation of characteristics at various scales and 

facilitates accurately representing local and global contexts. 

The network's interconnection allows it to overcome 

difficulties associated with long-range interdependence and 

the acquisition of fine-grained details in segmentation tasks. 

 

Fig. 2. Structure of MultiResUNet++ model 

MultiRes Block 

The MultiResUNet++ design relies on the MultiRes blocks, 

depicted in Fig 2. and referred to as multiRes block (mrb), 

as the fundamental components for its multi-resolution 

analysis capabilities. The blocks shown in Fig 3. deviate 

from conventional convolutional layers by incorporating 

concurrent convolutional processes with different kernel 

sizes. Furthermore, the progressive increase in the quantity 

of filters in each subsequent layer allows the network to 

extract spatial characteristics from various scales with 

greater efficiency. This novel method not only improves the 

precision of segmenting but also reduces the limitations of 

memory, hence optimizing the overall performance. 

Respath  

Moreover, the architecture specifically tackles the semantic 

disparity that exists between the characteristics of the 

encoder and decoder in the UNet framework. Fig 2. 

incorporates Respathways, which are denoted as rp. The 

ResPath, as shown in Fig 4, incorporates convolutional 
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layers selectively along shortcut connections to enhance the 

alignment of features between the encoder and decoder 

stages. The Respathways, together with residual 

connections, are crucial for maintaining spatial information 

during the segmentation process, hence improving the 

overall resilience and effectiveness of the network. 

The U-Net and MultiResUNet architectures establish a 

direct connection between the encoder and decoder, 

allowing the decoder to receive feature maps directly from 

the encoder. MultiResUNet++ incorporates a dense 

convolution block, with the number of blocks varying 

depending on the pyramid level. The purpose of this block 

is to synchronize the semantic level of encoder feature maps 

with those in the decoder. The hypothesis is that having a 

tighter semantic likeness between these feature maps makes 

optimization easier for the optimizer. MultiResUNet++ 

differs from UNet and UNet++ in four crucial aspects: 1) 

The model effectively incorporates MultiRes blocks to 

extract spatial features from multiple scales. 2) It introduces 

Respaths to preserve spatial information throughout the 

segmentation process. 3) MultiRes blocks are used on skip 

pathways to connect the encoder and decoder feature maps 

and bridge the semantic gap. 4) Dense skip connections are 

employed on skip pathways to improve the flow of 

gradients. 

 

Fig. 3. Shows the mrb that is present in the structure of the MultiResUNet++   model. 

3.2. Hybrid Model 

In this study, we have employed four novel deep hybrid 

networks [47], namely H1, H2, H3, and H4, to enhance the 

precision of breast cancer diagnosis. Fig 5. displays the 

diagram of the proposed work. This study aims to enhance 

performance accuracy while improving computing efficiency. 

P1 and P2 denote the chances of class membership forecasted 

by the hybrid network's initial classifier. P1 and P2 represent 

the probabilities of normal and malignant, correspondingly. 

Class 1 represents benign, while class 2 represents malignant. 

The weight factor is crucial for ensuring optimal performance 

and improving computational efficiency. The weight factor 

(𝑤) is mathematically represented as follows:  

𝑤 = ∑ 𝑃𝑘 𝑙𝑜𝑔2(𝑢𝑃𝑘)
𝑢

𝑘=1
   (1) 

for 𝑢 number of classes. 

Given that cancer detection is a problem with two possible 

outcomes, 𝑢 is defined as two. The proposed mixed framework 

amalgamates the benefits of both classifier 1 and classifier 

2 networks. The threshold value is essential for attaining an 

ideal balance between capability and computational 

effectiveness. When P1=0.5, the probability of the item being 

assigned to class 1 is 0.5, while the probability of it being 

assigned to class 2 is likewise 0.5. Here, 𝑃1 and 𝑃2 represent 

the probability of class 1 and class 2, respectively. 

Consequently, it leads to misdiagnosis. When 𝑃1 = 0.9, the 

probability of an item being classed as class 1 is 0.9, while the 

probability of it being classified as class 2 is 0.1. Similarly, if 

𝑃1 = 0.1, the probability of an item belonging to class 1 is 0.1, 

whereas the probability of an object belonging to class 2 is 0.9.  

In both scenarios, the likelihood of misclassification (classifier 

1) is comparatively lower, resulting in improved classification. 

In this context, we calculate the value of 𝑤 based on 𝑃1 and 

𝑃2, as described in Equation (1). The relationship between 𝑃1, 

𝑃2 and 𝑤 is seen in Table 1. The weight factor (𝑤) remains 

constant when the values of 𝑃1 and 𝑃2 are interchanged. 

Therefore, at 𝑤 = 0, the chance of misclassification reaches its 

highest point, with 𝑃1 = 𝑃2 = 0.5. With an increased value of 

w, the likelihood of misdiagnosis in classifier 1 is 

comparatively lower. Therefore, the second network only 

engages when the first classifier performs relatively subpar. 

Based on the observation of Fig. 6, it is evident that the second 

network is only involved when the weight factor (w) is less 

than or equal to the threshold value (𝛽). If the weight factor 𝑤 

is greater than 𝛽, subsequently, the activation of the second 

network is unnecessary. The network2 operates exclusively 

when the network1 exhibits comparatively subpar 

performance. This maximizes the utilization of the second 

network by eliminating the requirement to activate both 

networks for every test image. Applying this notion enhances 

the suggested framework's computational efficiency and 

overall performance. Therefore, the threshold value (𝛽) is 

essential in attaining an ideal balance between performance 

and computational effectiveness. To fulfill this objective, the 

value of 𝛽 is determined by experimental means. To create 

effective hybrid schemes, two classifiers, namely classifier 1 

and classifier 2, are selected from a pool of five base 

classifiers: VGG16, VGG19, ResNet50V2, MobileNetV2, and 
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ResNet152V2. The hybrid schemes that have been suggested 

are displayed in Table 2. 

Table 1. Variation of P1 and P2 with w 

P1 P2 w 

0.5 0.5 0 

0.4070 0.5930 0.025 

0.3690 0.6310 0.05 

0.3400 0.66 0.075 

0.3160 0.6840 0.1 

0.2145 0.7855 0.25 

0.18 0.82 0.3 

0.11 0.89 0.5 

0.00001 0.9999 1 

 

Table 2. Hybrid Frameworks 

Hybrid  

Classifier 1 Classifier 2 

 H1 ResNet152V2 VGG16 

 H2 ResNet50V2 VGG19 

 H3 MobileNet ResNet50V2 

 H4 VGG16 ResNet50V2 

 

4. Results and Evaluation 

4.1. Dataset and Preprocessing 

The DDSM [41] collection is free. It is distributed by the 

University of South Florida Computer Science and 

Engineering Department, Sandia National Laboratories, and 

MGH [42]. The Mini-DDSM dataset is a sample of the 

larger DDSM dataset. It may have been chosen to be easy to 

reach and simple. A popular mammography source is the 

DDSM. It contains metadata and annotations for several 

mammography pictures. Researchers can test a small 

portion of this useful dataset with the Mini-DDSM subset. 

This study selected 2200 Mini-DDSM tumor-bearing 

mammograms. After reviewing them, 1810 were randomly 

selected for training, 200 for validation, and 190 for testing. 

Images were rotated and turned to increase the training 

collection. Data utilized to train the models become more 

stable and diverse. 

A poor signal-to-noise ratio in mammograms is unfixable. 

For accurate identification, preprocessing is crucial. 

Increasing contrast with Contrast Limited Adaptive 

Histogram Equalization (CLAHE) helped picture lines 

stand out. When working with limited datasets like 

mammograms, adding data made deep learning models 

more valuable and dependable. Rotating and flipping were 

used for augmentation. The model learns stable traits and 

trends by changing certain sections of the source 

photographs. It performs better and reduces overfitting. 

Growing: Many forms can be transformed into pictures. 

With the revised shape, each is 256 tall and wide. Pictures 

altered shape (256, 256, 1). A 1 form shows one channel, or 

a grayscale picture. Before using deep learning to 

distinguish images, normalization is necessary. The 

segmentation model must perform properly and stay stable 

to ensure that the data fed in has the same values. Projects 

that segment photographs with varied lighting, contrast, and 

intensity can provide extremely different pixel values. This 

may hinder learning and reduce segmentation model 

effectiveness.  

4.2. Performance Metrics 

The performance of the recommended model was assessed 

using various metrics, including overall accuracy, 

specificity, sensitivity, precision, f1-score, confusion 

matrix.  The f1-score value provides a straightforward way 

to calculate the harmonic mean of recall and precision 

values. The consideration of extreme instances is the 

rationale behind the preference for a harmonic mean over a 

simple mean. In a scenario where a simple average 
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computation is used, a model that has a recall value of 1 and 

a precision value of 0 could potentially have a f1-score of 

0.5, which can be misleading [43–46]. The mathematical 

representations are defined in equations (2) to (6) as follows:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
   (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
   (3) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (5) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
  (6) 

4.3. Experimental Results and Discussion 

The discussion includes the segmentation and 

classification findings, such as the segmentation model's 

qualitative results, the accuracy plots for training and 

validation, the plots for IoU and loss, and the plots for 

ROC and precision and recall curves.   

 

4.3.1. Segmentation Results 

Segmentation using MultiResUNet++ model 

experimental results attained an accuracy of 99.78%, an 

Intersection over Union (IoU) of 97.68%, and a loss value 

of 0.00113. The plots of training and validation accuracy, 

training and validation IoU, and loss plots are given in Fig 

6., and also the qualitative results are shown in Fig 7. 

 

Fig. 7. Qualitative results of MultiResUNet++ showing segmentation of mammogram images 

 

Fig. 5. displays a diagram illustrating the hybrid model that has been proposed. 

 

Fig. 6. displays the Loss, Accuracy, and IoU graphs for both the training and validation dataset 
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4.3.2. Classification Results 

After the segmentation, the resulting images were sent as 

input to the different classifier models. The performance 

metrics of these transfer learning models without and with 

segmentation were compared, as shown in Table 3 and 

Table 4 respectively. which means the classification output 

was evaluated both without segmentation and with 

segmentation. The results showed that the accuracy and 

ROC measurements improved when the classification was 

performed after segmentation. The proposed approach is 

subjected to a quantitative performance study, along with 

other comparative methods. This analysis is conducted 

using  metrics such as, precision, recall, F1 score, 

specificity, accuracy, and ROC. The comparison table 

clearly illustrates the superiority of the proposed method, 

which exhibits greater accuracy and precision than its 

competitors. The graphical depiction of the results in the 

mini-DDSM database and the confusion matrix for the H4 

model are depicted in Fig 8. and 9, respectively. Based on 

the provided table, it can be concluded that the suggested 

hybrid technique performs better than previous techniques 

in terms of all performance metrics. Specifically, it achieves 

a precision of 98.94%, accuracy of 98.42%, recall of 

97.89%, specificity of 98.95%, F1 score of 98.41%, and 

ROC of 99.54%. The threshold value is crucial in both 

hybridization and achieving optimal outcomes. This value 

is selected through empirical experimentation. Furthermore, 

it is necessary to optimize the threshold value to achieve 

exceptional detection accuracy. Table 5 illustrates the 

performance comparison when using various threshold 

values to detect begin or malignant. Based on the data 

presented in this table, it can be concluded that the proposed 

hybrid framework performs better with a threshold value of 

0.3. Once the threshold value reaches a certain point, 

performance begins to deteriorate and then remains 

constant. The proposed hybrid models exploit the second 

classifier in cases where the performance of the first 

classifier is below standard, leading to improved success by 

using the strengths of both basic classifiers: classifiers 1 and 

2. However, there is a possibility of false detection 

occurring when the second classifier, used for testing, also 

produces erroneous detection. Although the likelihood of 

this problem occurring is low, it can happen occasionally (in 

rare cases). Therefore, there is need for additional 

improvement. The section closes by asserting that the 

suggested hybrid strategy achieves outstanding 

performance in categorizing benign-malignant breast 

pictures on mammograms, while maintaining similar 

computational costs. 

 

Fig. 9. Displays the ROC curve of H4 model 

Table 3. Comparison of different transfer learning models classification performance of mammogram images as 

benign and malignant without segmentation 

Classification before 

Segmentation 

Precision Recall Accuracy Specificity ROC F1 Score 

MobileNet 97.12 91.00 93.38 96.45 98.21 93.56 

VGG16 98.23 92.12 94.34 95.85 98.36 95.08 

ResNet152V2 98.66 93.81 94. 86 97.78 99.67 95.65 

ResNet50V2 98.67 95.56 95.37 98.96 99.81 96.01 

H1 model 97.48 96.67 96.45 98.67 98.46 97.76 

H2 model 98.33 97.53 97.39 97.89 97.56 97.38 
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5. Conclusion 

This paper presents a novel hybrid deep learning framework 

that utilizes various deep learning models. The proposed 

framework employs the MultiResUNet++ architecture for 

segmentation, while a hybrid model is formed by combining 

transfer learning models for classification. The hybrid 

model H4, which combines VGG16 for classifier1 and 

ResNet50V2 for classifier2, achieves superior  

performance. A comparison analysis is conducted to 

compare the performance of classification models with and 

without segmentation. The experimental results show that 

classification using H4 model without segmentation 

achieved an accuracy of 98.19%, an ROC of 99.16%, a 

recall of 97.82%, a precision of  98.13%, and an F1 score of 

98.32%. On the other hand, classification with segmentation 

achieved an accuracy of 98.42%, an ROC of 99.54%, a 

recall of 97.89%, a precision of 98.94%, and an F1 score of 

98.41%. Segmentation enhances the performance of 

classification, especially when dealing with a tiny dataset. 

 

Fig. 8. Confusion matrix for H4 model 

H3 model 98.65 94.89 97.88 98.79 98.79 97.41 

H4 model 98.13 97.82 98.19 98.56 99.16 98.32 

Table 4. Comparison of different transfer learning models classification performance of mammogram images as 

benign and malignant after segmentation 

Classification 

after 

Segmentation 

     Precision 

        (%) 

Recall  

   (%) 

Accuracy 

     (%) 

Specificity 

   (%) 

   ROC 

     (%) 

F1 Score 

   (%) 

H1 model     95.88 97.89 96.84 95.79  99.10 96.88 

H2 model        97.87 96.84 97.37 97.89  98.89 97.35 

H3 model     98.91 95.79 97.37 97.89   99.42 97.33 

H4 model      98.94 97.89 98.42 98.95  99.54 98.41 

Table 5. Performance comparison using various threshold levels for malignancy detection after segmentation 

    Precision Recall Accuracy Specificity ROC F1 Score 

Model    (%)   (%)    (%)    (%)  (%)     (%) 

0.025 

H1 

model 

95.74 94.74 95.26 95.79 99.18 95.24 

0.05 95.79 95.79 95.79 95.79 99.87 95.79 

0.075 95.79 95.79 95.79 95.79 98.86 95.79 

0.1 95.79 95.79 95.79 95.79 98.86 95.79 

0.25 95.79 95.79 95.79 95.79 98.86 95.79 
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