

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1921

An Efficient Reconfigurable Client-Side Prior Cryptography Algorithm

for Data Security in Smart Cloud Computing System

Nithyashree B*1, Dayananda P2

Submitted:14/03/2024 Revised: 29/04/2024 Accepted: 06/05/2024

Abstract: In recent years, a huge number of different formats of data have been communicated between source and destination. During

this process, authentication plays a major role when different formats of data communication are used between the source and destination.

It has been performed in association with cryptology and cryptanalysis, and a few more techniques have been performed during

cryptography, such as blending words with images and microdots. In parallel, it operated on the masking and unmasking processes during

storage and transit. Due to the smart device communication process, a huge amount of data has been stored in the cloud. During this

process, more data modification has occurred during sign-up for desired services, which can cause unwanted data, and instructions have

been executed on the sensitive data. To overcome the above-mentioned details, a proposed reconfigurable client-side prior cryptography

algorithm (RCSPCA) has been implemented for data uploading and decrypting after downloading on the client-side using a key generated

during encryption. The proposed algorithm shows better security on large files and varied format information with respect to the time

consumption of the encryption algorithm of 0.56% as compared to the conventional methods by considering 4000 file sizes and with

respect to the time consumption of the decryption algorithm of 0.26% as compared to the conventional methods by considering 4000 file

sizes. The key value is also worked out by a different algorithm in this programme. As a result, our algorithm makes big files more secure

and runs faster. So, we can add an extra layer of security that will stop unwanted strikes on private information and stop people from not

following the same rules.

Keywords: encryption, cryptography, cloud computing, standardization, cloud storage

1. Introduction

People have a sizeable quantity of confidential information

that has to be effectively managed. This information can be

personal or corporate, which requires protection against

malicious sites and ensures availability to only the relevant

parties. This is achieved through cryptography. Throughout

history, data has been protected and passed on only to

relevant people through various practices. For example, the

Greek aristocrats passed messages through tattoos on a

slave's bald head, which are hidden by the hair that grows

back. Earlier than the Greeks, the Egyptians in 1900 BC

were the first to secure their important messages from

outsiders through the use of cryptic messages, which can be

read only by the relevant persons [1]. The Caesar cypher

method [2] devised by the Roman military around 100 BC

to send encrypted information to its army general is another

such example. The first encryption method using a key came

into existence in the mid-1400s. Various techniques

resembling this original technique by Vigenère have been

seen in the latter half of the 13th century, using multiple key

characters leading to a modulo of 26 encrypted texts [3]. In

spite of its cumbersome procedure, this method was widely

popular for several centuries to protect data from irrelevant

people. Though scientific methods of cryptography have

achieved data security, such methods were developed only

at the beginning of the 1800s. Further, with the advent of

electricity, the utility of electrical and electromechanical

devices for various purposes became the norm. At such a

time, Hebern came up with a device known as the rotor

machine, which inserted a secret key by rotating its disc.

When this hidden key is operated on or activated, it

generates encrypted text [4]. During World War II,

cryptography advanced to a vast extent. After the war,

encryption and decryption of data have been widely used by

corporate businesses to protect their valuable information

from competing businesses. The applications of

cryptography have enormously expanded in the information

age due to the increasing digital exchange of data and the

necessity to protect digitally transmitted and received data.

This age of emails and cloud storage of confidential data has

seen more than its necessary share of data loss, piracy, and

infringement. The various corporate and public sectors of

the world are in need of a viable solution to effective data

protection. Cryptography is the only viable technology that

can effectively protect data on platforms that require digital

transactions of data or on platforms that make use of shared

data usage, such as in cloud computing. A popular example

of cloud computing is Google Drive, which provides a

platform to share and update common database data among

__

1 Department of Computer Science and Engineering, JSS Academy Of

Technical Education, Bangalore -560060, Visvesvaraya Technological

University, Belagavi, Karnataka – 590018, India

ORCID ID: 0009-0008-4943-3137
2 Department of Information Technology, Manipal Institute of Technology

Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka

576104, India

ORCID ID: 0000-0001-8445-3469

* Corresponding Author Email: nithi3231@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1922

a number of users [5] through the use of the internet. Due to

the innumerable advantages of such cloud computing

services as Google Drive, they are widely used by

developers, business entrepreneurs, academies, etc. Some of

its many advantages include flexibility, data access

irrespective of time and location, the availability of updated

synchronised data among multiple users, etc. Cryptography

involves encrypting this vast shared data before storage to

ensure its protection [6].

One of the main services provided by cloud facilities such

as Google Drive is the provision of shared memory, which

not only provides flexibility and easy access to multiple

users but also reduces the memory consumption of the users

on their personal computer hard disk [7-10]. This third-party

storage of data is always open to risk from various outside

sources; hence, companies such as Google provide

extensive security for user data through various layers of

encryption in all their various products. The general security

protocol followed by Google during data storage includes

dividing the data into different parts, each of which is

encrypted with a different encryption key, and each of these

different parts carries its own ID necessary for

identification. This aids in both privacy and the protection

of data. Data is encrypted prior to transmission from the

user; this uses the transport layer security encryption TLS.

Similarly, data is encrypted after reception before storage

through the advanced encryption standard AES, which uses

a 256-bit encryption format [11-15]. Client-side

cryptography is a process of encrypting data on the client

side, typically within a web browser or a mobile app, before

transmitting it to a server as shown in figure.1.

Fig.1 fundamental block diagram of client-side

cryptography process

This approach enhances data security and privacy, as

sensitive information is encrypted locally on the user's

device before it leaves their control [16]. Here's a general

overview of the client-side cryptography process:

 Key Generation:

The process begins with generating encryption keys.

Typically, two types of keys are used: a public key and a

private key for asymmetric encryption, or a shared secret

key for symmetric encryption.

 Encryption:

Depending on the chosen encryption method (symmetric or

asymmetric), the client-side code encrypts the data using the

generated keys. Here are the two primary methods:

a. Symmetric Encryption:

In symmetric encryption, the same key is used for both

encryption and decryption. The client generates a shared

secret key, encrypts the data with it, and keeps the key

secret.

b. Asymmetric Encryption:

In asymmetric encryption, there are two keys: a public key

(used for encryption) and a private key (used for

decryption). The client uses the recipient's public key to

encrypt the data, ensuring only the recipient, who has the

corresponding private key, can decrypt it.

 Data Transmission:

The encrypted data is then transmitted over the network to

the server. Since the data is encrypted, even if intercepted

during transit, it is virtually impossible to decipher without

the corresponding decryption key.

 Data Storage:

On the server, the encrypted data is stored securely. The

server does not have access to the plaintext data, as only the

client holds the decryption key.

 Data Retrieval:

When the client needs to access the data, it requests the

encrypted data from the server.

 Decryption:

The client-side code decrypts the data using the appropriate

decryption key (private key for asymmetric encryption or

shared secret key for symmetric encryption). Once

decrypted, the data can be used by the client. It's important

to note that client-side cryptography places a significant

responsibility on the client-side application to securely

manage keys and perform encryption and decryption

operations. If the client's device is compromised, the

security of the encrypted data can be at risk [17-20]. Popular

libraries and tools for implementing client-side

cryptography in web applications include WebCrypto API,

OpenSSL, and various JavaScript libraries for encryption,

such as CryptoJS and Stanford Javascript Crypto Library

(SJCL). Additionally, mobile app development platforms

provide APIs and libraries for implementing client-side

cryptography in mobile applications. Client-side

cryptography is essential for enhancing the security and

privacy of user data, especially in scenarios where trust in

the server or network cannot be assumed [21]. Similar to

Google Drive, Amazon also provides cloud services via its

Amazon Storage service, which provides seamless large-

scale data sharing among multiple users. The user data is

stored through Amazon S3 versioning to provide date

protection, and the data is stacked and stored in the Amazon

S3 bucket [22]. Similar to Google, Amazon also provides

encryption at two levels: one is before transmission from the

client side, called client-side encryption, and the other is to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1923

ensure the security of data in storage, called server-side

encryption [23]. Various intrusions, cyber-attacks, data

losses, data leaks, etc. have been seen in cloud computing in

recent times [24-28]. In order to prevent these attacks, a two-

step encryption process is adopted, where the data is

encrypted before transmission to the cloud services and after

transmission during storage. The proposed method gives us

a novel idea of encrypting and decrypting the data before

transmission at the user end through the encryption key at

the user end. This is done twice to ensure error-free and safe

data passage from the user to the storage device or the cloud

service

2. Related Works

Various methods to ensure data protection during

transmission and reception have been devised, including

cryptographic encryption methods. Symmetric key

cryptography is a technique where both the sender and the

receiver use the same key to encrypt and decrypt the data.

This form of symmetry key cypher is a recent improvement

or advancement on Alberti's poly-alphabetic cypher [29].

Due to improved internet connectivity and flexible,

continuous, and easy access to the internet, cloud computing

has emerged as a popular choice for various businesses and

personal users. Balachandra et al. [30] provide a weighted

insight into the different drawbacks and shortcomings of

cloud storage and cloud computing. They also present the

merits of service-level agreements (SLA), the challenges of

SLA, the need for improved data protection, and the

different policies for security used at its various levels. Dr.

L. Arokhaim et al. [31] propose an algorithm to encrypt user

data in the cloud, which provides improved data security

and privacy. Niteen et al. [32] propose an algorithm that

makes use of secure authentication to provide safe storage

of user data in the cloud. This method is based on AES

encryption. Srinivas et al. [33] present a survey on the

various methods used for data security in cloud computing

and shared data environments; they also provide insights on

methods for improvement and possible techniques. BM

Shereek [34] makes use of Fermat's little theorem method to

design an open-key RSA through the use of prime numbers.

Aldossary et al. [35] present in their paper a list of attacks

and downfalls in cloud data storage, and they further present

a set of methods to tackle each of the listed attacks and

downfalls in cloud computing. Rachna et al. [36] present a

cloud computation security measure using RSA and AES

methods. The computation speed requirements for each of

these methods are tested and compared. Tania et al. propose

this method to improve client-side protection by combining

the Diffie-Helmann algorithm and the AES algorithm. [37]

They further test their method and show improved

performance.

Nesrine et al. [38] propose a method to provide security for

user data through a novel meta-data user authentication

method, where the client data is encrypted using a separate

key for each individual record. This improves client-side

security through the repetition model. Mahdul et al. [39]

make use of a one-dimensional matrix to integrate the hash

algorithm with the AES algorithm. This method proposed

by Mahdul provides security for data in storage and also

during storage or upload. Prerna et al. [40] propose a unique

localised user data encryption by the user prior to

transmission, which provides an optional auxiliary data

security mechanism to overcome data loss or theft during

transmission.

 Various cloud service providers provide security through

various methods and techniques of data encryption and

cryptography. Though the safety of the client data is ensured

through these cloud services such as Amazon, Vivo,

OwnCloud, Tresorit, etc., the privacy of the client data is a

concern as these cloud services encrypt the client data using

their own encryption technique, and the key for the

encryption is also stored on their own servers. Choo et al.

[41] throw light on the concern for the privacy of data stored

using cloud services in their paper, where they discuss the

need for improvement in the quality of data encryption

provided by the cloud service providers. Further, Zargari et

al. [42] present the challenges and concerns of cloud data

storage. As the system data and the various user’s data are

stored together on a common storage platform, this is a

concern. The system data is shared by all the different users,

while the user data in the cloud is not shared. In the event

that a malicious file finds its way into this common storage

present in the cloud, it could corrupt all the user’s data stored

in it. Another concern presented in the paper is the fact that

different cloud service providers follow their own

encryption methods, which lack a generalised structure or

procedure for encryption. For example, some service

providers provide end-to-end encryption, while others do

not. This huge storage space is a major concern in cloud

computing.

Keiko et al. [43] present another security concern in cloud

computing in their paper, where they discuss the lack of

encryption of data when the data is transferred from one

location to another within their own storage, causing data

loss, leaks, and intrusions, which further increase the risk of

IPR theft and loss of privacy. Dr. Subarna Shakya [44]

proposes the use of SSL along with a transfer ticket to

ensure safe data transfer within the cloud. The data transfer

ticket in the SSL provides improved security. Pandian et al.

[45] propose a memory-aware method that recognises the

previous related data stored in the cloud and differentiates it

from the outliers. The HHAR algorithm is extended to

perform this memory-oriented data storage.

2.1. Conflict-Based Search (CBS) algorithm:

Conflict-Based Search (CBS) is a popular and effective

algorithm used in the field of robotics and artificial

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1924

intelligence for solving multi-agent pathfinding (MAPF)

problems. MAPF involves finding collision-free paths for

multiple agents (robots, vehicles, or entities) in a shared

environment while taking into account their individual goals

and constraints. CBS is specifically designed to address

such scenarios and is widely used in various applications,

including robotics, video games, and traffic management

[46].

CBS is a two-level search algorithm that decomposes the

MAPF problem into two main phases: a high-level search

and a low-level search. In the high-level search phase, CBS

explores the space of possible paths for each agent

independently and concurrently. Each agent's path is

represented as a sequence of waypoints. The high-level

search aims to find a set of non-conflicting paths for all

agents while optimizing a cost function, such as the sum of

travel times.

Once the high-level search identifies a set of individual

agent paths, the low-level search comes into play. The low-

level search focuses on resolving conflicts between agent

paths. A conflict occurs when two or more agents attempt to

occupy the same location at the same time. The low-level

search aims to resolve these conflicts by adjusting the paths

of the involved agents without violating their goals and

constraints. CBS employs various conflict resolution

strategies to handle conflicts. Some common conflict

resolution techniques include prioritizing agents, delaying

agents, swapping their positions, or dynamically adjusting

their paths to avoid collisions. The choice of conflict

resolution strategy depends on the specific application and

requirements.

To improve the efficiency of CBS, heuristic functions are

often used to guide the high-level search. These heuristics

estimate the cost of reaching the goal from different states

and help the algorithm make informed decisions about

which agents to prioritize during conflict resolution. CBS is

known for its completeness, meaning it can find a solution

if one exists. However, it might not always guarantee

optimality, as it might find a suboptimal solution in some

cases due to the search space's complexity. The performance

of CBS depends on various factors, including the number of

agents, the size of the environment, the complexity of the

goals and constraints, and the efficiency of the low-level

search and conflict resolution strategies. CBS is a powerful

algorithm for addressing multi-agent pathfinding problems

and has been applied in real-world scenarios such as

autonomous vehicle navigation, warehouse logistics, and

multi-robot systems. Researchers continue to develop and

refine CBS and its variants to tackle more complex and

dynamic multi-agent scenarios efficiently.

2.2. User end Data Encryption for Efficient Cloud

Service

Effective user data protection at the user end before

transmission can be achieved through a symmetric key

method. This kind of a user end encryption provides data

safety from both external intrusions and from cloud service

providers. The symmetric key algorithm is implemented at

SaaS layer. This user-end data encryption also provides an

authentication procedure which ensures data safety both

during transmission and in storage. The user-end data

encryption method stores the symmetry key used for user

data encryption locally at the user side [47]. This local

storage of encryption key keeps the data safe secure from

the Cloud service provider. In order to decrypt these

encrypted data stored in the cloud it has to be downloaded

by the user and the downloaded data is further decrypted

using the locally stored symmetric key. Due to this

procedure which decrypts data only after download, the data

is protected even during transfer within the cloud from one

memory location to another. In addition to this the user-end

data encryption method utilizes SSL secure sockets layer

which forms encryption during each data transmission

which provides additional security during cloud computing

[48].

3. Functional work flow:

The proposed algorithm is designed to commensurate

consistent service to the users along with easy anytime

anywhere access and operation to them [49]. This proposed

algorithm is implemented in an Amazon S3 bucket using

eclipse IDE in a java Platform. The functional work flow of

the proposed user-end data encryption algorithm is depicted

in Figure 2.

Fig 2 proposed functional work flowchart

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1925

3.1. Encryption algorithm:

Encryption algorithms are mathematical procedures or

processes used to transform plaintext (unencrypted data)

into ciphertext (encrypted data) to protect it from

unauthorized access or interception [50]. These algorithms

are a fundamental component of modern cryptography and

are used in various applications, including data security,

communication security, and digital privacy [51]. Here are

some commonly used encryption algorithms:

3.1.1. Encryption algorithm:

 AES (Advanced Encryption Standard):

AES is one of the most widely used symmetric encryption

algorithms. It supports key lengths of 128, 192, or 256 bits

and is considered highly secure.

 DES (Data Encryption Standard):

 DES was once a widely used encryption standard, but it is

now considered obsolete due to its small key size. Triple

DES (3DES) is a more secure variant that applies DES

encryption three times with different keys.

 RC4:

 RC4 is a stream cipher that was widely used in the past but

has been deprecated due to vulnerabilities. It is no longer

recommended for secure communications.

 Blowfish and Twofish:

These are symmetric block ciphers designed for fast

encryption and are considered secure alternatives to DES.

3.1.2. Asymmetric Key Encryption Algorithms:

 RSA (Rivest-Shamir-Adleman):

RSA is a widely used asymmetric encryption algorithm for

securing data transmission and digital signatures. It relies on

the mathematical properties of large prime numbers and is

widely used in SSL/TLS for securing web traffic.

 ECC (Elliptic Curve Cryptography):

ECC is another asymmetric encryption algorithm known for

its strong security and efficiency. It is often used in

resource-constrained environments like mobile devices and

IoT.

 Diffie-Hellman Key Exchange:

While not an encryption algorithm itself, Diffie-Hellman is

a key exchange protocol that allows two parties to securely

agree on a shared secret key. It is often used in combination

with symmetric encryption for secure communication.

 Hybrid Encryption:

Many secure communication systems combine both

symmetric and asymmetric encryption for efficiency and

security. In such systems, data is encrypted with a

symmetric key, and the symmetric key itself is encrypted

using asymmetric encryption. This combines the efficiency

of symmetric encryption with the key distribution benefits

of asymmetric encryption.

 Homomorphic Encryption:

This specialized encryption technique allows computations

to be performed on encrypted data without the need to

decrypt it first. It is used in privacy-preserving applications

where sensitive data needs to be processed without exposing

the plaintext.

 Post-Quantum Cryptography Algorithms:

As quantum computing advances, traditional encryption

algorithms may become vulnerable. Post-quantum

cryptography algorithms are being developed to resist

attacks by quantum computers. Examples include lattice-

based cryptography, code-based cryptography, and hash-

based cryptography. The proposed algorithm has been

shown in below:

Encryption algorithm_1:

Input: plain text

Output: cipher text, encryption key

Step_1: read ASCI value for single character

Step_2: convert ASCI to Binary

Step_3: if (value!=8bit)

Step_4: then add preceding 0’s

Step_5: else slice into 4bit

Step_6:swap positons

Step_7:slice 4bit into 2bit

Step_8:swap positons

Step_9: then reverse 8bit value

Step_10:convert Binary to ASCI value

Step_11: add keyValue

Step_12: return encryption key

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1926

Fig 3 proposed encryption process algorithm

3.2. Key value calculation

Key value calculation can refer to several different contexts,

depending on the specific domain or application. Here are a

few common interpretations of key value calculation:

 Data Structures:

In the context of data structures like dictionaries, maps, or

associative arrays, key-value calculation typically refers to

retrieving or updating the value associated with a given key.

You provide a key (e.g., a string or an identifier), and the

data structure returns the corresponding value.

 Cryptography:

In encryption and decryption processes, key value

calculation involves using cryptographic keys to transform

plaintext into ciphertext or vice versa. The calculation could

be as simple as XORing each byte of the plaintext with a

corresponding byte of the key in a symmetric encryption

scheme or using more complex mathematical operations in

asymmetric encryption.

 Financial Calculations:

Key value calculation in finance often involves calculating

the present or future value of an investment, loan, or

financial instrument based on a set of parameters, including

interest rates, time periods, and initial values. For example,

you might calculate the future value of an investment using

the formula for compound interest.

 Machine Learning and Statistics:

In machine learning and statistical modeling, key value

calculation can refer to determining the importance or

weight of a specific feature (key) within a dataset. This can

be done through various methods such as feature selection

or feature engineering.

 Database Queries:

In database systems, key-value calculation may involve

querying a database using a key (e.g., a primary key or a

unique identifier) to retrieve the corresponding values stored

in the database tables.

 Hash Functions:

Key value calculation can also be related to hash functions,

where a key is input into a hash function, and the function

produces a hashed value (often a fixed-length string or

number) that represents the original key. This is commonly

used in data structures like hash tables for fast key-value

lookups. Key value calculation algorithm_2 as shown in

below

Algorithm_2

Input: Amazon S3 bucketName

Output: keyValue

Step_1: i=0, value=0;

Step_2: c= buscketName.length;

Step_3: while (i<=c)

Step_4: then value+=ASCI value[i]

Step_5: i++

Step_6: end while

Step_7: keyValue=value mod c

Step_8: return keyValue

3.3. Decryption algorithm

A decryption algorithm is a set of instructions or a

mathematical process used to convert encrypted data back

into its original, unencrypted form. The specific decryption

algorithm used depends on the encryption method

employed. Some common encryption algorithms and their

corresponding decryption algorithms include:

3.3.1. Symmetric Key Encryption:

 Algorithm:

In symmetric key encryption, the same key is used for both

encryption and decryption. Common symmetric encryption

algorithms include DES (Data Encryption Standard), AES

(Advanced Encryption Standard), and 3DES (Triple Data

Encryption Standard).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1927

 Decryption Process:

To decrypt data encrypted with a symmetric key, you apply

the inverse of the encryption algorithm using the same key.

This process typically involves reversing the

transformations performed during encryption.

 Asymmetric Key Encryption:

Asymmetric key encryption uses a pair of keys: a public key

for encryption and a private key for decryption. Common

asymmetric encryption algorithms include RSA and ECC

(Elliptic Curve Cryptography). To decrypt data encrypted

with an asymmetric key, you use the private key

corresponding to the public key used for encryption. The

decryption process is different from encryption and involves

mathematical operations based on the keys' mathematical

properties.

 Hash Functions:

Hash functions are one-way functions that take input data

and generate a fixed-size hash value. Hashing is not

technically decryption, but it's worth mentioning because it's

commonly used in cryptography. Hash functions are

designed to be irreversible, so there is no direct decryption

process. However, in some cases, attackers may attempt to

find a collision (two different inputs producing the same

hash) or use precomputed tables (rainbow tables) to reverse

certain hash functions.

 Stream Ciphers and Block Ciphers:

Stream ciphers and block ciphers are used in various

encryption methods. Stream ciphers encrypt data one bit or

byte at a time, while block ciphers encrypt data in fixed-size

blocks. Decryption for stream ciphers and block ciphers

involves applying the inverse of the encryption algorithm

using the appropriate key. The specific steps vary depending

on the cipher used.

 Homomorphic Encryption:

Homomorphic encryption is a specialized form of

encryption that allows computations to be performed on

encrypted data without decryption. It's used in scenarios

where data privacy is crucial. Homomorphic encryption

doesn't require traditional decryption because computations

can be performed directly on encrypted data. However,

results can be decrypted if needed, using the private key.

The choice of encryption and decryption algorithms

depends on the specific security requirements and use cases.

It's essential to use strong encryption methods and protect

the decryption keys to ensure the security of sensitive data.

The algorithm.3 shows the decryption algorithm,

Algorithm_3

Input: cipher text, encryption key

Output: plain text

Step_1: c=ASCI value of cipher text

Step_2: e= ASCI value of encryption text

Step_3: read c and e

Step_4: subtract keyValue from e

Step_5: if (value != c)

Step_6: then stop decryption

Step_7: else convert ASCI to Binary

Step_8: reverse binary value

Step_9: slice into two 4bit chunks

Step_10: again slice into two 2bit chunks

Step_11: swap positions between two 2bit chunks

Step_12: again swap positions between two 4bit chunks

Step_13: append chunks into binary value

Step_14: convert Binary into ASCI value

Step_15: return plain text

The work flow is initialized through the creation of a new

folder within the Amazon S3 bucket and the Amazon S3

bucket. This folder acts as a storage to store the encrypted

files. Once an input comprising of a text file is given, the

input text file is chosen for encryption. The proposed Java

algorithm converts this plain text into an encrypted file and

an encryption key is generated along with it. The encryption

key is stored in the local folder at the user end. After

completion of encryption the cipher text is sent to the server

through the Amazon bucket. Upon uploading the cipher

text, it is encrypted once again at the server side before

storage in the Amazon bucket folder. In order to retrieve this

text file, the encrypted file is first downloaded, then this file

is decrypted using the encryption key which is stored in

local storage. After decryption the original plain text

required, is received by the user. The plain text file is

retrieved while ensuring data security during transmission

and storage in the Amazon S3 bucket. The proposed Data

Encryption method is also designed to ensure data safety

against threats such as virus attacks etc. and prevents data

corruption and data loss [52].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1928

Fig.4 proposed decryption process algorithm

3.4. Amazon S3

The proposed encryption algorithm is implemented on the

Amazon S3 bucket due to its user-friendly framework which

provides a reliable and fast storage platform with reasonable

price along with user friendly installations such as its ability

to increment storage capacity. This storage provides

seamless connection and data storage facilities to a number

of Amazon services worldwide [53]. Amazon S3 also

provides services to application peripheral interfaces (APIs)

by providing access to create and manage their own buckets.

Amazon S3 has provisions to create a maximum of 100

buckets in a single AWS account. The user can further

increase the storage capacity through an agreement on

service limit increase which further increases the capacity to

1000 buckets within a single AWS account. There is no limit

to the number of objects that can be stored in each bucket.

Each Amazon S3 bucket is created with a username and an

AWS region through which the user wishes to operate.

Flexible operation of various buckets with in various

operating regions is an added advantage for the Amazon S3.

The bucket is identified by a unique name [54-56] this name

is also referred to as the key name of the bucket. The data is

stored inside the bucket in the form of objects and can be

accessed through the key name. The key name is the

identifying factor which is necessary to access the Amazon

storage services. The key name is also necessary to link it to

the local storage in order to decrypt the cypher text stored in

the Amazon S3 buckets.

4. Experimental Analysis

The cloud storage services provided through various

commercial service providers is a very useful option for data

storage to a number of global users. Security of data is the

most important issue during communication and

transmission of data. Apart from security the data

encryption method used by the service provider also

requires to be fast without latency to provide a seamless and

flexible data usage to multiple users through the world wide

web. The proposed to algorithm for data encryption is

implemented on a Java Platform and its performance with

respect to security and speed of encryption and data viability

is tested and compared with existing methods. The user-end

data encryption method utilizes a swapping technique which

optimizes the algorithm and avoids looping every data file

there by saving time for encryption. Proposed algorithm is

tested and compared with the existing CBS algorithm [57-

65] for various character sets with sizes of 1000, 2000 and

3000 characters each.

4.1. Encryption Algorithm Performance Comparison

Apart from the most crucial data security required, a

commercial data storage service has to be user friendly and

provide data transmission, reception and data storage

services at a good data rate failing which the users will not

opt for such a service. Faster data uploading and retrieval

requires a faster rate of data encryption and decryption. The

rate of data encryption and decryption for the user-end data

encryption method is shown in table 1. The table elaborates

the time taken by the user-end data encryption method to

encrypt a text file with varying size of characters and

generate an encryption key which is stored in the local

storage, and upload the encrypted file to the cloud.

Table.1 parameter for proposed encryption algorithm

Number of

characters

CBS Algorithm

Execution time

(Execution time)

Proposed

algorithm

(Execution time)

2000 2113ms 1875ms

3000 3218ms 2901ms

4000 4021ms 3750ms

The time taken to complete the encryption process using the

proposed algorithm and the CBS algorithm is plotted in

milliseconds Figure.5, this presents the comparison in

performance using the user-end data encryption method and

the existing CBS method. from the graph, the proposed user-

end data encryption algorithm completes the encryption

process much faster compared to the existing CBS

algorithm. This shows the more efficient encryption process

of the proposed method

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1929

Fig 5 performance analysis of encryption algorithm

between proposed and conventional methods

4.2. Decryption algorithm performance comparison

The proposed algorithm decrypts the cipher text

downloaded by the user using the encryption key stored in

local storage at the user end. Before decryption the proposed

algorithm verifies whether the downloaded file is free from

corruption by comparing it with the encryption key.

Improved performance of the user-end data encryption

algorithm is achieved through an optimum decryption.

The time taken by the user-end data encryption algorithm to

decrypt the cipher text downloaded by the user into a plain

text message is represented in milliseconds in Table 2. The

time taken by the existing CBS algorithm to complete the

decryption process is compared with the user-end data

encryption algorithm.

Table.2 parameter for proposed decryption algorithm

Number of

characters

CBS Algorithm

Execution time

(Execution time)

Proposed

algorithm

(Execution time)

2000 2356ms 2001ms

3000 3505ms 3085ms

4000 4125ms 4025ms

Fig 6 performance analysis of decryption algorithm

between proposed and conventional methods

The time taken to complete the decryption process by the

user-end data encryption algorithm and the existing CBS

algorithms are plotted in Figure 6. This provides comparison

of decryption performance of the two algorithms. From the

graph it is noticed that the decryption performance of the

user-end data encryption algorithm is much faster compared

to the existing CBS algorithm. Along with reduced time of

operation the proposed decryption algorithm ensures that

the downloaded data is not corrupted and provides efficient

data storage with security and data retrieval to the user.

5. Proposed Client-side Cryptography Based Security

upload and download latency

Proposed Client-side cryptography is a security approach

where encryption and decryption of data take place on the

client-side (user's device) rather than on the server-side.

This adds an extra layer of security to data in transit and at

rest, as only the user with the decryption keys can access the

data. However, client-side cryptography can introduce

latency to the upload and download processes due to the

computational overhead of encryption and decryption.

5.1. Encryption Overhead:

When a user uploads data to a server, the data must be

encrypted on the client-side before transmission. Encryption

can be computationally intensive, especially for large files,

which can lead to increased upload times. Similarly, when

downloading encrypted data from the server, the client-side

must decrypt it, which adds processing time to the download

process.

5.2. Key Management:

Managing encryption keys securely on the client-side is

essential. Key generation, storage, and retrieval can

introduce some latency. The client must also retrieve the

decryption key before it can decrypt downloaded data.

While not directly related to client-side cryptography,

network latency (e.g., due to internet speed, server response

times) can compound with encryption overhead, potentially

leading to longer upload and download times. Some client-

side cryptographic libraries and hardware acceleration can

help mitigate latency by performing encryption and

decryption tasks in parallel with other processes. This can

help maintain a reasonable level of performance even with

encryption overhead. Modern hardware, such as hardware

security modules (HSMs) or specialized cryptographic co-

processors, can significantly reduce the latency introduced

by encryption and decryption processes. The choice of

encryption algorithms can impact latency. Some algorithms

are faster but may be less secure, while others are more

secure but computationally intensive. The selection of

algorithms should consider the trade-off between security

and performance. Caching decrypted data on the client-side

can help reduce latency for subsequent access to the same

data, as there is no need to decrypt it again. Figure.7 shows

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1930

the performance analysis between proposed and

conventional method with respect upload and download

latency

Fig 7 Performance analysis of upload and download

latency between proposed and conventional methods

Proposed reconfigurable client-side prior cryptography

algorithm for Data Security in smart Cloud computing

system is a security approach that focuses on securing data

on the client-side (user's device) rather than relying solely

on server-side security measures. This approach involves

encrypting and decrypting data on the client device before

transmitting it to a server or after receiving it from a server.

The core of client-side cryptography is data encryption.

When data is generated or processed on the client device, it

is encrypted using strong cryptographic algorithms and

keys. This ensures that even if the data is intercepted in

transit or stored on a server, it remains confidential. Client-

side cryptography often employs end-to-end encryption,

where data is encrypted on the client device and only

decrypted on the recipient's device. This means that even

service providers or server operators cannot access the

plaintext data, enhancing privacy. In client-side

cryptography, users typically have control over the

encryption keys. This ensures that the user, and not the

service provider, holds the keys required to decrypt the data.

As a result, the user has greater control over their data.

Proper key management is crucial in client-side

cryptography. Users need a secure way to generate, store,

and back up encryption keys. Secure key management

practices, including hardware-based solutions, are often

employed to protect keys from unauthorized access. Strong

user authentication is essential to ensure that only

authorized users have access to the encrypted data. This can

involve password-based authentication, multi-factor

authentication (MFA), or other secure login mechanisms.

Cryptography not only provides confidentiality but also

ensures data integrity. Cryptographic hashes and signatures

can be used to verify the integrity of data both in transit and

at rest. Client-side cryptography allows users to access and

work with their data even when they are offline. This is

important for applications that need to function without a

continuous internet connection.

Client-side cryptography is a critical component of secure

communication and data protection in various applications,

including web browsers, messaging apps, and cloud storage

services. When communicating with a server, client-side

cryptography can secure the transmission of data, making it

resistant to eavesdropping and man-in-the-middle attacks.

Implementations of client-side cryptography often need to

work across various platforms and devices, such as web

browsers, mobile apps, and desktop applications. While

security is paramount, usability is also a critical factor in

client-side cryptography. Developers must strike a balance

between strong security measures and a user-friendly

experience. In the event of key loss or device failure, client-

side encryption systems may provide mechanisms for data

recovery, often through secure key backup and retrieval

processes. Client-side cryptography is commonly used in

secure messaging apps, file storage services, and

applications that handle sensitive user data proposed

analysis between proposed and conventional methods as

shown in figure.8. It provides users with a higher degree of

control and privacy over their data, but it also requires

careful implementation and ongoing management of

encryption keys to ensure security

Fig 8 Performance analysis of security between proposed

and conventional methods

6. Conclusion

In this paper, a proposed reconfigurable client-side prior

cryptographic algorithm (RCSPCA) is effectively operated

on different formats of data communication between source

and destination with highly authenticated processes, and it

is very difficult to identify the unauthorised person. Hence,

the proposed cryptographic process operates on a 4000-file

size. As per the process analysis, the proposed algorithm has

reduced the data upload and download time by 0.65% as

compared to the conventional methods. The proposed

algorithm shows better security of 0.34% on larger files with

varied format information as compared to the conventional

methods. The proposed algorithm provides better security

for large files and information in different formats. This is

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1931

shown by the fact that the encryption algorithm takes 0.56%

less time than traditional methods when 4000 file sizes are

taken into account, and the decryption algorithm takes

0.26% less time than traditional methods when 4000 file

sizes are taken into account. In this programme, the key

number is also determined by a different algorithm. Because

of this, our algorithm makes big files safer and easier to run.

So, we can add an extra layer of security that will stop

unwanted attacks on private information and stop people

from not following the same rules.

References

[1] N. Kabir and S. Kamal, "Secure Mobile Sensor Data

Transfer using Asymmetric Cryptography

Algorithms," 2020 International Conference on Cyber

Warfare and Security (ICCWS), Islamabad, Pakistan,

2020, pp. 1-6, doi:

10.1109/ICCWS48432.2020.9292392.

[2] K. Gai, M. Qiu and H. Zhao, "Security-Aware

Efficient Mass Distributed Storage Approach for

Cloud Systems in Big Data," 2016 IEEE 2nd

International Conference on Big Data Security on

Cloud (BigDataSecurity), IEEE International

Conference on High Performance and Smart

Computing (HPSC), and IEEE International

Conference on Intelligent Data and Security (IDS),

New York, NY, USA, 2016, pp. 140-145, doi:

10.1109/BigDataSecurity-HPSC-IDS.2016.68.

[3] K. T. Priya and V. Karthick, "A Non Redundant Cost

Effective Platform and Data Security in Cloud

Computing using Improved Standalone Framework

over Elliptic Curve Cryptography Algorithm," 2022

International Conference on Sustainable Computing

and Data Communication Systems (ICSCDS), Erode,

India, 2022, pp. 1249-1253, doi:

10.1109/ICSCDS53736.2022.9761002.

[4] H. A. Farouk and M. Saeb, "An improved FPGA

implementation of the modified hybrid hiding

encryption algorithm (MHHEA) for data

communication security," Design, Automation and

Test in Europe, Munich, Germany, 2005, pp. 76-81

Vol. 3, doi: 10.1109/DATE.2005.58.

[5] A. Kumar, "Data Security and Privacy using DNA

Cryptography and AES Method in Cloud Computing,"

2021 Fifth International Conference on I-SMAC (IoT

in Social, Mobile, Analytics and Cloud) (I-SMAC),

Palladam, India, 2021, pp. 1529-1535, doi: 10.1109/I-

SMAC52330.2021.9640708.

[6] "IEE Colloquium on 'Security and Cryptography

Applications to Radio Systems' (Digest

No.1994/141)," IEE Colloquium on Security and

Cryptography Applications to Radio Systems,

London, UK, 1994, pp. 0_1-.

[7] S. Al-Ghamdi and H. Al-Sharari, "Improve the

security for voice cryptography in the RSA algorithm,"

2022 International Conference on Business Analytics

for Technology and Security (ICBATS), Dubai,

United Arab Emirates, 2022, pp. 1-4, doi:

10.1109/ICBATS54253.2022.9759016.

[8] M. Shaar, M. Saeb, M. Elmessiery and U. Badawi, "A

hybrid hiding encryption algorithm (HHEA) for data

communication security," 2003 46th Midwest

Symposium on Circuits and Systems, Cairo, Egypt,

2003, pp. 476-478 Vol. 1, doi:

10.1109/MWSCAS.2003.1562321.

[9] Y. Ma, Y. Zhao, Z. Zhang and J. Wang, "Distributed

Data Multi-Level Storage Encryption Method Based

on Full-Flow Big Data Analysis," 2023 IEEE 2nd

International Conference on Electrical Engineering,

Big Data and Algorithms (EEBDA), Changchun,

China, 2023, pp. 664-668, doi:

10.1109/EEBDA56825.2023.10090798.

[10] A. Anand, A. Raj, R. Kohli and V. Bibhu, "Proposed

symmetric key cryptography algorithm for data

security," 2016 International Conference on

Innovation and Challenges in Cyber Security

(ICICCS-INBUSH), Greater Noida, India, 2016, pp.

159-162, doi: 10.1109/ICICCS.2016.7542294.

[11] M. -Q. Hong, P. -Y. Wang and W. -B. Zhao,

"Homomorphic Encryption Scheme Based on Elliptic

Curve Cryptography for Privacy Protection of Cloud

Computing," 2016 IEEE 2nd International Conference

on Big Data Security on Cloud (BigDataSecurity),

IEEE International Conference on High Performance

and Smart Computing (HPSC), and IEEE International

Conference on Intelligent Data and Security (IDS),

New York, NY, USA, 2016, pp. 152-157, doi:

10.1109/BigDataSecurity-HPSC-IDS.2016.51.

[12] M. J. Dubai, T. R. Mahesh and P. A. Ghosh, "Design

of new security algorithm: Using hybrid Cryptography

architecture," 2011 3rd International Conference on

Electronics Computer Technology, Kanyakumari,

India, 2011, pp. 99-101, doi:

10.1109/ICECTECH.2011.5941965.

[13] R. S. Shukla, "IoT Based Designing of Secure Data

Storage System in Distributed Cloud System with Big

Data using Cryptography Algorithm," 2022 11th

International Conference on System Modeling &

Advancement in Research Trends (SMART),

Moradabad, India, 2022, pp. 264-270, doi:

10.1109/SMART55829.2022.10047177.

[14] W. Xu, H. Liang and Y. Ge, "Research on Data

Security Protection System Based on SM Algorithm,"

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1932

2021 International Conference on Information

Science, Parallel and Distributed Systems (ISPDS),

Hangzhou, China, 2021, pp. 79-82, doi:

10.1109/ISPDS54097.2021.00022.

[15] Y. Zhang, "Research on the Application of Computer

Big Data Technology in Information Security

Management," 2023 IEEE 2nd International

Conference on Electrical Engineering, Big Data and

Algorithms (EEBDA), Changchun, China, 2023, pp.

124-128, doi: 10.1109/EEBDA56825.2023.10090574.

[16] R. S. Kumar, E. Pradeep, K. Naveen and R.

Gunasekaran, "Enhanced Cost Effective Symmetric

Key Algorithm for Small Amount of Data," 2010

International Conference on Signal Acquisition and

Processing, Bangalore, India, 2010, pp. 354-357, doi:

10.1109/ICSAP.2010.13.

[17] R. R. Prasad and A. Kumari, "Cloud Data Security

using Balanced Genetic Algorithm," 2023 9th

International Conference on Electrical Energy

Systems (ICEES), Chennai, India, 2023, pp. 132-137,

doi: 10.1109/ICEES57979.2023.10110211.

[18] Hashem Mohammed Alaidaros, M. F. A. Rasid,

Mohamed Othman and Raja Syamsul Azmir Raja

Abdullah, "Enhancing security performance with

parallel crypto operations in SSL bulk data transfer

phase," 2007 IEEE International Conference on

Telecommunications and Malaysia International

Conference on Communications, Penang, Malaysia,

2007, pp. 129-133, doi:

10.1109/ICTMICC.2007.4448620.

[19] A. Abduklimu, P. Yan, G. Wang, H. Liu and J. Xie, "A

5G-Based Big Data Security Access Processing

Method and Device," 2023 IEEE 2nd International

Conference on Electrical Engineering, Big Data and

Algorithms (EEBDA), Changchun, China, 2023, pp.

780-784, doi: 10.1109/EEBDA56825.2023.10090774.

[20] T. Ahmad, J. Hu and S. Han, "An Efficient Mobile

Voting System Security Scheme Based on Elliptic

Curve Cryptography," 2009 Third International

Conference on Network and System Security, Gold

Coast, QLD, Australia, 2009, pp. 474-479, doi:

10.1109/NSS.2009.57.

[21] G. N k and R. V, "Graph Theory Matrix Approach in

Cryptography and Network Security," 2022

Algorithms, Computing and Mathematics Conference

(ACM), Chennai, India, 2022, pp. 108-110, doi:

10.1109/ACM57404.2022.00025.

[22] Z. Zhou, Y. Tian, J. Xiong, J. Ma and C. Peng,

"Blockchain-Enabled Secure and Trusted Federated

Data Sharing in IIoT," in IEEE Transactions on

Industrial Informatics, vol. 19, no. 5, pp. 6669-6681,

May 2023, doi: 10.1109/TII.2022.3215192.

[23] M. Harini, K. P. Gowri, C. Pavithra and M. P.

Selvarani, "A novel security mechanism using hybrid

cryptography algorithms," 2017 IEEE International

Conference on Electrical, Instrumentation and

Communication Engineering (ICEICE), Karur, India,

2017, pp. 1-4, doi: 10.1109/ICEICE.2017.8191910.

[24] E. M. R. Hamed, A. E. Taha and A. I. Hammoodi, "An

Advanced Data Security Algorithm Using

cryptography and DNA-Based steganography," 2014

24th International Conference on Computer Theory

and Applications (ICCTA), Alexandria, Egypt, 2014,

pp. 32-38, doi: 10.1109/ICCTA35431.2014.9521623.

[25] A. Bose, A. Kumar, M. K. Hota and S. Sherki,

"Steganography Method Using Effective Combination

of RSA Cryptography and Data Compression," 2022

First International Conference on Electrical,

Electronics, Information and Communication

Technologies (ICEEICT), Trichy, India, 2022, pp. 1-

5, doi: 10.1109/ICEEICT53079.2022.9768402.

[26] H. Albataineh, M. Nijim and D. Bollampall, "The

Design of a Novel Smart Home Control System using

Smart Grid Based on Edge and Cloud Computing,"

2020 IEEE 8th International Conference on Smart

Energy Grid Engineering (SEGE), Oshawa, ON,

Canada, 2020, pp. 88-91, doi:

10.1109/SEGE49949.2020.9181961.

[27] L. Zheng, Y. Hu and C. Yang, "Design and Research

on Private Cloud Computing Architecture to Support

Smart Grid," 2011 Third International Conference on

Intelligent Human-Machine Systems and Cybernetics,

Hangzhou, China, 2011, pp. 159-161, doi:

10.1109/IHMSC.2011.109.

[28] A. Yusoff, I. S. Mustafa, S. Yussof and N. M. Din,

"Green cloud platform for flood early detection

warning system in smart city," 2015 5th National

Symposium on Information Technology: Towards

New Smart World (NSITNSW), Riyadh, Saudi

Arabia, 2015, pp. 1-6, doi:

10.1109/NSITNSW.2015.7176406.

[29] Y. Lei and L. Zhang, "Construction of Smart City

Information System Based on Cloud Computing and

Internet of Things Technology," 2021 IEEE 4th

International Conference on Information Systems and

Computer Aided Education (ICISCAE), Dalian,

China, 2021, pp. 567-570, doi:

10.1109/ICISCAE52414.2021.9590807.

[30] C. Sivapragash, S. R. Thilaga and S. S. Kumar,

"Advanced cloud computing in smart power grid," IET

Chennai 3rd International on Sustainable Energy and

Intelligent Systems (SEISCON 2012), Tiruchengode,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1933

2012, pp. 1-6, doi: 10.1049/cp.2012.2238.

[31] Y. -D. Chen, M. Z. Azhari and J. -S. Leu, "Design and

implementation of a power consumption management

system for smart home over fog-cloud computing,"

2018 3rd International Conference on Intelligent

Green Building and Smart Grid (IGBSG), Yilan,

Taiwan, 2018, pp. 1-5, doi:

10.1109/IGBSG.2018.8393553.

[32] L. Wieclaw, V. Pasichnyk, N. Kunanets, O. Duda, O.

Matsiuk and P. Falat, "Cloud computing technologies

in “smart city” projects," 2017 9th IEEE International

Conference on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and

Applications (IDAACS), Bucharest, Romania, 2017,

pp. 339-342, doi: 10.1109/IDAACS.2017.8095101.

[33] S. Bertagna De Marchi, F. Ponci and A. Monti,

"Design of a MAS as Cloud Computing Service to

control Smart Micro Grid," IEEE PES ISGT Europe

2013, Lyngby, Denmark, 2013, pp. 1-5, doi:

10.1109/ISGTEurope.2013.6695381.

[34] B. Bitzer and E. S. Gebretsadik, "Cloud computing

framework for smart grid applications," 2013 48th

International Universities' Power Engineering

Conference (UPEC), Dublin, Ireland, 2013, pp. 1-5,

doi: 10.1109/UPEC.2013.6714855.

[35] P. Bellini, D. Cenni and P. Nesi, "A Knowledge Base

Driven Solution for Smart Cloud Management," 2015

IEEE 8th International Conference on Cloud

Computing, New York, NY, USA, 2015, pp. 1069-

1072, doi: 10.1109/CLOUD.2015.154.

[36] T. Rajeev and S. Ashok, "Operational Flexibility in

Smart Grid through Cloud Computing," 2012

International Symposium on Cloud and Services

Computing, Mangalore, India, 2012, pp. 21-24, doi:

10.1109/ISCOS.2012.23.

[37] M. Kumar, K. Dubey and R. Pandey, "Evolution of

Emerging Computing paradigm Cloud to Fog:

Applications, Limitations and Research Challenges,"

2021 11th International Conference on Cloud

Computing, Data Science & Engineering

(Confluence), Noida, India, 2021, pp. 257-261, doi:

10.1109/Confluence51648.2021.9377050.

[38] Yuanpeng Xie et al., "User privacy protection for

cloud computing based smart grid," 2015 IEEE/CIC

International Conference on Communications in China

- Workshops (CIC/ICCC), Shenzhen, China, 2015, pp.

7-11, doi: 10.1109/ICCChinaW.2015.7961570.

[39] Y. Tyagi and A. Goyal, "Stacker: A Holistic Cloud

Computing Based Framework for Smart Cities," 2020

2nd International Conference on Advances in

Computing, Communication Control and Networking

(ICACCCN), Greater Noida, India, 2020, pp. 827-830,

doi: 10.1109/ICACCCN51052.2020.9362884.

[40] A. Mohanty, S. Samantaray, S. S. Patra, M. A. ahmad

and R. K. Barik, "An Efficient Resource Management

Scheme for Smart Grid Using GBO Algorithm," 2021

International Conference on Emerging Smart

Computing and Informatics (ESCI), Pune, India, 2021,

pp. 593-598, doi: 10.1109/ESCI50559.2021.9396784.

[41] G. Shrimal and Sandeep, "Using Heterogeneous Cloud

Computing to Manage Resources in Sustainable

Cyber-Physical Systems," 2022 11th International

Conference on System Modeling & Advancement in

Research Trends (SMART), Moradabad, India, 2022,

pp. 153-157, doi:

10.1109/SMART55829.2022.10047642.

[42] J. M. Navya, H. A. Sanjay and K. Deepika, "Securing

smart grid data under key exposure and revocation in

cloud computing," 2018 3rd International Conference

on Circuits, Control, Communication and Computing

(I4C), Bangalore, India, 2018, pp. 1-4, doi:

10.1109/CIMCA.2018.8739496.

[43] P. Kumar K, S. Itagi, N. C, A. S. S and S. N. N,

"Intelligent Transport System using Cloud Computing

& PSY Key Generation for V2V Communication,"

2022 Fourth International Conference on Cognitive

Computing and Information Processing (CCIP),

Bengaluru, India, 2022, pp. 1-5, doi:

10.1109/CCIP57447.2022.10058634.

[44] B. Bitzer and T. Kleesuwan, "Cloud-based Smart Grid

monitoring and controlling system," 2015 50th

International Universities Power Engineering

Conference (UPEC), Stoke on Trent, UK, 2015, pp. 1-

5, doi: 10.1109/UPEC.2015.7339938.

[45] S. Kumar, N. M. G. Kumar, B. T. Geetha, M.

Sangeetha, M. K. Chakravarthi and V. Tripathi,

"Cluster, Cloud, Grid Computing via Network

Communication Using Control Communication and

Monitoring of Smart Grid," 2022 2nd International

Conference on Advance Computing and Innovative

Technologies in Engineering (ICACITE), Greater

Noida, India, 2022, pp. 1220-1224, doi:

10.1109/ICACITE53722.2022.9823552.

[46] U. Sakthi and J. D. Rose, "Smart Agricultural

Knowledge Discovery System using IoT Technology

and Fog Computing," 2020 Third International

Conference on Smart Systems and Inventive

Technology (ICSSIT), Tirunelveli, India, 2020, pp.

48-53, doi: 10.1109/ICSSIT48917.2020.9214102.

[47] X. Zheng, S. Xue, H. Cao, F. Wang and M. Zhang, "A

Cost-efficient Smart IoT Device Controlling System

Based on Bluetooth Mesh and Cloud Computing,"

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1934

2020 Chinese Automation Congress (CAC), Shanghai,

China, 2020, pp. 3374-3379, doi:

10.1109/CAC51589.2020.9326634.

[48] P. Wang, L. T. Yang and J. Li, "An Edge Cloud-

Assisted CPSS Framework for Smart City," in IEEE

Cloud Computing, vol. 5, no. 5, pp. 37-46, Sep./Oct.

2018, doi: 10.1109/MCC.2018.053711665.

[49] Ling Zheng, Shuangbao Chen, Yanxiang Hu and

Jianping He, "Applications of cloud computing in the

smart grid," 2011 2nd International Conference on

Artificial Intelligence, Management Science and

Electronic Commerce (AIMSEC), Dengleng, 2011,

pp. 203-206, doi: 10.1109/AIMSEC.2011.6010461.

[50] J. Tong, Z. Li and Z. Qiao, "Online Legal Cloud

Computing Sharing Application for Smart Medical

System Management," 2022 International Conference

on Sustainable Computing and Data Communication

Systems (ICSCDS), Erode, India, 2022, pp. 1290-

1293, doi: 10.1109/ICSCDS53736.2022.9760713.

[51] S. S. Vellela, B. Venkateswara Reddy, K. K.

Chaitanya and M. V. Rao, "An Integrated Approach to

Improve E-Healthcare System using Dynamic Cloud

Computing Platform," 2023 5th International

Conference on Smart Systems and Inventive

Technology (ICSSIT), Tirunelveli, India, 2023, pp.

776-782, doi: 10.1109/ICSSIT55814.2023.10060945.

[52] K. Shahryari and A. Anvari-Moghaddam, "Demand

Side Management Using the Internet of Energy Based

on Fog and Cloud Computing," 2017 IEEE

International Conference on Internet of Things

(iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber,

Physical and Social Computing (CPSCom) and IEEE

Smart Data (SmartData), Exeter, UK, 2017, pp. 931-

936, doi: 10.1109/iThings-GreenCom-CPSCom-

SmartData.2017.143.

[53] Yuanpeng Xie et al., "A hierarchical key management

system applied in cloud-based smart grid," 2015

IEEE/CIC International Conference on

Communications in China - Workshops (CIC/ICCC),

Shenzhen, 2015, pp. 22-26, doi:

10.1109/ICCChinaW.2015.7961573.

[54] Q. Li et al., "A Risk Assessment Method of Smart Grid

in Cloud Computing Environment Based on Game

Theory," 2020 IEEE 5th International Conference on

Cloud Computing and Big Data Analytics

(ICCCBDA), Chengdu, China, 2020, pp. 67-72, doi:

10.1109/ICCCBDA49378.2020.9095625.

[55] F. -L. Huang and S. -Y. Tseng, "Predictable smart

home system integrated with heterogeneous network

and cloud computing," 2016 International Conference

on Machine Learning and Cybernetics (ICMLC), Jeju,

Korea (South), 2016, pp. 649-653, doi:

10.1109/ICMLC.2016.7872964.

[56] B. A. Ugale, P. Soni, T. Pema and A. Patil, "Role of

cloud computing for smart grid of India and its cyber

security," 2011 Nirma University International

Conference on Engineering, Ahmedabad, India, 2011,

pp. 1-5, doi: 10.1109/NUiConE.2011.6153298.

[57] N. Dezhabad, S. A. Motamedi and S. Sharifian, "A

proposed architecture for soft computing in smart grid

as a cloud-based service," 2015 2nd International

Conference on Knowledge-Based Engineering and

Innovation (KBEI), Tehran, Iran, 2015, pp. 386-391,

doi: 10.1109/KBEI.2015.7436076.

[58] S. Sharma, A. Sharma, T. Goel, R. Deoli and S.

Mohan, "Smart Home Gardening Management

System: A Cloud-Based Internet-of-Things (IoT)

Application in VANET," 2020 11th International

Conference on Computing, Communication and

Networking Technologies (ICCCNT), Kharagpur,

India, 2020, pp. 1-5, doi:

10.1109/ICCCNT49239.2020.9225573.

[59] J. Y. Zhang, P. Wu, J. Zhu, H. Hu and F. Bonomi,

"Privacy-Preserved Mobile Sensing through Hybrid

Cloud Trust Framework," 2013 IEEE Sixth

International Conference on Cloud Computing, Santa

Clara, CA, USA, 2013, pp. 952-953, doi:

10.1109/CLOUD.2013.108.

[60] P. Maiti, H. K. Apat, A. Kumar, B. Sahoo and A. K.

Turuk, "Deployment of Multi-tier Fog Computing

System for IoT Services in Smart City," 2019 IEEE

International Conference on Advanced Networks and

Telecommunications Systems (ANTS), Goa, India,

2019, pp. 1-6, doi:

10.1109/ANTS47819.2019.9117921.

[61] V. Goswami, B. Sharma, S. S. Patra, S. Chowdhury,

R. K. Barik and I. B. Dhaou, "IoT-Fog Computing

Sustainable System for Smart Cities: A Queueing-

based Approach," 2023 1st International Conference

on Advanced Innovations in Smart Cities (ICAISC),

Jeddah, Saudi Arabia, 2023, pp. 1-6, doi:

10.1109/ICAISC56366.2023.10085238.

[62] V. Mishra, S. S. Yau and C. Yenugunti, "Recovering

Decentralized Critical Archival Data From Tampering

in Smart City Environment Using Blockchain," 2019

IEEE SmartWorld, Ubiquitous Intelligence &

Computing, Advanced & Trusted Computing,

Scalable Computing & Communications, Cloud & Big

Data Computing, Internet of People and Smart City

Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/S

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1921 - 1935 | 1935

CI), Leicester, UK, 2019, pp. 1972-1977, doi:

10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-

SCI.2019.00344.

[63] B. Naets, W. Raes, R. Devillé, C. Middag, N. Stevens

and B. Minnaert, "Artificial Intelligence for Smart

Cities: Comparing Latency in Edge and Cloud

Computing," 2022 IEEE European Technology and

Engineering Management Summit (E-TEMS), Bilbao,

Spain, 2022, pp. 55-59, doi: 10.1109/E-

TEMS53558.2022.9944509.

[64] N. Mishra, V. Kumar and G. Bhardwaj, "Role of Cloud

Computing in Smart Grid," 2019 International

Conference on Automation, Computational and

Technology Management (ICACTM), London, UK,

2019, pp. 252-255, doi:

10.1109/ICACTM.2019.8776750.

[65] M. Vögler, J. M. Schleicher, C. Inzinger, S. Dustdar

and R. Ranjan, "Migrating Smart City Applications to

the Cloud," in IEEE Cloud Computing, vol. 3, no. 2,

pp. 72-79, Mar.-Apr. 2016, doi:

10.1109/MCC.2016.44

