

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 714–719 | 714

Mechanized Detection and Extraction of Malware Using Deep Learning

Approaches

V. S. Jeyalakshmi1. N. Krishnan 2

Submitted: 05/05/2024 Revised: 18/06/2024 Accepted: 25/06/2024

Abstract: Malware creation is developing a considerable dangerous to the individuals as well as an organization. Protecting against these

risks is continually being processed by the digital protection cyber specialists. The obscurity of categorizing malware is high since it might

take many patterns and is continually evolving. With the support of artificial intelligence can undoubtedly access the large information,

neural networks can be able to deal this problem very easily. This research aims to furnish effective by applying convolutional neural

network with multi-layers to handle the situations of using imbalanced datasets. The proposed model developed by applying a

Convolutional Neural Network with multi layers performed best to categorize the malware with 96.25% of accuracy. Generally, the

malware classification problem is eased by the approach of converting it to binary images and then classifying the generated images.

Keywords: Cyber security, Gray Level Run Length matrix, Artificial Intelligence, Deep Learning, Multi-Layer convolution neural networks.

I. Introduction

Due to the scarcity of cyber security professionals remains

a problem for the business organization to recognize their

importance. The International Information Systems

Security Certification Consortium [4] estimates the need

of 2.72 million cyber security experts in world-wide. At

the same time, malicious software with many thousands

of new malware signatures is being discovered every day.

Kaspersky’s detection algorithm has discovered an

average of 346,000 new malicious files daily in 2018,

360,000 in 2020 and its count still increases in 2023.

Sixty-two percent of the malware samples were Trojans.

There was an overall 40.5% rise in the number of Trojans

found in comparison to the previous year's result [3]. So,

malware analysis is an important task to provide security

in traditionally manual fields. Malware analysis has often

been performed using either static or dynamic malware

analysis techniques or both [1, 2]. A new technique of

memory-based analysis has been inspired by the

appearance of file-less malware. A high-level explanation

of malware analysis and its methodologies are explained

here.

Static malware analysis may determine a file's signature is

harmful or not without actually running the file. Several

techniques are used to discover the malware signatures

that identify a particular executable file as dangerous.

Traditional static analysis techniques are very simple, will

not find the malware signatures deeply. Here the advanced

malware is more complicated to detect it by the use of

code obfuscation methods. Static Malware Analysis is

done by comparing the executable's hash file with the

malware using tools like Virus Total. Strings and control

flow on the executable file are analyzed by IDA

disassemble tool to detect the malware.

Dynamic malware analysis is used to execute the malware

file in a virtual environment to monitor the files behavior,

network traffic activities by wireshark. Process monitor

discovers how the malware interact with the host system

by registry keys, etc.

Memory malware analysis is used to detect the advanced

persistent threats, harmful code in file-less malware exists

in the RAM of an infected machine to capture and dump

a memory image. It was analyzed by the process lists and

associated threads, networking information and interfaces

(TCP/UDP), command history, system calls, kernel

hooks, etc.

II. Related Works

This section provides a summary of earlier malware

categorization algorithms based on images by deep

learning algorithm with EXE file [14, 15]. Nataraj et al.

(2011), a raw binary file's one-dimensional form is similar

to its pictorial representation [13]. AI can speed up the

investigation process without making any mistakes

(James and Gladyshev, 2013). This study contributes a

deep learning model that can accurately categorize raw

binary files into one of 9 types of malware with an

accuracy of 98.2 percent. Raff et al.'s (2017), the batch

normalization model's inefficiency, the strategy slowed

down the procedure of learning when applied to the study

of binary executables in the batch normalization [7]. In

1Research Scholar, Centre for Information Technology and Engineering,

Manonmaniam Sundaranar University, Tirunelveli, India.

vsjeyalakshmiap@gmail.com
2Senior Professor (Retd.), Centre for Information Technology and

Engineering, Manonmaniam Sundaranar University, Tirunelveli, India.

krishnan17563@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 714–719 | 715

modern deep learning, batch normalization has been

studied mostly in the context of image and signal

processing, with natural language processing coming in a

close second. There is a standard data structure across all

of these fields. In contrast, the bytes in our binary data

provide a new multi-modal nature, with byte values

having vastly various meanings depending on the context,

from plain ASCII text to code to structured data to images

[10]. The working hypothesis is that this multi-modality

results in a multiplicity of activation modes, which runs

counter to the foundational principles of batch

normalization leads to the degraded output. Research by

Raff et al. (2017) supports this notion. Le et al. (2018)

proposed a deep learning-based classification of malware

strategy that relies only on data to identify complicated

patterns and features, negating the need for any prior

domain expertise. The study highlights how AI might help

digital evidence of detecting malware. Le et al. (2018) a

CNN-Bi-LSTM architecture to improve upon the

performance of a CNN model by making use of the

sequential representation [6, 8, 9, 11, 12].

III. Proposed Work

Convolutional neural network is conducted as static

malware identification and classification experiments for

testing the hypothesis. Multi-Layer convolutional neural

network (MLCNN) designs were evaluated, compared for

their efficacy in resolving this multi-classification task.

Due to the computational complexity and the training time

with limited resources in an IoT device, low powered edge

devices give a gateway of IoT-based malware. There were

34 million IoT malware in 2019, according to the data

collected by SonicWall Capture Labs, 2020 had increased

to 66% and 400% growth of IoT malware attacks rise in

2023[5]. The effectiveness of each network design was

evaluated using standard neural network performance

indicators that include accuracy, loss, F1 scores, precision,

and recall.

3.1 Dataset Explanation

In Malimg collection, the PNG images of 9,339 distinct

malware binary files as portable executable (PE) files and

25 distinct types of malware in the dataset's images [13].

The sample sizes of malimg class are shown in Table 1.

During training, each CNN learn to recognize the

characteristics of one malware class distinguishes from

another for validation, CNN correctly predicts the

malware class of a given binary image. The number of

occurrences for each of the 25 classes is shown in Table

1.

Table 1: Sample sizes of the Malimg dataset

Malware Family Type Samples Malware Family Type Samples

Adialer.C dialer 122 Lolyda.AA1 pws 213

Agent.FYI bd 116 Lolyda.AA2 pws 184

Allaple.A worm 2,949 Lolyda.AA3 pws 123

Allaple.L worm 1,591 Lolyda. AT pws 159

Alueron. gen!J trojan 198 Malex. gen!J trojan 136

Autorun.K worm 106 Obfuscator. AD dlr 142

C2LOP.gen!g trojan 200 Rbot! gen bd 158

C2LOP.P trojan 146 Skintrim.N trojan 80

Dialplatform .B dialer 177 Swizzor.gen!E dlr 128

Dontovo.A dl 162 Swizzor.gen!I dlr 132

Fakerean rogue 381 VB.AT worm 408

Instantaccess dialer 431 Wintrim.BX dlr 97

Allaple. A and Allaple. L are roughly half of the malware

samples in the dataset. SciKit Learn's library package was

used to standardize all the training data's class weights

before being used to train the neural networks. This may

not be the best distribution for research, but it does return

reality more closely. Figure 1 shows the histogram of the

different categories in the Malimg dataset.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 714–719 | 716

Fig 1: Malimg Class distribution

Malimg, a Windows Pervasive Executable (PE) file were

transformed into images. The components of a PE file are

shown in Figure 2. The executable code is located in the

‘.text‘ file is the default code section. ‘. rdata ‘ is the read-

only file format by default. String literals and C++/COM

lables are found here. Next ‘.data’ files are the standard

read/write data files. This is the common location for

storing global variables. Then ‘.rsrc’ is the section stores

the module's resources and any icons that the program

makes use of. (Microsoft, n.d.)

Fig 2: Trojan Code Part

Malware binaries are a sequence of 8-bit unsigned

integers, which are arranged into a two-dimensional array.

This may be represented graphically as a [0, 255]

grayscale picture (where 0 is black and 255 is white). The

height of the image may change with the file size, while

the width remains constant [13]. Multiple completely

black regions may be seen is the text part in Figure 2. This

might be uninitialized code, but it's more likely to be the

result of zero padding, a frequent kind of code

obfuscation. Implementing a static approach has the

advantage that CNN is less likely to be affected by code

obfuscation strategies. To create the subsequent visual

data sample by converting all images in the dataset into

64x64 the grayscale images is to visualize the highly

compressed image.

IV. Results and Discussion

Total Training Time and Average Training Time across

Epochs were analyzed for comparing the five CNNs

evaluated in this experiment for performance as Complete

Accuracy, Loss, F1 Score, Precision and Recall. To

determine which network performed best and which

would be the most suited to operate on a low-powered

device in terms of accuracy and overall strength of an

Internet of Things (IoT) device. The minimal amount of

processing power is needed to determine a file is harmful

or not is the strength of static malware analysis.

Experiments were conducted with a Multi-Layer

Convolutional Neural Network (MLCNN) for classifying

the malware with high efficiency. A training/validation

split of all the models are 70%/30%. Adam on their layers

and categorical cross entropy as the loss function are used.

4.1 Feature Extraction using GLRLM

Nowadays, a plethora of texture analysis techniques have

emerged, leukocyte nuclei are characterized by 11 textural

traits are determined using grey level run length matrices.

The number of grey levels (g) and the longest run (r) (a

series of consecutive pixels with the same grey level

strength in a single linear direction) are both quantified for

a sub-image of dimension M x N. The sum of all runs is

symbolized by the letter Z. The GLRLM is a two-

dimensional (g, r) matrix with every component q (m, n)

indicating the frequency with the run of length n and grey

level m occurs along the specified axis.

4.2 Convolution Models Architecture

Five different CNN models are used for classifications.

Batch normalization is used in Models 1 and 2, whereas

Local Response Normalization is used in Models 3, 4, and

5. Two models are compared with the same 64x64x1 input

size but different numbers of MLCNN layers to shorten

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 714–719 | 717

the intervals between training epochs. Models 3, 4, and 5

normalization techniques scale well with varying input

sizes. Batch normalization tested on malware binaries

proved to be ineffective, byte values from ASCII text,

code, structured-data, images, etc have different meaning.

The contextual sensitive information of a binary file, may

be vulnerable by the cropping and shifting of the batch

data during normalization. The feature's original context

is lost due to the scaling and shifting of the image

throughout the batch standardization process. If the image

is scaled and shifted such that a malicious string

representing an API call in a Windows PE file is moved

to another region of the PE file structure, the learning

algorithm will no longer understand the significance of the

original sample.

Instead of scaling and shifting, the principle of lateral

inhibition is applied. This lateral inhibition is local

contrast enhancement for local response normalization,

the highest pixel values is the excitation for the next

subsequent layers [7]. In contrast to batch normalization,

which shifts and scales an image picture based on its

gamma and beta values, local response normalization

takes into account the immediate surroundings of a single

pixel. In light of the binary data's inherent context, the

local response normalization function was deemed

superior to the batch normalization approach. Local

response normalization was applied for the remaining

models after batch normalization was tried in models 1

and 2 of input size 64x64x1 with 25 epochs. After

confirming its efficacy via experimentation to try out

various input sizes for both our training and testing data.

This is also why models 3, 4, and 5 were designed to work

well with input data of varying sizes as 128x128x1(10

epochs), 64x64x1 (10 epochs) and 32x32x1(50 epochs).

Model

 Layers

Methods

Time in

minutes

Accuracy

 Loss

F1-

Score

Precision Recall

1

30 &15

filters,

Relu,

3x3

kernel

Batch

Normali

zation

9.83

83.12% 30.11% 0.82 0.83 0.83

2

32, 64

&128

filters,

Relu,

3x3

kernel

Batch

Normali

zation

5.97

86.62% 15.12% 0.86 0.86 0.87

3

50 & 70

filters,

Relu,

3x3

kernel

Batch

Normal

ization

4.05 hours

96.25% 27.88% 0.95 0.95 0.96

4

25 & 35

filters,

Relu,

3x3

kernel

Local

Respons

e

Normali

zation

18.20

91.78% 22.22% 0.91 0.91 0.92

5

15 & 25

filters,

Relu,

3x3

kernel

Local

Respons

e

Normali

zation

11.98

75.99% 129.89% 0.75 0.75 0.76

Table 2: Performances of the CNN Models

Models 1 and 2 employ a 64x64x1 input size, 25 epochs

of training, and a batch normalization algorithm. Model 1

performed poorly compared to the other models, training

time was less than 10 minutes makes growth in the

accuracy. Model 2 created to speed up learning, improve

precision and achieve an increasing accuracy. Figure 3

shows the accuracy curves during training and validation

for Model 2. Model 3, 128x128x1 input size, achieved the

highest recorded accuracy by increasing the input shape

from the previous two models' 64x64x1 input form. Due

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 714–719 | 718

to the excessively long training period required by model

3, 64x64x1 input structure for model 4 showed promising

performance outcomes after undergoing the same amount

of training epochs as Model 3. In model 5, 32x32x1 has

the performance reduced during training and validation

for both models. Figure 4 shows the accuracy curves

during training and validation for model 4. Figure 5 shows

during all 10 epochs of model 4 accuracy curve. Figure 5

shows the model 5 the validation accuracy curve deviates

significantly from the training curve.

Fig 3: Model 2's Training and Validation Accuracy

Fig 4: Model 4's Training and Validation Accuracy

Fig 5: Model 5's Training and Validation Accuracy

IV. Conclusion

Real time raw PE file usage in malware extractions needs

to face some difficulties like run in virtual environment,

quarantine malicious data, gray scale conversion, etc for

the researchers. Malware research will remain behind

other areas of machine learning unless malware

investigators and analysts have an open and freely

available dataset to do experiments with. Since the PNG

images of Malimg dataset were transformed to true

monochrome using Python's image module with GPU

acceleration. Multi-Layer Convolutional neural networks

and Gray Level Run Length Matrix training require a lot

of processing power. Static malware detections are the

first stage of defense against harmful attacks would be the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 714–719 | 719

best suggested malware detection model system. Machine

learning, in contrast to natural language processing, is not

a solution for all cyber security problems. Malware

researchers would have more time to obtain more

comprehensive knowledge regarding the dangerous file at

the first phases of static malware analysis. Based on the

findings, the static malware approach described has the

potential of detecting malware in real-time.

References

[1] Muhammad Shoaib Akhtar (2022) Detection of

Malware by Deep Learning as CNN-LSTM Machine

Learning Techniques in Real Time.

[2] Rong Wang (2021) Malware Detection using CNN

via word embedding in cloud computing

infrastructure.

[3] Kaspersky Lab (2021). The number of new

malicious files detected every day increases by 5.2%

to 360,000 in 2020. [online] www.kaspersky.com.

<Available at:

https://www.kaspersky.com/about/press-

releases/2020_the-number-of-new- malicious-files-

detected-every-day-increases-by-52-to-360000-in-

2020> .

[4] ISC2 (2021). 2021 Cybersecurity Workforce Study.

[online] www.isc2.org, ISC2, pp.24–25. <Available

at: https://www.isc2.org//-

/media/ISC2/Research/2021/ISC2-Cybersecurity-

Workforce-Study-2021.ashx>.

[5] SonicWall (2021, 2023). SonicWall Cyber Threat

Report. [online] https://www.sonicwall.com/,

Milpitas, CA: SonicWall Inc.,p.58. <Available at:

https://www.sonicwall.com/resources/white-

papers/2021-sonicwall-cyber-threat-report/ >.

[6] Krithika V. (2021). Malware and Benign Detection

Using Convolutional Neural Network <Available at

: DOI:10.1007/978-981-16-0171-2_4>.

[7] Anwar A. (2021). Difference between Local

Response Normalization and Batch Normalization.

[online] Medium. <Available at:

http://towardsdatascience.com/difference-between-

local-response-normalization-and-batch-

normalization- 272308c034ac> .

[8] Mallet H. (2020). Malware Classification using

Convolutional Neural Networks — Step by Step

Tutorial. [online] Medium. <Available at:

https://towardsdatascience.com/malware-

classification-using-convolutional-neural-networks-

step-by- step-tutorial-a3e8d97122f>.

[9] Véstias M.P. (2019). A Survey of Convolutional

Neural Networks on Edge with Reconfigurable

Computing. Algorithms, 12(8), p.154.

[10] Bhodia N., Prajapati P., Troia F. and Stamp M.

(2019). Transfer Learning for Image-Based Malware

Classification.

[11] Le Q., Boydell O., Mac Namee B. and Scanlon M.

(2018). Deep learning at the shallow end: Malware

classification for non-domain experts. Digital

Investigation, [online] 26, pp.S118–S126.

<Available at:

https://www.sciencedirect.com/science/article/pii/S

1742287618302032>.

[12] Gibert D., Matteu C., Planes J. and Vicens R.

(2018). Using convolutional neural networks for

classification of malware represented as images.

Journal of Computer Virology and Hacking

Techniques, 15(1), pp.15–28.

[13] Nataraj L., Karthikeyan S., Jacob, G. and Manjunath

B.S. (2011). Malware images. Proceedings of the 8th

International Symposium on Visualization for Cyber

Security - VizSec ’11.

[14] Raff E., Barker J., Sylvester J., Brandon R.,

Catanzaro B. and Nicholas C. (2017). Malware

Detection by Eating a Whole EXE.

[15] Microsoft (n.d.). An In-Depth Look into the Win32

Portable Executable File Format, Part 2: Figures.

[online] bytepointer.com. <Available at:

https://bytepointer.com/resources/pietrek_in_depth

_look_into_pe_format_pt2_figures.htm>.

