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Abstract: Malware creation is developing a considerable dangerous to the individuals as well as an organization. Protecting against these 

risks is continually being processed by the digital protection cyber specialists. The obscurity of categorizing malware is high since it might 

take many patterns and is continually evolving. With the support of artificial intelligence can undoubtedly access the large information, 

neural networks can be able to deal this problem very easily. This research aims to furnish effective by applying convolutional neural 

network with multi-layers to handle the situations of using imbalanced datasets. The proposed model developed by applying a 

Convolutional Neural Network with multi layers performed best to categorize the malware with 96.25% of accuracy. Generally, the 

malware classification problem is eased by the approach of converting it to binary images and then classifying the generated images. 
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I. Introduction 

Due to the scarcity of cyber security professionals remains 

a problem for the business organization to recognize their 

importance. The International Information Systems 

Security Certification Consortium [4] estimates the need 

of 2.72 million cyber security experts in world-wide. At 

the same time, malicious software with many thousands 

of new malware signatures is being discovered every day. 

Kaspersky’s detection algorithm has discovered an 

average of 346,000 new malicious files daily in 2018, 

360,000 in 2020 and its count still increases in 2023. 

Sixty-two percent of the malware samples were Trojans. 

There was an overall 40.5% rise in the number of Trojans 

found in comparison to the previous year's result [3]. So, 

malware analysis is an important task to provide security 

in traditionally manual fields. Malware analysis has often 

been performed using either static or dynamic malware 

analysis techniques or both [1, 2]. A new technique of 

memory-based analysis has been inspired by the 

appearance of file-less malware. A high-level explanation 

of malware analysis and its methodologies are explained 

here. 

Static malware analysis may determine a file's signature is 

harmful or not without actually running the file. Several 

techniques are used to discover the malware signatures 

that identify a particular executable file as dangerous. 

Traditional static analysis techniques are very simple, will 

not find the malware signatures deeply. Here the advanced 

malware is more complicated to detect it by the use of 

code obfuscation methods. Static Malware Analysis is 

done by comparing the executable's hash file with the 

malware using tools like Virus Total. Strings and control 

flow on the executable file are analyzed by IDA 

disassemble tool to detect the malware. 

Dynamic malware analysis is used to execute the malware 

file in a virtual environment to monitor the files behavior, 

network traffic activities by wireshark. Process monitor 

discovers how the malware interact with the host system 

by registry keys, etc. 

Memory malware analysis is used to detect the advanced 

persistent threats, harmful code in file-less malware exists 

in the RAM of an infected machine to capture and dump 

a memory image. It was analyzed by the process lists and 

associated threads, networking information and interfaces 

(TCP/UDP), command history, system calls, kernel 

hooks, etc. 

II. Related Works 

This section provides a summary of earlier malware 

categorization algorithms based on images by deep 

learning algorithm with EXE file [14, 15]. Nataraj et al. 

(2011), a raw binary file's one-dimensional form is similar 

to its pictorial representation [13]. AI can speed up the 

investigation process without making any mistakes 

(James and Gladyshev, 2013). This study contributes a 

deep learning model that can accurately categorize raw 

binary files into one of 9 types of malware with an 

accuracy of 98.2 percent. Raff et al.'s (2017), the batch 

normalization model's inefficiency, the strategy slowed 

down the procedure of learning when applied to the study 

of binary executables in the batch normalization [7]. In 
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modern deep learning, batch normalization has been 

studied mostly in the context of image and signal 

processing, with natural language processing coming in a 

close second. There is a standard data structure across all 

of these fields. In contrast, the bytes in our binary data 

provide a new multi-modal nature, with byte values 

having vastly various meanings depending on the context, 

from plain ASCII text to code to structured data to images 

[10]. The working hypothesis is that this multi-modality 

results in a multiplicity of activation modes, which runs 

counter to the foundational principles of batch 

normalization leads to the degraded output. Research by 

Raff et al. (2017) supports this notion. Le et al. (2018) 

proposed a deep learning-based classification of malware 

strategy that relies only on data to identify complicated 

patterns and features, negating the need for any prior 

domain expertise. The study highlights how AI might help 

digital evidence of detecting malware. Le et al. (2018) a 

CNN-Bi-LSTM architecture to improve upon the 

performance of a CNN model by making use of the 

sequential representation [6, 8, 9, 11, 12]. 

III. Proposed Work 

Convolutional neural network is conducted as static 

malware identification and classification   experiments for 

testing the hypothesis. Multi-Layer convolutional neural 

network (MLCNN) designs were evaluated, compared for 

their efficacy in resolving this multi-classification task. 

Due to the computational complexity and the training time 

with limited resources in an IoT device, low powered edge 

devices give a gateway of IoT-based malware. There were 

34 million IoT malware in 2019, according to the data 

collected by SonicWall Capture Labs, 2020 had increased 

to 66% and 400% growth of IoT malware attacks rise in 

2023[5]. The effectiveness of each network design was 

evaluated using standard neural network performance 

indicators that include accuracy, loss, F1 scores, precision, 

and recall. 

3.1 Dataset Explanation 

In Malimg collection, the PNG images of 9,339 distinct 

malware binary files as portable executable (PE) files and 

25 distinct types of malware in the dataset's images [13]. 

The sample sizes of malimg class are shown in Table 1.  

During training, each CNN learn to recognize the 

characteristics of one malware class distinguishes from 

another for validation, CNN correctly predicts the 

malware class of a given binary image. The number of 

occurrences for each of the 25 classes is shown in Table 

1. 

Table 1: Sample sizes of the Malimg dataset 

Malware Family Type Samples Malware Family Type Samples 

Adialer.C dialer 122 Lolyda.AA1 pws 213 

Agent.FYI bd 116 Lolyda.AA2 pws 184 

Allaple.A worm 2,949 Lolyda.AA3 pws 123 

Allaple.L worm 1,591 Lolyda. AT pws 159 

Alueron. gen!J trojan 198 Malex. gen!J trojan 136 

Autorun.K worm 106 Obfuscator. AD dlr 142 

C2LOP.gen!g trojan 200 Rbot! gen bd 158 

C2LOP.P trojan 146 Skintrim.N trojan 80 

Dialplatform .B dialer 177 Swizzor.gen!E dlr 128 

Dontovo.A dl 162 Swizzor.gen!I dlr 132 

Fakerean rogue 381 VB.AT worm 408 

Instantaccess dialer 431 Wintrim.BX dlr 97 

Allaple. A and Allaple. L are roughly half of the malware 

samples in the dataset. SciKit Learn's library package was 

used to standardize all the training data's class weights 

before being used to train the neural networks. This may 

not be the best distribution for research, but it does return 

reality more closely. Figure 1 shows the histogram of the 

different categories in the Malimg dataset. 
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Fig 1: Malimg Class distribution 

Malimg, a Windows Pervasive Executable (PE) file were 

transformed into images. The components of a PE file are 

shown in Figure 2. The executable code is located in the 

‘.text‘ file is the default code section. ‘. rdata ‘ is the read-

only file format by default. String literals and C++/COM 

lables are found here. Next ‘.data’ files are the standard 

read/write data files. This is the common location for 

storing global variables. Then ‘.rsrc’ is the section stores 

the module's resources and any icons that the program 

makes use of. (Microsoft, n.d.) 

 

Fig 2: Trojan Code Part 

Malware binaries are a sequence of 8-bit unsigned 

integers, which are arranged into a two-dimensional array. 

This may be represented graphically as a [0, 255] 

grayscale picture (where 0 is black and 255 is white). The 

height of the image may change with the file size, while 

the width remains constant [13]. Multiple completely 

black regions may be seen is the text part in Figure 2. This 

might be uninitialized code, but it's more likely to be the 

result of zero padding, a frequent kind of code 

obfuscation. Implementing a static approach has the 

advantage that CNN is less likely to be affected by code 

obfuscation strategies. To create the subsequent visual 

data sample by converting all images in the dataset into 

64x64 the grayscale images is to visualize the highly 

compressed image.  

IV. Results and Discussion 

Total Training Time and Average Training Time across 

Epochs were analyzed for comparing the five CNNs 

evaluated in this experiment for performance as Complete 

Accuracy, Loss, F1 Score, Precision and Recall. To 

determine which network performed best and which 

would be the most suited to operate on a low-powered 

device in terms of accuracy and overall strength of an 

Internet of Things (IoT) device. The minimal amount of 

processing power is needed to determine a file is harmful 

or not is the strength of static malware analysis. 

Experiments were conducted with a Multi-Layer 

Convolutional Neural Network (MLCNN) for classifying 

the malware with high efficiency. A training/validation 

split of all the models are 70%/30%. Adam on their layers 

and categorical cross entropy as the loss function are used.  

4.1 Feature Extraction using GLRLM 

Nowadays, a plethora of texture analysis techniques have 

emerged, leukocyte nuclei are characterized by 11 textural 

traits are determined using grey level run length matrices. 

The number of grey levels (g) and the longest run (r) (a 

series of consecutive pixels with the same grey level 

strength in a single linear direction) are both quantified for 

a sub-image of dimension M x N. The sum of all runs is 

symbolized by the letter Z. The GLRLM is a two-

dimensional (g, r) matrix with every component q (m, n) 

indicating the frequency with the run of length n and grey 

level m occurs along the specified axis. 

4.2 Convolution Models Architecture 

Five different CNN models are used for classifications. 

Batch normalization is used in Models 1 and 2, whereas 

Local Response Normalization is used in Models 3, 4, and 

5. Two models are compared with the same 64x64x1 input 

size but different numbers of MLCNN layers to shorten 
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the intervals between training epochs. Models 3, 4, and 5 

normalization techniques scale well with varying input 

sizes. Batch normalization tested on malware binaries 

proved to be ineffective, byte values from ASCII text, 

code, structured-data, images, etc have different meaning. 

The contextual sensitive information of a binary file, may 

be vulnerable by the cropping and shifting of the batch 

data during normalization. The feature's original context 

is lost due to the scaling and shifting of the image 

throughout the batch standardization process. If the image 

is scaled and shifted such that a malicious string 

representing an API call in a Windows PE file is moved 

to another region of the PE file structure, the learning 

algorithm will no longer understand the significance of the 

original sample.  

Instead of scaling and shifting, the principle of lateral 

inhibition is applied. This lateral inhibition is local 

contrast enhancement for local response normalization, 

the highest pixel values is the excitation for the next 

subsequent layers [7]. In contrast to batch normalization, 

which shifts and scales an image picture based on its 

gamma and beta values, local response normalization 

takes into account the immediate surroundings of a single 

pixel. In light of the binary data's inherent context, the 

local response normalization function was deemed 

superior to the batch normalization approach. Local 

response normalization was applied for the remaining 

models after batch normalization was tried in models 1 

and 2 of input size 64x64x1 with 25 epochs. After 

confirming its efficacy via experimentation to try out 

various input sizes for both our training and testing data. 

This is also why models 3, 4, and 5 were designed to work 

well with input data of varying sizes as 128x128x1(10 

epochs), 64x64x1 (10 epochs) and 32x32x1(50 epochs). 

 

Model  

 

 Layers 

   

Methods 

Time in 

minutes 

 

Accuracy 

 

 Loss 

F1-

Score 

Precision Recall 

1 

30 &15 

filters, 

Relu, 

3x3 

kernel 

Batch 

Normali

zation 

 

9.83 

 

83.12% 30.11% 0.82 0.83 0.83 

2 

32,  64 

&128 

filters, 

Relu, 

3x3 

kernel 

Batch 

Normali

zation 

5.97 

 
86.62% 15.12% 0.86 0.86 0.87 

3 

50 & 70 

filters, 

Relu, 

3x3 

kernel 

Batch 

Normal

ization 

4.05 hours 

 
96.25% 27.88% 0.95 0.95 0.96 

4 

25 & 35 

filters, 

Relu, 

3x3 

kernel 

Local 

Respons

e 

Normali

zation 

18.20 

 
91.78% 22.22% 0.91 0.91 0.92 

5 

15 & 25 

filters, 

Relu, 

3x3 

kernel 

Local 

Respons

e 

Normali

zation 

11.98 

 
75.99% 129.89% 0.75 0.75 0.76 

Table 2: Performances of the CNN Models 

Models 1 and 2 employ a 64x64x1 input size, 25 epochs 

of training, and a batch normalization algorithm. Model 1 

performed poorly compared to the other models, training 

time was less than 10 minutes makes growth in the 

accuracy. Model 2 created to speed up learning, improve 

precision and achieve an increasing accuracy. Figure 3 

shows the accuracy curves during training and validation 

for Model 2. Model 3, 128x128x1 input size, achieved the 

highest recorded accuracy by increasing the input shape 

from the previous two models' 64x64x1 input form. Due 
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to the excessively long training period required by model 

3, 64x64x1 input structure for model 4 showed promising 

performance outcomes after undergoing the same amount 

of training epochs as Model 3. In model 5, 32x32x1 has 

the performance reduced during training and validation 

for both models. Figure 4 shows the accuracy curves 

during training and validation for model 4. Figure 5 shows 

during all 10 epochs of model 4 accuracy curve. Figure 5 

shows the model 5 the validation accuracy curve deviates 

significantly from the training curve. 

 

 

 

Fig 3: Model 2's Training and Validation Accuracy 

 

Fig 4: Model 4's Training and Validation Accuracy 

 

Fig 5: Model 5's Training and Validation Accuracy 

IV. Conclusion 

Real time raw PE file usage in malware extractions needs 

to face some difficulties like run in virtual environment, 

quarantine malicious data, gray scale conversion, etc for 

the researchers. Malware research will remain behind 

other areas of machine learning unless malware 

investigators and analysts have an open and freely 

available dataset to do experiments with.  Since the PNG 

images of Malimg dataset were transformed to true 

monochrome using Python's image module with GPU 

acceleration. Multi-Layer Convolutional neural networks 

and Gray Level Run Length Matrix training require a lot 

of processing power. Static malware detections are the 

first stage of defense against harmful attacks would be the 
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best suggested malware detection model system. Machine 

learning, in contrast to natural language processing, is not 

a solution for all cyber security problems. Malware 

researchers would have more time to obtain more 

comprehensive knowledge regarding the dangerous file at 

the first phases of static malware analysis. Based on the 

findings, the static malware approach described has the 

potential of detecting malware in real-time. 

References 

[1]  Muhammad Shoaib Akhtar (2022) Detection of 

Malware by Deep Learning as CNN-LSTM Machine 

Learning Techniques in Real Time. 

[2]  Rong Wang (2021) Malware Detection using CNN 

via word embedding in cloud computing 

infrastructure. 

[3] Kaspersky Lab (2021). The number of new 

malicious files detected every day increases by 5.2% 

to 360,000 in 2020. [online] www.kaspersky.com. 

<Available at: 

https://www.kaspersky.com/about/press-

releases/2020_the-number-of-new- malicious-files-

detected-every-day-increases-by-52-to-360000-in-

2020> . 

[4] ISC2 (2021). 2021 Cybersecurity Workforce Study. 

[online] www.isc2.org, ISC2, pp.24–25. <Available 

at: https://www.isc2.org//-

/media/ISC2/Research/2021/ISC2-Cybersecurity-

Workforce-Study-2021.ashx>. 

[5]  SonicWall (2021, 2023).  SonicWall Cyber Threat 

Report. [online] https://www.sonicwall.com/, 

Milpitas, CA: SonicWall Inc.,p.58. <Available at: 

https://www.sonicwall.com/resources/white-

papers/2021-sonicwall-cyber-threat-report/ >. 

[6]  Krithika V. (2021). Malware and Benign Detection 

Using Convolutional Neural Network <Available at 

: DOI:10.1007/978-981-16-0171-2_4>. 

[7]  Anwar A. (2021). Difference between Local 

Response Normalization and Batch Normalization. 

[online] Medium. <Available at: 

http://towardsdatascience.com/difference-between-

local-response-normalization-and-batch-

normalization- 272308c034ac> . 

[8]  Mallet H. (2020). Malware Classification using 

Convolutional Neural Networks — Step by Step 

Tutorial. [online] Medium. <Available at: 

https://towardsdatascience.com/malware-

classification-using-convolutional-neural-networks-

step-by- step-tutorial-a3e8d97122f>. 

[9]  Véstias M.P. (2019). A Survey of Convolutional 

Neural Networks on Edge with Reconfigurable 

Computing. Algorithms, 12(8), p.154.  

[10]  Bhodia N., Prajapati P., Troia F. and Stamp M. 

(2019). Transfer Learning for Image-Based Malware 

Classification. 

[11] Le Q., Boydell O., Mac Namee B. and Scanlon M. 

(2018). Deep learning at the shallow end: Malware 

classification for non-domain experts. Digital 

Investigation, [online] 26, pp.S118–S126. 

<Available at: 

https://www.sciencedirect.com/science/article/pii/S

1742287618302032>.  

[12]  Gibert D., Matteu C., Planes J. and Vicens R. 

(2018). Using convolutional neural networks for 

classification of malware represented as images. 

Journal of Computer Virology and Hacking 

Techniques, 15(1), pp.15–28. 

[13] Nataraj L., Karthikeyan S., Jacob, G. and Manjunath 

B.S. (2011). Malware images. Proceedings of the 8th 

International Symposium on Visualization for Cyber 

Security - VizSec ’11. 

[14] Raff E., Barker J., Sylvester J., Brandon R., 

Catanzaro B. and Nicholas C. (2017). Malware 

Detection by Eating a Whole EXE. 

[15] Microsoft (n.d.). An In-Depth Look into the Win32 

Portable Executable File Format, Part 2: Figures. 

[online] bytepointer.com. <Available at: 

https://bytepointer.com/resources/pietrek_in_depth

_look_into_pe_format_pt2_figures.htm>. 


