

Smart Sensors and Intelligent Systems: Applications in Engineering Monitoring

¹Mahmoud Abou Ghaly, ²Dr. Yusuf Perwej, ³Mumdouh Mirghani Mohamed Hassan, ⁴Dr. Nikhat Akhtar, ⁵K. Bharath Raj, ⁶T. Udayalaxmi Aditya

Submitted: 06/05/2024 **Revised:** 19/06/2024 **Accepted:** 26/06/2024

Abstract: Smart sensors and control systems have transformed the ways engineering monitoring is performed in different application domains. This paper discusses the applications of these technologies to engineering monitoring, with an emphasis on their capabilities and benefits, as well as future directions. Integration of professional smart sensors and intelligent systems dramatically enhances real-time data collecting, processing and decision-making ability in engineering projects towards high efficiency, safety as well as reliability.

Keywords: Smart Sensors, Intelligent Systems, Engineering Monitoring.

1. Introduction

The drastically rapid expansion of sensor technology and artificial intelligence have largely contributed to a new generation of smart sensors, intelligent systems which are vital to modern engineering monitoring [1]. This type of technologies allows on-line accurate condition monitoring and they are able to predict the failure mode, enable functional testing that provides information about a malfunctioning scenario which can be further analyzed in order to improve maintenance activities or for an overall optimization [1]

Over the past few years, implementation of advance technologies is re-writing many facets in different engineering domains. Of these, by far the most significant with respect to engineering monitoring are smart sensors and intelligent systems. Engineering monitoring standards cover a wide range of activities designed to ensure the safety, performance and functionality of engineering systems, technical devices, as well as human living conditions. The traditional ways

of monitoring such as manual inspections or periodic data collection are time-consuming, expensive, difficult to replicate and subjected to human error. However, the era of smart sensors and intelligent systems arrived in a new area: continuous monitoring.

Sophisticated smart sensors can sense physical parameters and process the data in hardware to communicate them. These sensors have microprocessors, typically communication modules and sometimes even algorithms that allow them to make reasonably complex computations near to the data. This not only helps in better data handling but also gives more agility to the systems and enables them to take a timely action based on detected anomaly. Smart sensors improve the performance of engineering systems in controlling various parameters - these can be temperature, pressure, vibration or chemical composition by high accuracy [4].

With intelligent systems, artificial intelligence (AI), machine learning (ML) and advanced data analytics are used to analyze the smart sensor-generation of information. These systems are programmed to improve with historical data, learning from the past to predict what can-and will-happen in the future. Intelligent control systems based on data collected evaluates predictive maintenance strategies to process operational processes, improving the performance of engineering structures [5].

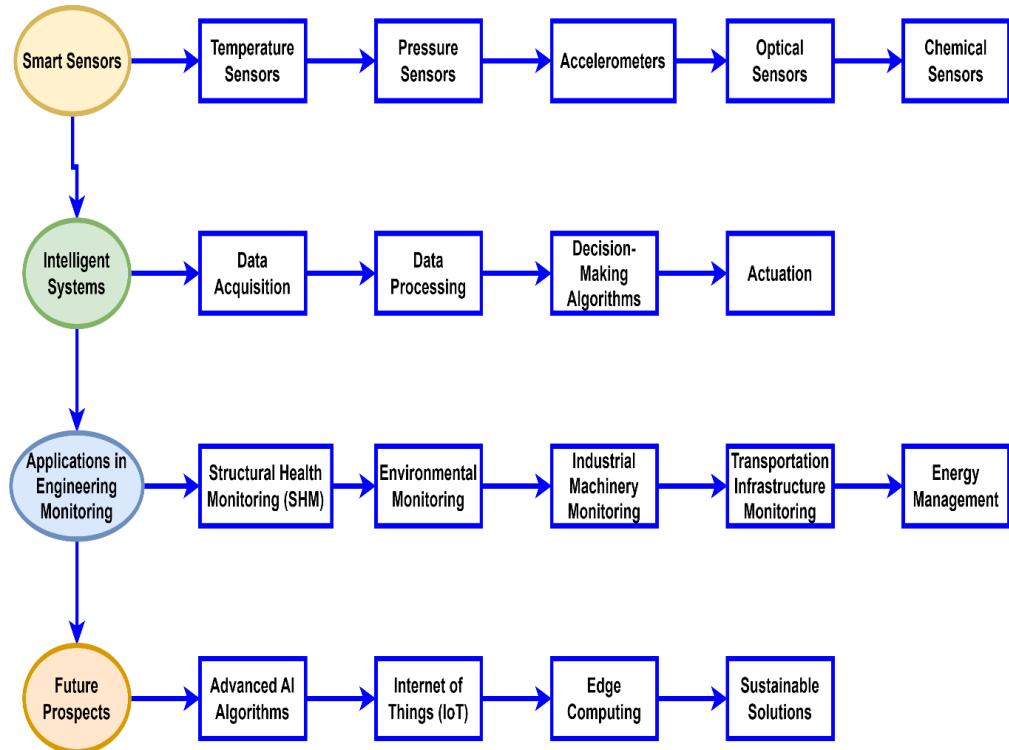
Integration of smart sensors with intelligent systems is particularly advantageous for continuous monitoring and real-time decision-making. For example, smart sensors in structural health monitoring (SHM) can be used to identify slight changes in the behavior of a structure and provide data-driven insight within an intelligent system that would help predict catastrophic failure before happened. Likewise in industrial machine monitoring,

¹Assistant Professor, Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

E-MAIL: maboughaly@bu.edu.sa

²Professor, Department of Computer Science & Engineering (CSE) Goel Institute of Technology & Management (GITM), Lucknow, UP, India
E-MAIL: yusufperwej@gmail.com

³Assistant Professor
Department of Computer Information Systems, Al Baha University, Al Baha, Kingdom of Saudi Arabia (KSA)
E-MAIL: mmhassan@bu.edu.sa


⁴Associate Professor, Department of Information Technology (IT)
Goel Institute of Technology & Management (GITM), Lucknow, UP, India
E-MAIL: dr.nikhatakhtar@gmail.com

⁵Assistant Professor of Physics, Girraj Government College Nizamabad
E-MAIL: k.b.raju111@gmail.com

⁶Assistant Professor, Department of Information Technology, Aditya University, Surampalem, India, E-MAIL: udayalaxmiadityat@aec.edu.in

intelligent sensors can send data on equipment status for any time thus allowing smart systems to recognize and adjust possible problems that could otherwise cause expensive downtimes [6].

The scholars initiated the research on smart sensors and intelligent systems used in engineering monitoring. This lesson covers different categories of smart sensors and what they can do when combined with an intelligent system to bolster your monitoring capabilities. It also highlights the benefits of these technologies, with higher productivity efficiency and cost reduction. In addition to describing various image processing applications, the paper highlights difficulties encountered when bringing smart sensing and intelligent systems into practice -

Fig 1 Various aspects of Smart Sensors and Intelligent Systems

2. Smart Sensors: An Overview

Modern vibrations monitoring is led by smart sensors, driven with advanced competencies that are better than traditional sensing technologies. The term sensor is somewhat of a misnomer as these are not simply dumb sensors that output data, they have built-in onboard processing capabilities along with wireless messaging support and often realtime interpretation algorithms. A. Overview Smart sensors, whose various types of them with different functionalities and their improved performance associated technological advancement have been explained in this section [6].

A smart sensor can be described by the way it approaches sensing, processing and communication in a

single device. Some of the key features of smart sensors are:

- To permit the accurate measurement of physical, chemical or biological outputs
- Local base level data processing, reducing the amount of throughput to transport (edge)
- Wireless or wired transmission to central systems or can be moved in the cloud-based platforms for data processing.
- Self-diagnosis: the ability to supervise its own performance and detect flaws or calibration demands.
- Adjust their operations or specific application requirements

Why smart sensors are effective: The capabilities of a submission the accessibility factor; and consequently,

- Advances in MEMS technology have revolutionized sensors, drastically improved their efficiency while reduced the degrees to which they are invasive. Camera sensors, accelerometers, gyroscopes and pressure are the type of devices based on Sensors.
- Smart sensors transmit data without physical connectivity using Bluetooth, Zigbee, Wi-Fi and LoRa technologies that can be monitored remotely.
- Incorporates microprocessors and microcontrollers in sensors for on-board data processing and decision-making.

Stretching the Usability: Derivation of Power from Environmental Sources e.g., Solar, thermal and vibrational energy sources boosterism in extending operational life cycle of smart sensors, more so when places wherein sensor transcending locations are to be monitored but established power system do not run till there; Different Types of Smart Sensors, the smart sensors are designed to work on a wide range depending upon its applications in engineering monitoring [9]:

2-They are the sensors that deduce temperature variations in environments or systems. Its use cases are obvious: think HVAC systems, a range of steam or gas industrial processes and environmental monitoring. High-quality temperature sensors present accurate real-time data and alarm if the set variables are altered.

Pressure Sensors: Pressure sensors can measure pressure changes in gases or liquids which is very important for hydraulic systems, person econometric controls and weather forecast. These devices are used to locate leaks, monitor system stability and meet safety requirements.

These sensors can be used to check vibrations, movements and structural integrity by measuring acceleration force. These sensors have been broadly adopted in low power structural health monitoring (SHM), automotive safety systems, and consumer electronics.

Optical sensors: optical sensors, which use light to make measurements, are found in applications such as distance measurement (e. g., edge finders), object detection and imaging. They are invaluable in areas such as robotics, manufacturing applications and environmental sensing. Some sensors can identify and measure the presence of chemicals in air, water or soil. These sensors are essential when it comes to environmental monitoring, industrial process control and public safety; they measure directly in the location where contaminant levels of interest exist (i.e. pollutant level(s), toxic gas leak) or an area which is

not a controlled environment by health and safety regulation.

Smart sensors provide many features to improve engineering monitoring; Continuous monitoring and real-time data availability enable quick responses to alterations & disorders. Instead, you only need to send the response from a 304 Not Modified request and allow cache providers like Varnish, CDN etc. to minimize data transmission which means less bandwidth costs lower burden of network utilization (something that can be very expensive for users over GPRS / EDGE) as well allowing clients.

- Smart sensors can forecast future faults and maintenance requirements by processing data gathered on trends and patterns.
- Wireless communications allow for remote, difficult to reach monitoring with improved safety and reduced inspection cost.
- Energy harvesting and low power operation prolongs the life of sensors, particularly for remote deployments.
- The applications of these smart sensors are very vast and we use it in different kind of engineering sectors like:
- Monitoring stress, strain and vibration in buildings, Bridge & other infrastructure so that safety is maintained.
- Perform analysis for air, water quality and temperature /humidity to evaluate environmental condition as well regulation compliance.
- Keep a check on your machine's operational parameters to improve its performance, anticipate maintenance and lower downtimes.
- Roads, railways and bridges monitoring to ensure safe conditions, traffic management as well maintenance planning for these.
- Control of energy consumption, generation and distribution to maximize the use of renewable power systems efficiency.

Smart sensors are fundamental to advancing engineering monitoring with accurate and real-time information that supports decision-making [10]. Efficiency, safety and cost savings across engineering domains are realised through the integration of sensing, processing and communication technologies within smart sensors. Smart sensors will continue to have a significant impact on the future of engineering practices as we venture further into an age where solutions, products and services need intelligent monitoring capabilities.

3. Intelligent Systems: An Overview

An intelligent system is a union of advanced computational technologies that are equipped to process,

interpret, and act upon data in the manner akin to human decision making [11]. The applications of engineering monitoring as such are able to be performed in a better manner with these systems through artificial intelligence (AI), machine learning, and data analytics. This section covers the basics of intelligent systems including their parts, functions and a little on technology enabling them.

Intelligent systems have the next attributes:

- To leverage both history and real-time data and refine the processes in the interest of achieving better performance.
- Adapt to Variant Conditions and Novel Scientific information in Real-time. • None of your answers will suffice if the facts change; Be ready between now and time (X), it must be part of the scalability perspective!
- Predictive Analytics, this subcategory seeks to forecast what will happen based on previous patterns and learn from data.
- Make autonomous decisions or simply provide decision-support recommendations.

Communicate with other systems and human operators, Subsystem architecture Intelligent system components are made of two parts:

- Data Collection from multiple sources (smart sensors, Databases and External APIs)
- Query where the raw data is filtered, aggregated and transformed into a format that can be consumed.
- Utilizing models for analysing data, supervised (un)supervised or reinforcement learning
- Deploy neural networks, decision trees and similar AI models to understand complex data and emulate human reasoning.
- Making decisions based on rule-based systems, optimization algorithms and heuristic methods.
- This is the step where responses as well as actions can be taken on decisions of machine-like triggering alarms, setting up controls or scheduling maintenance.

4.Functionalities and Benefits

Intelligent systems provide several features that can revolutionize engineering monitoring [12]:

- Data from sensors will be analyzed so that equipment failures can be predicted, and maintenance scheduled before any problems occur, reducing downtime as well as the costs involved in repairs.
- Spotting anomalies, and early-stage failures in real-time to take corrective actions immediately.
- Iterating on operational parameters to drive efficiency, throughput, and utilization.

- Automating repetitive tasks and decision-making, providing human bandwidth to focus on high-level work.
- Process big data volumes from multiple sensors and sources, allowing them to be used in large-scale engineering systems.

5.Applications in Engineering Monitoring

Monitoring capabilities are improved using intelligent systems that have been implemented across many engineering domains [13]:

- Automatic monitoring of condition using accelerometers, strain gauges and other sensors and automatic analysis by intelligent systems (bridges, buildings, etc.) They can anticipate the risk of failures, direct maintenance operations and ensure structural integrity.
- Control systems that process temperature, humidity, and chemical sensor data to monitor air and water quality, identify pollutants Katie-just wondering if maybe include in computerized control systems as industrial or manufacturing or same thing. and predict environmental disasters Contributes to regulatory compliance and protects public health.
- Smart components are fitted with intelligent systems which interpret data from smart sensors embedded in machinery to identify wear and tear, predict breakdowns and optimize maintenance schedules. As a result, your company can achieve higher operational efficiencies and lower costs of maintenance.
- Intelligent systems using data from sensors in roads, railways and bridges to control traffic flow, detect structural stresses & plan maintenance actions resulting in increased safety and reduced congestion.
- Using intelligent systems to monitor and improve power generation, energy use, and distribution Smart metering and grid sensor data holds the key, helping them along with analyzing demand-supply situation more accurately as well improving energy efficiency by aligning renewable power.

6.Advantages

Intelligent systems offer several benefits in the monitoring of engineering [14]:

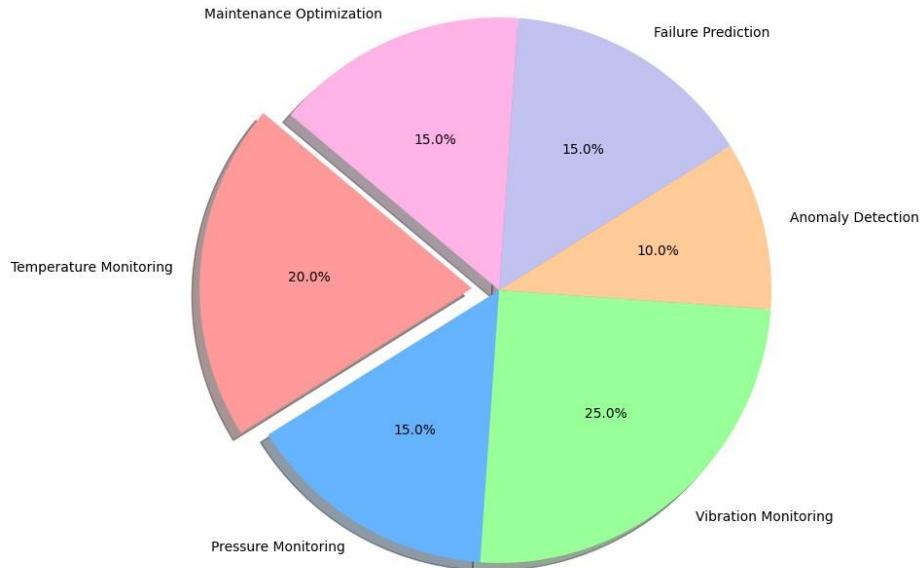
- Improved monitoring and analysis with advanced algorithms & real-time processing of data.

- Automation and optimization reduce manual effort, improve workforce productivity with lower costs of operations.
- Predictive functions let for proactive servicing and administration that avoids escalations.
- Intelligent systems use big data and analytics to provide actionable insights that help in making decisions.
- Big Data systems are highly scalable and can support a lot of data or manage use cases with the one-centric infrastructure.

7. Results and discussion

Engineering monitoring has seen multiple advancements across several domains in large part due to the combiner smart sensors and intelligent systems. Since the wide

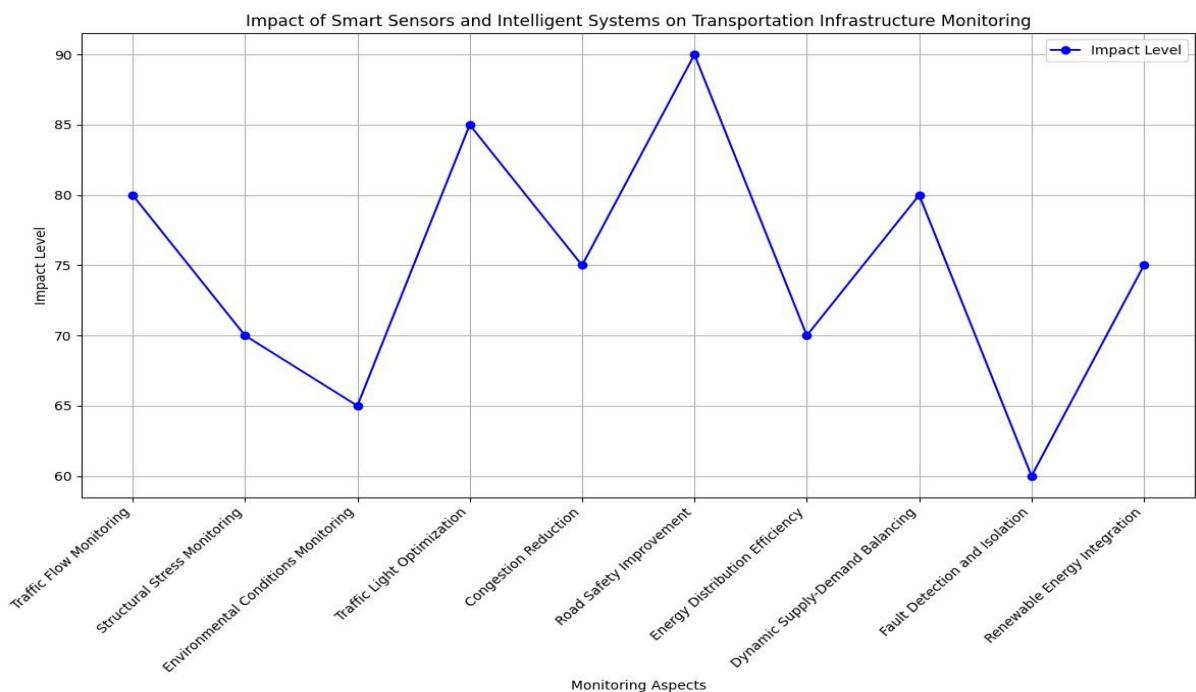
application of smart sensors (e.g., accelerometers, strain gauges), and intelligent algorithms in structural health monitoring [15] solutions for detection and prediction of building issues have significantly improved. Research has shown that the ability of these technologies to detect even very small changes at a structural level, which could result in failure risks and adopted preventive maintenance strategies. For example, in bridge monitoring, around-the-clock data gathering and real-time processing for instance has enabled the identification of cracks early on, as well as excessive vibrations effectively avoiding catastrophic failures that may have occurred had they been overlooked while also prolonging live spanning life cycle of these critical infrastructures.

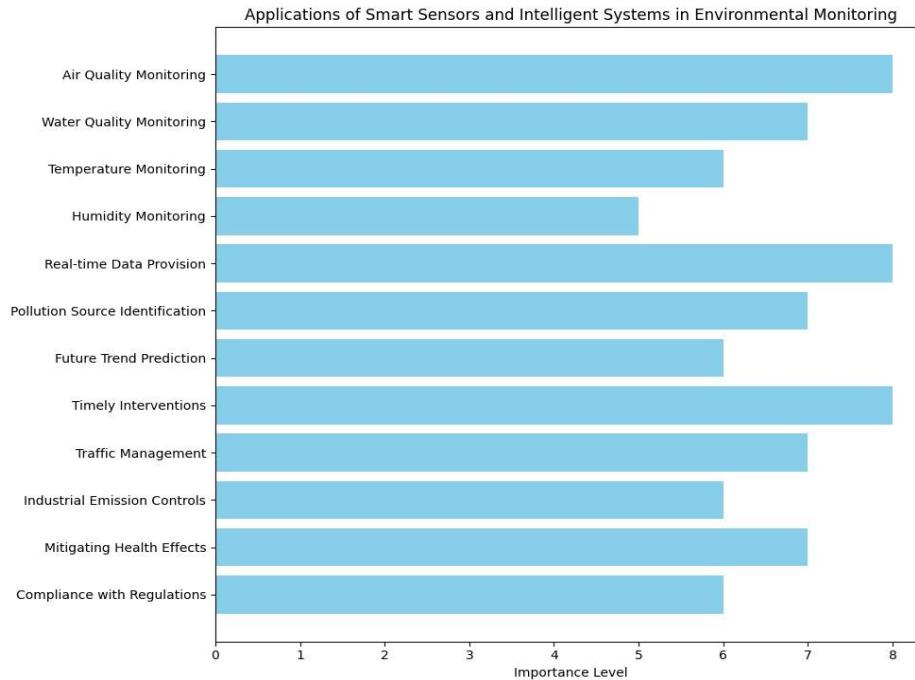

Table 1 Key aspects of smart sensors

Aspect	Details
Technology	Smart sensors (accelerometers, strain gauges) and intelligent algorithms
Application Domain	Structural Health Monitoring (SHM)
Key Functions	Detection and prediction of structural issues
Specific Use Case	Bridge monitoring
Capabilities	- Identifying minute structural changes - Predicting potential failures - Enabling proactive maintenance strategies
Methods	- Continuous data collection - Real-time analysis
Benefits	- Early detection of cracks and excessive vibrations - Prevention of catastrophic failures - Extension of infrastructure lifespan
Outcome	Enhanced safety and longevity of critical infrastructure through proactive and predictive maintenance strategies enabled by smart sensors and intelligent systems

Adaptions of smart sensors and intelligent systems are also applicable for environmental monitoring [16]. Real-time data allows timely action to be taken in terms of environment protection and public health monitoring, e.g. air/water quality measurements, temperatures/humidity recordings etc. Smart sensors in urban air quality monitoring have as well helped to identify pollution sources and predict future patterns. These data are used by intelligent systems to intervene, when necessary, for example in controlling traffic whereby we inhale exhaust gases from engines and industrial emissions because they could potentially affect our health, or simply control if the industry complies with environmental laws.

Advanced smart sensors integrated into the equipment in performing like Industrial Machinery Monitoring had


data collecting pivotal function, and those would be including temperature, pressure or vibration levels such information was then sent SOS to reign FPS. These data are analyzed by intelligent systems, which in turn can recognize anomalies and predict when equipment will fail - ultimately optimizing maintenance schedules. Manufacturing Plant-Case studies in manufacturing plants demonstrate the prediction capabilities of such systems and how it helps to reduce downtime (due to predictive maintenance) and also significant cost savings in maintaining multiple equipment's [17] These technologies help in scheduling maintenance activities at times when issues can be anticipated before they occur, thereby eliminating unplanned downtimes and contributing to a higher overall operational efficiency.


Fig 2 Pie chart illustrating the different aspects of industrial machinery monitoring using smart sensors and intelligent systems

Real-time, intelligent Transportation monitoring also has significant impact could be drawn from the quick physical sensory perceptions provided by Schematic-based Smart sensors and Grid Computing systems that framelet offerings [18]. Roadways, railways and instance are fitted with sensors that also determine the level of traffic congestion at any given time. Typically, these vary from motion sensing devices to automatic number plate recognition. The data is used by smart systems to improvise customers' safety, real-time traffic

management and for scheduling maintenance works etc. To give a few examples: smart road projects are being used to calibrate traffic light timings, minimize congestion and enhance of on-road safety. In the energy sector, for example, smart grids with intelligent systems have increased efficiency and reliability. Such systems manage supply-demand dynamically, detect and isolate faults as soon as they occur, gracefully add new renewable energy sources to sustain a greener ecology.

Fig 3 Line chart illustrating the impact of smart sensors and intelligent systems on transportation infrastructure monitoring

Fig 4 Bar chart illustrating the application of smart sensors and intelligent systems in environmental monitoring

8.Challenges and Future Prospects

Intelligent systems are a driving force to transform engineering monitoring, providing the possibility of more accurate, efficient and effective monitoring processes [19]. These systems leverage AI, ML and data analytics to deliver predictive insights, automate certain decisions and optimize operations across multiple engineering domains [20]. This feature will become increasingly emphasized with the ability of intelligent systems to evolve and develop as time advances, hence becoming essential in shaping the future of engineering by triggering new ideas while enhancing dependability and sustainability aspects for implemented projects [21].

- Protecting the privacy of sensitive data with gathered and processed by intelligent systems.
- Integrating Intelligent Systems into Existing Infrastructure and Legacy Applications can be difficult
- Transparency and explainability of AI, ML algorithms used in decision-making
- valuable storage/computing space tough and expensive
- Building applications over tremendous data in streams is anything but a simple job, making the way toward utilizing, you need to model not possible for most regular organizations.
- Further refinement of algorithms to enhance accuracy and decision-making.
- Enhanced edge computing is used to process data from near the source, which helps reduce latency as well as facilitate bulky swelling of device-generated information over low bandwidth endpoints.

- Expansion of the Internet of Things (IoT) network that allow even further devices to be connected, and in turns opens for full comprehensive monitoring solutions. •
- Creating smart systems for sustainable engineering and minimizing the environmental footprint.
- Improve human-operator collaboration and merge the computation power with manpower.

9.Conclusion

Engineering monitoring has been revolutionized by smart sensors and intelligent systems that offer cutting-edge capabilities for data collection, processing, as well decision making. These technologies provide numerous efficiency, safety and cost saving advantages within various engineering fields. However, challenges remain as future innovations in AI, IoT or new computing paradigms will help to make smart sensors and intelligent systems even "smarter" by expanding their horizon of capabilities.

References

- [1] Civerchia, F., Bocchino, S., Salvadori, C., Rossi, E., Maggiani, L., & Petracca, M. (2017). Industrial Internet of Things monitoring solution for advanced predictive maintenance applications. *Journal of Industrial Information Integration*, 7, 4-12.
- [2] Deng, W., Li, R., & Zhao, Y. (2018). Smart sensors and intelligent systems in structural health monitoring: A review. *Measurement*, 121, 2-23.
- [3] Fekrat, F., Torkzadeh, P., & Yadollahi, A. (2018). Smart sensors for structural health monitoring:

Challenges and solutions. *Journal of Sensors*, 2018, 1-10.

[4] Alonso, M., Amaris, H., Alcala, D., & Florez R, D. M. (2020). Smart sensors for smart grid reliability. *Sensors*, 20(8), 2187. DOI:10.3390/s20082187

[5] Gungor, V. C., & Hancke, G. P. (2009). Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches. *IEEE Transactions on Industrial Electronics*, 56(10), 4258-4265.

[6] Hou, R., Hu, N., & Fukunaga, H. (2017). Intelligent sensor network-based damage detection of structures using wavelet analysis and principal component analysis. *Smart Materials and Structures*, 26(5), 055002.

[7] Jawhar, I., Mohamed, N., & Agrawal, D. P. (2011). Linear wireless sensor networks: Classification and applications. *Journal of Network and Computer Applications*, 34(5), 1671-1682.

[8] Jiang, J., & Li, Y. (2014). A review of machine learning applications for structural health monitoring. *Structural Control and Health Monitoring*, 21(5), 760-787.

[9] Karray, F., Alemzadeh, M., Abou Saleh, J., & Amour, M. (2008). Human-Computer Interaction: Overview on State of the Art. *International Journal on Smart Sensing and Intelligent Systems*, 1(1), 137-159.

[10] Haratian, R. (2022). Motion capture sensing technologies and techniques: a sensor agnostic approach to address wearability challenges. *Sensing and Imaging*, 23(1), 25.

[11] Lee, J., Bagheri, B., & Jin, C. (2016). Introduction to cyber manufacturing. *Manufacturing Letters*, 8, 11-15.

[12] Liu, Z., Xu, Y., & Su, L. (2015). Smart sensors and intelligent systems for structural health monitoring: A review of recent advances. *Journal of Intelligent Material Systems and Structures*, 26(9), 1047-1063.

[13] Lynch, J. P., & Loh, K. J. (2006). A summary review of wireless sensors and sensor networks for structural health monitoring. *Shock and Vibration Digest*, 38(2), 91-130.

[14] Mohammadi, F., & Nasrabadi, A. M. (2017). Smart sensors and Internet of Things (IoT) in structural health monitoring: Trends, challenges, and future prospects. *Journal of Civil Structural Health Monitoring*, 7(3), 337-358.

[15] Jolfaei, A., Menon, V. G., Lv, C., Bashir, A. K., Tan, Y. K., & Kant, K. (2021). Guest editorial advanced sensing and sensor fusion for intelligent transportation systems. *IEEE Sensors Journal*, 21(14), 15425-15426. DOI:10.1109/JSEN.2021.3081195

[16] Ozevin, D., & Harding, J. E. (2012). Smart sensors network for structural health monitoring of a highway bridge. *IEEE Transactions on Industrial Electronics*, 59(10), 3998-4004.

[17] Park, G., Sohn, H., Farrar, C. R., & Inman, D. J. (2003). Overview of piezoelectric impedance-based health monitoring and path forward. *The Shock and Vibration Digest*, 35(6), 451-463.

[18] Su, C.W., & Chen, W. (2022). Design of remote real-time monitoring and control management system for smart home equipment based on wireless multihop sensor network. *Journal of Sensors*. DOI:10.1155/2022/6228440

[19] Spencer, B. F., & Ruiz-Sandoval, M. E. (2007). Smart sensing technology: Opportunities and challenges. *Structural Control and Health Monitoring*, 14(3), 213-221.

[20] Sun, L., Zhang, L., Li, Z., & Li, J. (2010). Application of smart sensors and intelligent systems in structural health monitoring. *Sensors*, 10(3), 2052-2080.

[21] Wang, M. L., & Wu, Z. S. (Eds.). (2014). *Structural Health Monitoring and Intelligent Infrastructure* (Vol. 1). CRC Press.