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Abstract: Clustering streaming data poses unique challenges that are different from traditional batch processing. Conventional clustering 

methods struggle with the high volume, speed, and diversity of data due to limitations in memory, computing power, and processing time. 

The challenges of clustering large datasets include limited storage capacity, the requirement to process the data in a single pass, and the 

concept drift of the data. A novel method, incremental fuzzy double clustering (IFDC) has been proposed to tackle these challenges. IFDC 

is an innovative version of Fuzzy c-Means (FCM) and incremental clustering. It divides the data into groups based on memory capacity 

and clusters them. Relevant samples from each group are selected using stratified sampling and k-Medoid methods and then transferred to 

the next group. This process carries the essence of the data from the beginning to the end. The newly reached dataset can be easily merged 

with the last block of data and clustered, instead of clustering the entire dataset as it arrives. The performance of IFDC was evaluated using 

Silhouette, Davies-Bouldin, and Calinski Harabasz Indexes, and the results demonstrate that IFDC outperforms traditional techniques such 

as FCM and k-means by successfully overcoming the challenges of clustering large data. The benefits of IFDC include improved efficiency 

and reduced clustering time. It efficiently manages large streaming datasets by continuously accommodating new data and utilizing 

sampling methods, thereby enhancing accuracy, reducing execution time, and eliminating the need for complete re-clustering. 
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1. INTRODUCTION  

The encroachment of technology leads to the generation 

of a massive amount of data daily. This data contains 

essential information. The large data sometimes refers 

streaming data, is a continuous flow of generated and 

processed in real-time or near real-time. Unlike 

traditional batch processing, where data is collected and 

processed in discrete chunks or batches, large data is 

processed as it is produced, allowing for immediate 

analysis and response. The large or streaming data is 

typically generated from various sources such as IoT 

devices, sensors, social media platforms, financial 

transactions, and weblogs. These sources consistently 

produce a steady stream of data, which can be substantial 

in terms of volume, velocity, and variety. In today's real-

world applications, data streams are widely utilized. Data 

clustering is an effective method for analyzing and 

extracting valuable information from large datasets. 

However, clustering huge datasets presents significant 

challenges in data analysis and machine learning. This is 

because it involves partitioning a massive amount of data 

into meaningful groups or clusters based on their 

similarities. This process aims to uncover inherent 

structures, patterns, or relationships within the dataset, 

even when dealing with large volumes of data. Clustering 

essentially involves dividing a set of data objects or 

populations into homogeneous groups. Traditional 

clustering techniques may struggle to handle these 

challenges due to limitations in memory, processing 

power, and time constraints. 

With the rise of Big Data, which has led to an exponential 

growth in dataset size, clustering algorithms need to be 

scalable, efficient, and capable of handling the 

computational complexity associated with such vast 

amounts of data. Cluster analysis of streaming data poses 

unique challenges due to data streams' dynamic and 

continuous nature. Unlike batch data, huge data cannot be 

stored entirely in memory, requiring the clustering 

process to be performed in a single pass. Conducting an 

additional scan is often unfeasible. Consequently, 

algorithms must process the data using limited memory, 

which can influence the quality of clustering results. 

The vast data often exhibits concept drift, meaning that 

the underlying data distribution may change over time. 

Additionally, large data can contain outliers and noisy 

data points that can significantly impact the accuracy of 

the clustering process. Identifying and handling these 

anomalies in real-time presents a considerable challenge. 

Clustering algorithms must be able to adapt to these 

changes to maintain accurate clusters. Moreover, 

selecting initial cluster centers for data stream clustering 

can be challenging. Traditional methods that rely on all 

data points for initialization are not suitable for streaming 

data. 

Several clustering methods, such as FCM clustering, have 

been developed to handle large amounts of data. FCM is 

a highly effective data technique that allows for the 
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classification of objects into multiple clusters by 

assessing their similarities. Unlike traditional clustering 

algorithms, FCM offers a soft assignment of data points 

to clusters, allowing for partial membership. This results 

in a more nuanced representation of complex data 

patterns. However, traditional static clustering algorithms 

are not appropriate for dynamic datasets, especially when 

data is entered in batches. This is because FCM, the 

clustering algorithm, requires the entire data to be in 

memory at once, which becomes unreasonably time-

consuming for datasets that are too large for the main 

memory. This slows down the clustering process and 

reduces its performance. Additionally, the results of FCM 

can be influenced by the initial placement of cluster 

centers, leading to different cluster structures with 

different initializations. FCM is computationally 

demanding, especially for large datasets or when there are 

a high number of clusters. Ensuring the robustness of 

FCM in the presence of data variations or concept drift is 

a challenge, especially for real-time applications. 

Moreover, outliers can have a significant impact on FCM 

results, so it is important to identify and handle them 

appropriately. 

The majority of existing fuzzy clustering methods are 

primarily intended for small, static datasets. However, 

with the continuous expansion of streaming data sources, 

the size of these datasets can become enormous at 

different intervals. Consequently, it becomes challenging 

to store the entirety of the data in memory all at once. An 

effective streaming algorithm should possess the 

capability to adapt to changes in the data, while still 

extracting valuable information from the complete 

dataset. Since it is assumed that loading all the data into 

memory is not feasible, non-incremental algorithms for 

expediting FCM or hard c-means are typically not 

applicable to clustering very large datasets. 

An innovative approach known as Incremental Fuzzy c-

Means  Double clustering (IFDC), which is based on 

incremental style FCM, is proposed to address the 

challenges of clustering a data stream. Incremental 

clustering is a data analysis technique that allows for the 

clustering of data points as they are acquired, rather than 

clustering all of them at once. This approach eliminates 

the need to load the entire dataset into memory 

simultaneously. The utilization of memory is optimized 

through the use of incremental clustering. The 

characteristics of each chunk are passed on to the next 

chunk by incorporating selected elements. IFDC can 

easily incorporate new data sets into the existing clusters, 

rather than repeatedly clustering the entire dataset as new 

data arrives. This approach improves performance and 

reduces the workload. The IFDC method is efficient in 

terms of memory storage and effectively handles large 

data. 

2. RELATED WORKS 

Fuzzy logic has been successfully applied in various 

fields, including control systems, decision-making, 

pattern recognition, image processing, natural language 

processing, and expert systems[1].  

Fuzziness was incorporated into the ISODATA algorithm 

to improve the detection of compact, well-separated 

clusters. This was initiated by Dunn who introduced a 

fuzzy version of the ISODATA process[2]. J.C. Bezdek 

[3] has made significant contributions to the field of fuzzy 

clustering. He focuses on developing and applying fuzzy 

clustering algorithms that use fuzzy objective functions to 

partition data into meaningful groups. Bezdek[4]  

transmitted FCM into the FORTRAN-IV code. A S 

Bozkire and E A Sezer[5] designed the Fuzzy Clustering 

Analysis Tool (FUAT) to perform clustering algorithms 

that incorporate the concept of fuzziness. FUAT also 

analyses, investigates, and visualises the clusters 

produced using the FCM method.  

Fuzzy clustering has applications in many fields, 

including control systems, decision-making, data mining, 

and artificial intelligence. Agbonifo and O Catherine[6] 

determine students’ learning inclinations by applying 

FCM clustering in the Honey and Mumford learning 

fashion. H. Izakian and A Abraham[7] propose a 

crossover between Fuzzy Clustering (FCM) and Fuzzy 

Particle Swarm Optimization (FPSO), aiming to enhance 

clustering by leveraging swarm algorithms' exploration 

and exploitation capabilities. Telmo M. Silva Filho[8] 

introduced two particle swarm optimization methods, 

FCM-IDPSO and FCM2-IDPSO. They are the result of 

combining FCM with a recent version of PSO and 

enhanced self-adaptive particle swarm optimization 

(IDPSO). Mahmoudi et al [9] proposed a fuzzy clustering 

approach to analyse and compare the spread rate of 

COVID-19 and the population size in high-risk countries 

using Pearson correlation. Tao Lei et al. [10] improved 

the FCM algorithm based on morphological 

reconstruction and membership filtering called Fast and 

Robust FCM (FRFCM ). Thomas Bonis and Steve Oudot 

[11] presented an advanced FCM for the mode-seeking 

framework.  Mode-finding algorithm determines a 

density function's modes or local maxima, and FCM 

clusters the dataset.  

Zhang Siqing et al. [12] introduced a clustering protocol 

based on fuzzy logic for Multi-hop wireless sensor 

networks (FLCMN). The FLCMN extends the life of 

wireless sensor networks (WSNs) and lessens energy 

consumption. O. M. Saad [13] enhanced the Earthquake 

Early Warning System (EEWS) with the help of  FPCM  
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algorithm. It recognises the arrival time of the earthquake 

and sounds an alarm as a warning. Paweł Karczmarek et 

al. [14] improved the Isolation Forest algorithm by 

incorporating FCM, which calculates anomaly scores by 

calculating membership grades of elements and forming 

Isolation Forest nodes into clusters. Mahmoud Salah [15] 

utilized FCM clustering to partition point cloud data into 

clusters based on spatial characteristics, a technique 

widely used in point cloud processing and filtering tasks. 

Jian-Ping Mei [16] introduces Hyperspherical FCM 

(HFCM) and Fuzzy Co-clustering. These novel 

approaches offer a fresh perspective on managing high-

dimensional data by enhancing scalability, which 

addresses the challenges associated with clustering 

sizable document datasets. 

Incremental clustering is an efficient technique for 

handling large volumes of data. It dynamically updates 

clustering models as new data becomes available, without 

reprocessing the entire dataset. This makes it well-suited 

for streaming or large-scale data, allowing the model to 

adapt to changes in data distribution over time. 

Incremental clustering is a scalable and memory-

optimized approach that can process data in smaller 

batches, making it an effective solution for working with 

enormous volumes of data. Runhai Jiao et al. [17] 

proposed two methods to improve incremental kernel 

fuzzy clustering effectiveness: optimizing the initial 

cluster center based on distance and incremental 

clustering characteristics, and using multiple passing 

points. Arnaud Ribert et.al [18] presented a new 

algorithm that uses hierarchical clustering to handle time 

incremental data. It modifies the hierarchical 

representation of data rather than recomputing the entire 

tree when new patterns need to be taken into 

consideration. F.Can [19] developed the Cover-

Coefficient-based Incremental Clustering Methodology 

(C2ICM), an economical and versatile algorithm for 

updating and removing old documents from a large 

number of documents. Fazli Can  et al [20] conducted 

experiments on the MARIAN database, implementing the 

C2ICM method for incremental clustering, addressing 

C3M's shortcomings and saving time and money 

compared to C3M. 

W Zhao et al [21] introduced an incremental anomaly 

detection technique based on the Gaussian Mixture 

Model (GMM) to identify typical patterns and 

exceptional cases in digital flight data. The model updates 

clusters using new data, retaining model parameters and 

addressing challenges in flight operations. Prodip Hore et 

al. [22] have developed a Single Pass FCM(SPFCM) 

algorithm for large data sets, offering efficient, 

comparable data partitions and improved clustering speed 

compared to traditional algorithms. P. Hore et al [23] 

introduced an online fuzzy clustering algorithm capable 

of clustering both streaming data and significantly large 

datasets, addressing the challenge of the unavailability of 

the entire dataset and the difficulty in determining 

partitions. Jian-Ping Mei et al [24] developed a 

methodology incorporating incremental fuzzy clustering 

techniques to improve document categorization accuracy 

and efficiency in web and text mining tasks. 

Mahmoud Al-Ayyoub's study [25] introduces a GPU-

powered breast cancer detection system using SPFCM 

clustering algorithm, enhancing accuracy and efficiency 

through advanced clustering techniques. Yangyang Li et 

al. [26] introduced a new approach to the SPFCM 

algorithm, incorporating density peaks to improve 

accuracy and efficiency. The algorithm reorders samples 

and assigns weights based on density peaks, but requires 

significant time for computation. Mitchell D. Woodbright 

[27] initiated the Unsupervised Incremental Clustering 

Algorithm (UIClust), an incremental clustering technique 

that detects concept drift, improving the accuracy and 

adaptability of clustering processes. Sirisup Laohakiat 

and Vera Saing[28] introduced Fuzzy Incremental 

Density-based Clustering (FIDC). This incremental 

density-based method enhances accuracy and adaptability 

by combining incremental and fuzzy local clustering 

techniques for large datasets. L. Wang, P. Xu, and Q. Ma 

[29] presented a method for incrementally clustering time 

series data using fuzzy clustering. This approach involves 

two stages: offline and online. In offline, a fuzzy 

clustering validity evaluation index determines the 

optimal number of clusters. Online, the algorithm updates 

existing clusters dynamically. Preeti Jha [30] designed 

the Scalable Incremental Fuzzy Consensus Clustering 

(SIFCC) algorithm for big data frameworks, enhancing 

scalability by handling large-scale data efficiently 

through an incremental approach using Apache Spark 

cluster framework. 

Existing fuzzy clustering methods are designed for small, 

static datasets. However, with the expansion of streaming 

data sources, the dataset size can become enormous, 

making it challenging to store the entire data in memory. 

Non-incremental techniques are not frequently applicable 

to clustering streaming data sets since they assume that 

all of the data can be put into memory. Although  SPFCM 

and OFCM algorithms are inadequate when addressing 

streaming data. The present study investigates the 

challenges of the abovementioned algorithms and 

proposes to address the shortcomings by introducing a 

novel algorithm called the Incremental Fuzzy c-Means 

Double Clustering (IFDC) method. IFDC allows for the 

clustering of data points as they are acquired, eliminating 

the need to load the entire dataset into memory 

simultaneously. IFDC optimizes memory usage, adapts to 
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changes in data, and seamlessly integrates new data sets 

into existing clusters. This enhances performance and 

efficiently handles large data sets. It effectively manages 

streaming datasets by consistently accommodating new 

data and utilizing sampling techniques. As a result, 

accuracy is improved, execution time is minimized, and 

the need for complete re-clustering is eliminated. 

3. BACKGROUND ALGORITHMS 

The proposed system is a novel approach called IFDC,  

designed to address the issues of clustering streaming or 

large data. The outline of the main background algorithms 

used in the proposed system is as follows:    

3.1 FUZZY C-MEANS CLUSTERING (FCM) 

FCM, a variant of the c-means clustering method, is the 

most widely utilized fuzzy-based clustering algorithm[4]. 

A dataset may be divided into clusters using the FCM 

clustering technique, in which each data point has a 

particular degree of membership in each cluster. In 

contrast to more traditional methods like k-means or 

hierarchical clustering, the fuzzy clustering algorithm 

provides a more nuanced and adaptable method of data 

grouping. The objective function of FCM is minimized as 

 

Where V={v1, v2, v3, . . . ..vc} is c cluster centers, 

U={uij}n×c is the membership matrix, and X={x1, x2, x3, · 

· · xn} is the data set with n data points. The uij is the 

membership of xj in class i, ∥xj − vi∥
2 Euclidean distance 

between the data point xj and the cluster center vi. FCM 

is attempting to find the best U and V values to minimize 

the objective function. Algorithm 1 shows the FCM  

algorithm[31]. The input parameters are the dataset X=xj, 

j=1,2,..n, c number of clusters, m the degree of 

fuzzification i.e. m > 1, ε the target value. 

Algorithm 1: FCM 

1. State the number of the cluster k. 

2. Randomly initialize the cluster center V 

3. Compute the membership value uij using the cluster 

centers 

4. Update the cluster center V’, using the new 

membership values 

5. Check the difference between the old and new cluster 

centers ie. V’-V 

6. Repeat steps 3, 4 and 5 until  V’-V ≤ target value or a 

maximum number of iterations is reached. 

The number of clusters is selected and randomly 

initialized. In step 3, the membership value uij of each data 

point is evaluated using the cluster centers, where uij 

represents the degree to which data point i belongs to 

cluster j. Then in step 4, update the cluster centres based 

on the newly calculated membership value. The sets of 

current and previous cluster centres are compared and 

evaluate the differences. FCM algorithm is stopped when 

the difference value (V’-V) reaches the target value or a 

maximum number of iterations is reached. The 

convergence speed of the FCM is influenced by the initial 

value and may fall into local optimization in the case of a 

huge number of clusters. The steps to compute the degree 

of membership and the new centres of each cluster are 

repeated until the algorithm terminates. 

3.2 INCREMENTAL CLUSTERING 

The time series data sets are quite large and it is not 

possible to accommodate in the main memory. One way 

to handle this is to move the time series to the main 

memory and store the whole data matrix in a secondary 

memory. This approach stores just the cluster structure in 

the main memory to get around the space constraint and 

updates it piecemeal. Incremental clustering allows for 

the processing of large datasets by dividing them into 

smaller subsets, which are clustered separately[32]. This 

method avoids the need to load the entire dataset into 

memory at once, making it feasible to analyze massive 

data incrementally. Rather than analyzing the full dataset 

at once, the clustering algorithm works on a subset of the 

data at a time. A separate clustering technique, such as K-

means or FCM, is applied to each data segment. 

Following that, the cluster centers are merged or 

amalgamated and clustered once again. The most recent 

cluster center is used to group all of the data points. 

Iterative repetition of the technique is necessary if the 

dataset is huge. The clustering procedure should be 

restarted whenever new data is introduced to the dataset. 

Although these techniques are challenging to use, they 

somewhat address the issue of grouping enormous 

datasets.  

4. PROPOSED SYSTEM 

 Clustering large datasets and data that were too large to 

fit in the main memory took longer with the FCM 

approach. Additionally, it is challenging to mine useful 

information from the whole data collection while 

accepting flowing input and responding to data changes. 

For FCM clustering, all of the data must be in the main 

memory at all times. OFCM clustering partially solves 

these issues. In the event of a huge dataset, further 

computations are required, and the procedure must be 

repeated. The issue of limited memory storage can be 

resolved by the IFDC system, which can manage flowing 

data. Additionally, it minimizes the number of 

calculations and algorithm iterations.  

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148  |  2138 

 

 

4.1 Incremental FCM Double Clustering  Algorithm 

The IFDC algorithm's structure is shown in Fig. 1. The 

entire dataset is split up into smaller groups, called 

chunks, chunks 1, chunk 2,... chunk n. The first chunk is 

divided into n number of clusters via the FCM method. 

Representatives from each cluster will be selected using 

 
Fig 1: Structure of the IFDC 

 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148  |  2139 

the sampling procedure, and they will be combined into 

chunk 2. This procedure keeps on till chunk n. Since the 

information of one subset spreads to the next, it is simple 

to cluster datasets based on this knowledge when a fresh 

stream of data is added. The large data is simply handled 

by the IFDC. To manage the subsets, the IFDC clustering 

only needs a small amount of memory space at a time. As 

a result, more RAM will be used, and massive data can be 

clustered.  

The IFDC system is designed to handle large datasets 

efficiently and incrementally. The algorithm for this 

system is outlined in Algorithm 2. The IFDC algorithm 

takes the input parameters: X the dataset, c the number of 

clusters, m the fuzzification factor, n the size of the data 

subset. The large dataset of N items is divided into s 

smaller subsets, X1, X2, ..., Xs, where each subset Xi 

contains data points from x(i-1)n+1 to xin. ie. X1 contains n1 

items. The final subset's dimensions could vary 

somewhat. This divide-and-conquer approach allows the 

system to handle very large datasets effectively. 

The first subset X1 is loaded into memory and clustered 

using the FCM algorithm, which returns the 

ClusterLabels. The ClusterLabels, sampling rate rs, and  

the current subset Xi are used as input to the GetReps() 

function. The GetReps() function considers each cluster 

and extracts representative data points as reps using the 

Sampling() function. The Sampling() function determines 

the number of representatives k based on the sampling 

rate rs and the size of the cluster. The k-medoids 

algorithm is used to find the cluster centers, which are 

returned reps. The representative data points from the 

current subset are added to the next subset, which helps 

to increase the speed of clustering and allows for faster 

convergence. 

The k-medoids algorithm used in the IFDC system 

reduces the cost and improves the efficiency of the 

clustering process. It ensures an equal contribution of data 

points from every cluster, and each member of the group 

has an equal chance of being chosen as a representative 

using the sampling method. By iterating through the 

subsets and adding representative data points from one 

subset to the next, the IFDC system achieves faster 

convergence and increased clustering speed. This 

knowledge transmission between subsets is a key feature 

of the algorithm. The algorithm iterates through each 

subset. 

The first subset involves fetching and storing n1 items in 

memory out of a total of N items. The FCM technique is 

used to cluster the n1 objects into c partitions. r1 items as 

reps were chosen as representatives from these c clusters 

using the k-medoid algorithm and a sampling technique. 

The first chunk of data is clustered using FCM, the 

memory is cleaned, and the subsequent n2 items are put 

into memory in the subsequent subset, adding to the r1 

items that were chosen in the preceding stage. There will 

be n2 + r1 items in the memory for clustering. 

 The FCM technique is used to cluster the data, and 

r2 items are chosen for the following step. Similarly, the 

r2 items from the second level are added to the n3 things 

that are retrieved in the third subset. n3 + r2 will be the 

total number of elements for clustering at the third level. 

Similarly, following the mth subset, the memory for 

clustering will include just nm + rm−1 items. As a result, 

just a portion of the data is loaded into the memory 

depending on memory availability, as opposed to loading 

N items. Every subset's significance increases from the 

start to the finish, allowing for the same clustering of 

newly received data. 

5. PERFORMANCE EVALUATION 

The performance evaluation involves a systematic 

assessment of the algorithm's accuracy, speed, scalability, 

and robustness. It determines the effectiveness and 

efficiency of IFDC in solving a particular problem. By 

analyzing these metrics, it is easy to identify the strengths 

and weaknesses of the algorithm, compare it with other 

existing methods, and make informed decisions about its 

practical applicability. It also conducts a comprehensive 

performance evaluation of IFDC, utilizing a range of 

datasets and performance indicators to ensure a thorough 

and objective assessment. 

5.1 DATESET & EVALUATION CRITERIA 

The following two-dimensional datasets, IRIS, Diamond, 

and Codon Datasets, are utilized in this study. These 

datasets have been sourced from the UCI machine 

learning repository. The IRIS dataset encompasses 150 

samples and 4 features, which provide measurements for 

the length and width of sepals and petals of three distinct 

species of the iris flower. The Diamond dataset comprises 

observations regarding the patterns and behaviours of 

various diamond types, encompassing both continuous 

and categorical features. It encompasses a total of 53,941 

samples with 10 features. The Codon dataset contains 

13,028 data rows, each consisting of 65 attributes. This 

dataset elucidates the codon usage frequencies observed 

in the genomic coding DNA of a diverse sample of 

organisms. 

The performance evaluation of the IFDC system is based 

on the distances between clusters and the distances 

between data points within a cluster, as this algorithm 

operates as an unsupervised clustering method. To 

measure the reliability of clustering, three clustering 

metrics are utilized: the Silhouette Index (SI), Davies-

Bouldin Index (DB), and Calinski-Harabasz Index (CH). 

The Silhouette Index is computed by considering each 
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sample's mean intra-cluster distance and the mean inter-

cluster distance [33][29]. Let N represent the total number 

of data points in the dataset, Nc denote the number of 

clusters, Ci represents the ith  cluster, ni indicates the 

number of objects in Ci, and Vi symbolises cluster Ci's 

centre. The Silhouette Index is defined as  

 

Where a, represents the average distance between an 

object and all other objects in the same cluster, and b, 

represents the mean distance between an object and the 

nearest cluster that it does not belong to. It is crucial to 

highlight that the Silhouette coefficient can only be 

defined when the number of labels falls within the range 

of 2 <= nlabels <= nsamples –1. The Silhouette coefficient 

ranges from 1 to -1, with 1 indicating well-defined 

clusters, negative values indicating incorrect cluster 

assignments, and values close to zero suggesting 

overlapping clusters. 

The Davies-Bouldin index (DB)[34][35] is used to assess 

the average ratio of within-cluster distances to between-

cluster distances. The better cluster is indicated by values 

that are closer to zero. The mathematical formula for the 

Davies-Bouldin index is as follows: 

 

where the distance between x and vi is denoted by        d(x, 

vi). Values that are closer to 0 imply a better cluster.  

The Calinski Harabasz index is a ratio that compares the 

within-cluster dispersion to the between-cluster 

dispersion [29]. This ratio is used to assess the quality of 

the clustering.  

For CH, the equation is: 

 

Where N is total number of points in a dataset, Nc is the 

number of clusters, d(x,vi ) is the distance between x and 

vi,  ni number of objects in Ci, Ci the ith cluster, vi is the 

centre of cluster Ci, d(vi, vj) is the distance between the 

centers vi and vj .  

5.2 RESULTS 

The main objective of this study is to investigate the 

clustering ability of the IFDC algorithm. To assess the 

clustering optimization performance of IFDC, the 

algorithm was tested on three datasets: IRIS, Diamond, 

and Codon.The results of applying the IFDC algorithm to 

the three datasets are presented in the following tables and 

figures. In this experiment, the sample rates of 25%, 50%, 

and 75% are considered.  

Table 1 contains results from an analysis of clustering 

algorithms on the IRIS dataset, evaluated with the CH, 

DB and SI indices across different sampling rates of 25%, 

50%, 75% and numbers of clusters. The experiment 

evaluates clustering performance for clusters of 2, 3, 4, 5, 

and 6. The average values of the evaluation 

measurements are given in the table.  

Lower values of the DB index at higher sampling rates 

indicate better clustering performance with more data. 

From table 1,  it is inferred that better DB values occur 

for all the clusters except 2 at the sampling rate of 0.5. 

The higher sampling rates generally improve cluster 

quality and the increasing cluster numbers can reduce 

performance, as evidenced by lower DB values. 

Table 1:DB, SI and CH values at sampling rates 25%,50% and 75% of IRIS 

IRIS Dataset 

DB Value 

Clusters 2 3 4 5 6 

S
a

m
p

li
n

g
 

ra
te

 

25 0.709246 0.84248 0.9868 1.134478 1.02757 

50 0.530241 0.79597 0.90932 0.98965 0.94418 

75 0.526976 0.80149 0.91786 1.010647 0.98154 

SI Value 

Clusters 2 3 4 5 6 

S
a

m
p

li
n

g
 r

a
te

 

25 0.503529 0.38814 0.32199 0.256179 0.29881 

50 0.601448 0.44612 0.38121 0.371213 0.34435 
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75 0.612414 0.46768 0.41128 0.358394 0.32286 

CH Value 

Clusters 2 3 4 5 6 

S
a

m
p

li
n

g
  

 

ra
te

  

25 95.2483 99.25 83.3217 70.8782 80.6906 

50 191.1109 203.605 179.083 168.7035 160.854 

75 295.084 296.54 264.995 260.2495 215.033 

 

The higher SI values represent better-defined clusters. 

The peak SI values were recorded at a sampling rate of 

0.75 for clusters 2, 3, and 4, while for the remaining two 

clusters, the highest SI values were achieved at a 

sampling rate of 0.5. It shows an improvement in 

clustering quality with a higher sampling rate. The value 

decreases as the number of clusters increases. The higher 

sampling rates consistently yield higher SI values, 

indicating better clustering performance with more data. 

The CH value generally decreases as clusters increase, 

suggesting diminishing returns for adding more clusters 

beyond a certain point. The table effectively shows how 

clustering performance, measured by the Calinski-

Harabasz index, varies with different sampling rates and 

cluster counts. The higher sampling rate ie 0.75 leads to 

higher CH values, indicating better clustering 

performance. However, increasing the number of clusters 

tends to lower the CH value, implying a trade-off in 

cluster quality. The highest cluster homogeneity CH 

values are observed across all clusters at a sampling rate 

of 0.75. 

Table 2 illustrates the performance of different clustering 

configurations of the dataset Diamond. The metrics are 

analyzed across various cluster numbers, including 5, 7, 

9, 10, and 12. Different sampling rates of 25%, 50%, and 

75% are also considered. The choice of cluster number is 

based on the number of options available in different 

features. For instance, a feature like ‘cut’ has 5 options, 

so cluster 5 is considered. 

DB values show how different configurations perform in 

terms of cluster separation, with lower values being 

preferable. The lowest DB is detected for clusters 5,10 

and 12 at the rate 0.5, for cluster 7 at the rate of 0.25 and 

for cluster 9 at the rate of 0.75. The lowest DB value 

occurred at the sampling rate of 0.5. The higher SI values 

indicate better clustering. The highest SI value occurs for 

clusters 5 and 10 at the rate of 0.75 and for clusters 7,9 

and 12 at 0.25. The better SI value is detected at the rate 

of 0.25.  CH values vary significantly across different 

sampling rates and cluster numbers. The better CH value 

is observed at different sampling rates for the different 

clusters.  The highest CH values are observed for clusters 

5 and 9 at a sampling rate of 0.25, for clusters 10 and 12 

at a sampling rate of 0.75, and for cluster 7 at a sampling 

rate of 0.5. The highest CH value is detected at the 

sampling rate of 0.75. It explains that the better DB value 

for clusters 5, 10, and 12 at the sampling rate is 0.5, and 

for other clusters at the rate of 0.75. The good SI value is 

obtained at sample rates of 0.5 and 0.75. The biggest CH 

value occurred at different sampling rates for other 

clusters.  

 

 

 

 

 

Table 2:  DB, SI and CH values at sampling rate 25%,50% and 75% of Diamond 

DIAMOND Dataset 

DB Value 

Clusters 5 7 9 10 12 

S
a

m
p

li
n

g
 

ra
te

 

25 0.374925 0.471 0.45625 0.439072 0.44904 

50 0.37273 0.43814 0.4378 0.37991 0.4109 

75 0.406356 0.42786 0.4183 0.450351 0.43512 

SI Value 

Clusters 5 7 9 10 12 
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S
a

m
p

li
n

g
 

ra
te

 

25 0.699423 0.598 0.5786 0.613647 0.6095 

50 0.715096 0.60799 0.63204 0.691537 0.62092 

75 0.67506 0.65422 0.63976 0.6121 0.61058 

CH Value 

Clusters 5 7 9 10 12 

S
a

m
p

li
n

g
 

ra
te

 

25 336357 132844 456955 211509.1 261580 

50 249950.6 203560 245157 368012 416925 

75 195373 298110 375260 322169.7 401276 

This study effectively demonstrates the impact of 

sampling rates and cluster numbers on clustering 

performance across three metrics. By analyzing these 

metrics, it can determine the highest value of CH obtained 

at the rate of 0.75, better DB at the rate of 0.5 and SI at 

the rate of 0.25. 

Table 3 provides the three indices DB, SI and CH values 

on the CODON dataset at different sampling rates. The 

results are analyzed across various numbers of clusters (4, 

6, 8, 10) and sampling rates (25, 50, 75). 

The DB index evaluates cluster separation and 

compactness. The lowest DB values are observed with a 

sampling rate of 25 suggesting the best compactness and 

separation under these conditions. The SI index assesses 

the quality of clusters based on cohesion and separation. 

Higher sampling rates improve SI values, indicating 

better cohesion and separation with more data. The 

sampling rate of 0.75 offers the best clusters. The CH 

index measures the separation between clusters. The 

highest CH value is obtained at the sampling rate of 0.25. 

The CH index suggests that more clusters are better 

defined in smaller samples. It illustrates the values of 

different criteria on the dataset Codon. The smallest DB 

and the highest CH value have occurred at the sampling 

rate of 0.25. The sampling rate of 0.75 gives a better value 

of SI. It can be inferred that better results occur at a higher 

sampling rate. 

Table 3:  DB, SI and CH values at sampling rates 25% ,50% and 75% of Codon 

CODON Dataset 

DB Value 

Clusters  4 6 8 10 

S
a

m
p

li
n

g
 

ra
te

 

25 0.274633 0.2871426 0.2955118 0.359897 

50 0.338189 0.3099534 0.3272583 0.402313 

75 0.339609 0.3903017 0.4080424 0.452782 

SI Value 

Clusters  4 6 8 10 

S
a

m
p

li
n

g
 

ra
te

 

25 0.967591 0.9384476 0.9207127 0.861704 

50 0.971292 0.9408224 0.9213075 0.879243 

75 0.97209 0.9447104 0.9367976 0.905392 

CH Value 

Clusters  4 6 8 10 

S
a

m
p

li
n

g
 

ra
te

 

25 115710.6 280781.1 249304.63 658381.6 

50 26790.16 101967.21 186975.80 192611.4 

75 24697.26 51682.155 65256.20 107526.9 
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The implementation of IFDC algorithm on three datasets 

IRIS, Diamond and Codon and the corresponding graphs 

are demonstrated. Figure 2, 3 and 4 illustrates the values 

of three evaluation criteria DB, SI, and CH of each 

incremental block of IRIS. The whole data is divided into 

blocks of size 50. i.e. 3 blocks, and added in the 

incremental order. The horizontal axis represents the 

number of blocks. It goes from 1 to 3. The DB, SI, and 

CH are shown on the vertical axis. Every block has been 

clustered and use the validity measurements to evaluate 

it. The IRIS dataset case study considers clusters 2, 3, 5, 

and 6 at the sampling rate of 0.75.  

 

 

Fig 2: DB score of IRIS at Incremental blocks 

Figure 2 indicates that the best DB values are associated 

with cluster 2. It suggests that cluster 2 is the most 

compact and well-defined structure among all the clusters 

in the dataset. SI values are explained in Figure 3. It is 

clear from the graph that cluster 2 has the best SI value. 

Figure 4 shows the CH value and it recommends the 

cluster 3. From the three validity measures its 

recommended cluster option is 2 or 3 for the IRIS dataset.  

 

 

 

Fig 3: SI score of IRIS at Incremental blocks 

 

Fig 4: CH score of IRIS at Incremental blocks 
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Figures 5, 6 and 7 indicate the criteria values DB, SI, and 

CH of dataset Diamond for clusters 5,7,9,10,12. The 

dataset is divided into 6 blocks of size 10000. The size of 

the last block varies. From Table 2, it can be understood 

that the sampling rate of 0.5 is acceptable for DB and SI 

values. So the DB and SI values are calculated using the 

sampling rate of 0.5, and CH at 0.75. The x-axis 

represents the number of blocks, ranging from 1 to 6. The 

y-axis corresponds to the DB, SI, and CH values. Based 

on Figures 5, 6 and 7 it can be deduced that cluster 7 is 

the best.  

 

 

Fig 5: DB value of Diamond at Incremental blocks 

 

Fig 6: SI value of Diamond at Incremental blocks 

 

Fig 7:CH value of Diamond at Incremental blocks 

 

Figures 8, 9 and 10 exhibit the values of dataset Codon for 

clusters 4, 6, 8, and 10. The whole dataset is divided into 

14 blocks. There are 13 blocks with a size of 1000 and 

the last one with a different size. Based on Table 3, the 

preferable sampling rate for DB and CH is 0.25 and for 

SI it is 0.75. Figures 8, 9 and 10 visually represent the 

clustering performance for each cluster in the dataset 

Codon. The horizontal axis depicts the number of blocks 

from 1 to 14. The vertical axis represents the values for 

DB, SI and CH. According the graphs 8 and 9 it is 

understood that cluster 6 is the best one. The figure 10 

depicts CH value and shows that cluster 8 is the best. 
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Fig 8:DB value of Codon at Incremental blocks 

 

Fig 9:SI value of Codon at Incremental blocks 

 

 

Fig 10:CH value of Codon at Incremental blocks 

Figures 11, 12 and 13 illustrate the analytical study of the 

three clustering techniques i.e. IFDC, Simple FCM, and k-

means. The analysis was done on three datasets IRIS, 

Diamond, and Codon using three validity measures. The 

promising two clusters from each dataset were considered 

for comparison study. According to Figures 2, 3, and 4, 

clusters 2 and 3 of the IRIS dataset are selected. From 

Figures 6, 7, and 8, clusters 9 and 12 of the Diamond 

dataset are chosen. Similarly, from Figures 9, 10, and 11, 

clusters 6 and 8 of the Codon dataset are considered. The 

sampling rate taken in this experiment is 0.75. 

The vertical axis represents two criteria number of clusters 

and the validity measures. The horizontal axis represents 

the values of each validity measure. In essence, the graph 

suggests that the IFDC depicts better results while 

clustering large data. 
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Fig 11: Comparison of IFDC, FCM and K-means on IRIS 

 

Fig 12: Comparison of IFDC, FCM and K-means on Diamond 

 

Fig 13: Comparison of IFDC, FCM and K-means on Codon 

It can be inferred that IFDC clustering has the highest 

index values compared to the FCM and k-means clustering 

methods. From the values, it is deciphered that while using 

a small dataset the results of the IFDC are not always 

superior to that of the others. IFDC operates similarly to 

simple FCM and k-means when employing a small dataset 

as a single set such as the IRIS dataset. At the same time, 

it performs well in a large dataset. This is deciphered by 

the values of criteria measures of other datasets. IFDC 

segregates the complete data into small chunks according 

to the size of the memory and then processes it. It enhances 

memory consumption while reducing the problem of 

limited memory. IFDC also handles streaming data very 

efficiently by propagating the characteristics of each block 

to the next one. 

6. CONCLUSION 

The Incremental FCM Double Clustering (IFDC) 

algorithm offers a significant advancement in handling 

large datasets and streaming data by overcoming the 

limitations of traditional FCM clustering. IFDC segments 

the data into manageable chunks processes each chunk 
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individually, and uses a representative sampling technique 

to merge and propagate knowledge through subsequent 

chunks. This method reduces the need for extensive 

memory and repetitive calculations, enhancing efficiency 

and performance, particularly with large and dynamic 

datasets. 

However, while IFDC addresses many challenges, some 

issues remain. Anomalies and the selection of initial 

cluster centers still pose difficulties, and further research 

is needed to refine these aspects. Overall, IFDC marks a 

notable improvement in data clustering, particularly for 

real-time applications and streaming data, providing a 

robust foundation for future advancements in the field. 

This study provided insights into the strengths, potential 

and weaknesses areas for improvement of the IFDC 

algorithm. 
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