

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2134

Incremental Fuzzy Clustering Algorithm For Large Datasets

Ani Davis K. 1, Dr. Raj Mathew 2

Submitted:14/03/2024 Revised: 29/04/2024 Accepted: 06/05/2024

Abstract: Clustering streaming data poses unique challenges that are different from traditional batch processing. Conventional clustering

methods struggle with the high volume, speed, and diversity of data due to limitations in memory, computing power, and processing time.

The challenges of clustering large datasets include limited storage capacity, the requirement to process the data in a single pass, and the

concept drift of the data. A novel method, incremental fuzzy double clustering (IFDC) has been proposed to tackle these challenges. IFDC

is an innovative version of Fuzzy c-Means (FCM) and incremental clustering. It divides the data into groups based on memory capacity

and clusters them. Relevant samples from each group are selected using stratified sampling and k-Medoid methods and then transferred to

the next group. This process carries the essence of the data from the beginning to the end. The newly reached dataset can be easily merged

with the last block of data and clustered, instead of clustering the entire dataset as it arrives. The performance of IFDC was evaluated using

Silhouette, Davies-Bouldin, and Calinski Harabasz Indexes, and the results demonstrate that IFDC outperforms traditional techniques such

as FCM and k-means by successfully overcoming the challenges of clustering large data. The benefits of IFDC include improved efficiency

and reduced clustering time. It efficiently manages large streaming datasets by continuously accommodating new data and utilizing

sampling methods, thereby enhancing accuracy, reducing execution time, and eliminating the need for complete re-clustering.

Keywords: Incremental Fuzzy c-Means Double clustering, Fuzzy c-Means, Silhouette, Davies-Bouldin, Calinski Harabasz

1. INTRODUCTION

The encroachment of technology leads to the generation

of a massive amount of data daily. This data contains

essential information. The large data sometimes refers

streaming data, is a continuous flow of generated and

processed in real-time or near real-time. Unlike

traditional batch processing, where data is collected and

processed in discrete chunks or batches, large data is

processed as it is produced, allowing for immediate

analysis and response. The large or streaming data is

typically generated from various sources such as IoT

devices, sensors, social media platforms, financial

transactions, and weblogs. These sources consistently

produce a steady stream of data, which can be substantial

in terms of volume, velocity, and variety. In today's real-

world applications, data streams are widely utilized. Data

clustering is an effective method for analyzing and

extracting valuable information from large datasets.

However, clustering huge datasets presents significant

challenges in data analysis and machine learning. This is

because it involves partitioning a massive amount of data

into meaningful groups or clusters based on their

similarities. This process aims to uncover inherent

structures, patterns, or relationships within the dataset,

even when dealing with large volumes of data. Clustering

essentially involves dividing a set of data objects or

populations into homogeneous groups. Traditional

clustering techniques may struggle to handle these

challenges due to limitations in memory, processing

power, and time constraints.

With the rise of Big Data, which has led to an exponential

growth in dataset size, clustering algorithms need to be

scalable, efficient, and capable of handling the

computational complexity associated with such vast

amounts of data. Cluster analysis of streaming data poses

unique challenges due to data streams' dynamic and

continuous nature. Unlike batch data, huge data cannot be

stored entirely in memory, requiring the clustering

process to be performed in a single pass. Conducting an

additional scan is often unfeasible. Consequently,

algorithms must process the data using limited memory,

which can influence the quality of clustering results.

The vast data often exhibits concept drift, meaning that

the underlying data distribution may change over time.

Additionally, large data can contain outliers and noisy

data points that can significantly impact the accuracy of

the clustering process. Identifying and handling these

anomalies in real-time presents a considerable challenge.

Clustering algorithms must be able to adapt to these

changes to maintain accurate clusters. Moreover,

selecting initial cluster centers for data stream clustering

can be challenging. Traditional methods that rely on all

data points for initialization are not suitable for streaming

data.

Several clustering methods, such as FCM clustering, have

been developed to handle large amounts of data. FCM is

a highly effective data technique that allows for the

1* Vimala College, Thrissur, Kerala 680009, India

E-mail: anidavisk@gmail.com
2 St Thomas College, Palai, Kerala 686574, India

E-mail:mathewrajm@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2135

classification of objects into multiple clusters by

assessing their similarities. Unlike traditional clustering

algorithms, FCM offers a soft assignment of data points

to clusters, allowing for partial membership. This results

in a more nuanced representation of complex data

patterns. However, traditional static clustering algorithms

are not appropriate for dynamic datasets, especially when

data is entered in batches. This is because FCM, the

clustering algorithm, requires the entire data to be in

memory at once, which becomes unreasonably time-

consuming for datasets that are too large for the main

memory. This slows down the clustering process and

reduces its performance. Additionally, the results of FCM

can be influenced by the initial placement of cluster

centers, leading to different cluster structures with

different initializations. FCM is computationally

demanding, especially for large datasets or when there are

a high number of clusters. Ensuring the robustness of

FCM in the presence of data variations or concept drift is

a challenge, especially for real-time applications.

Moreover, outliers can have a significant impact on FCM

results, so it is important to identify and handle them

appropriately.

The majority of existing fuzzy clustering methods are

primarily intended for small, static datasets. However,

with the continuous expansion of streaming data sources,

the size of these datasets can become enormous at

different intervals. Consequently, it becomes challenging

to store the entirety of the data in memory all at once. An

effective streaming algorithm should possess the

capability to adapt to changes in the data, while still

extracting valuable information from the complete

dataset. Since it is assumed that loading all the data into

memory is not feasible, non-incremental algorithms for

expediting FCM or hard c-means are typically not

applicable to clustering very large datasets.

An innovative approach known as Incremental Fuzzy c-

Means Double clustering (IFDC), which is based on

incremental style FCM, is proposed to address the

challenges of clustering a data stream. Incremental

clustering is a data analysis technique that allows for the

clustering of data points as they are acquired, rather than

clustering all of them at once. This approach eliminates

the need to load the entire dataset into memory

simultaneously. The utilization of memory is optimized

through the use of incremental clustering. The

characteristics of each chunk are passed on to the next

chunk by incorporating selected elements. IFDC can

easily incorporate new data sets into the existing clusters,

rather than repeatedly clustering the entire dataset as new

data arrives. This approach improves performance and

reduces the workload. The IFDC method is efficient in

terms of memory storage and effectively handles large

data.

2. RELATED WORKS

Fuzzy logic has been successfully applied in various

fields, including control systems, decision-making,

pattern recognition, image processing, natural language

processing, and expert systems[1].

Fuzziness was incorporated into the ISODATA algorithm

to improve the detection of compact, well-separated

clusters. This was initiated by Dunn who introduced a

fuzzy version of the ISODATA process[2]. J.C. Bezdek

[3] has made significant contributions to the field of fuzzy

clustering. He focuses on developing and applying fuzzy

clustering algorithms that use fuzzy objective functions to

partition data into meaningful groups. Bezdek[4]

transmitted FCM into the FORTRAN-IV code. A S

Bozkire and E A Sezer[5] designed the Fuzzy Clustering

Analysis Tool (FUAT) to perform clustering algorithms

that incorporate the concept of fuzziness. FUAT also

analyses, investigates, and visualises the clusters

produced using the FCM method.

Fuzzy clustering has applications in many fields,

including control systems, decision-making, data mining,

and artificial intelligence. Agbonifo and O Catherine[6]

determine students’ learning inclinations by applying

FCM clustering in the Honey and Mumford learning

fashion. H. Izakian and A Abraham[7] propose a

crossover between Fuzzy Clustering (FCM) and Fuzzy

Particle Swarm Optimization (FPSO), aiming to enhance

clustering by leveraging swarm algorithms' exploration

and exploitation capabilities. Telmo M. Silva Filho[8]

introduced two particle swarm optimization methods,

FCM-IDPSO and FCM2-IDPSO. They are the result of

combining FCM with a recent version of PSO and

enhanced self-adaptive particle swarm optimization

(IDPSO). Mahmoudi et al [9] proposed a fuzzy clustering

approach to analyse and compare the spread rate of

COVID-19 and the population size in high-risk countries

using Pearson correlation. Tao Lei et al. [10] improved

the FCM algorithm based on morphological

reconstruction and membership filtering called Fast and

Robust FCM (FRFCM). Thomas Bonis and Steve Oudot

[11] presented an advanced FCM for the mode-seeking

framework. Mode-finding algorithm determines a

density function's modes or local maxima, and FCM

clusters the dataset.

Zhang Siqing et al. [12] introduced a clustering protocol

based on fuzzy logic for Multi-hop wireless sensor

networks (FLCMN). The FLCMN extends the life of

wireless sensor networks (WSNs) and lessens energy

consumption. O. M. Saad [13] enhanced the Earthquake

Early Warning System (EEWS) with the help of FPCM

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2136

algorithm. It recognises the arrival time of the earthquake

and sounds an alarm as a warning. Paweł Karczmarek et

al. [14] improved the Isolation Forest algorithm by

incorporating FCM, which calculates anomaly scores by

calculating membership grades of elements and forming

Isolation Forest nodes into clusters. Mahmoud Salah [15]

utilized FCM clustering to partition point cloud data into

clusters based on spatial characteristics, a technique

widely used in point cloud processing and filtering tasks.

Jian-Ping Mei [16] introduces Hyperspherical FCM

(HFCM) and Fuzzy Co-clustering. These novel

approaches offer a fresh perspective on managing high-

dimensional data by enhancing scalability, which

addresses the challenges associated with clustering

sizable document datasets.

Incremental clustering is an efficient technique for

handling large volumes of data. It dynamically updates

clustering models as new data becomes available, without

reprocessing the entire dataset. This makes it well-suited

for streaming or large-scale data, allowing the model to

adapt to changes in data distribution over time.

Incremental clustering is a scalable and memory-

optimized approach that can process data in smaller

batches, making it an effective solution for working with

enormous volumes of data. Runhai Jiao et al. [17]

proposed two methods to improve incremental kernel

fuzzy clustering effectiveness: optimizing the initial

cluster center based on distance and incremental

clustering characteristics, and using multiple passing

points. Arnaud Ribert et.al [18] presented a new

algorithm that uses hierarchical clustering to handle time

incremental data. It modifies the hierarchical

representation of data rather than recomputing the entire

tree when new patterns need to be taken into

consideration. F.Can [19] developed the Cover-

Coefficient-based Incremental Clustering Methodology

(C2ICM), an economical and versatile algorithm for

updating and removing old documents from a large

number of documents. Fazli Can et al [20] conducted

experiments on the MARIAN database, implementing the

C2ICM method for incremental clustering, addressing

C3M's shortcomings and saving time and money

compared to C3M.

W Zhao et al [21] introduced an incremental anomaly

detection technique based on the Gaussian Mixture

Model (GMM) to identify typical patterns and

exceptional cases in digital flight data. The model updates

clusters using new data, retaining model parameters and

addressing challenges in flight operations. Prodip Hore et

al. [22] have developed a Single Pass FCM(SPFCM)

algorithm for large data sets, offering efficient,

comparable data partitions and improved clustering speed

compared to traditional algorithms. P. Hore et al [23]

introduced an online fuzzy clustering algorithm capable

of clustering both streaming data and significantly large

datasets, addressing the challenge of the unavailability of

the entire dataset and the difficulty in determining

partitions. Jian-Ping Mei et al [24] developed a

methodology incorporating incremental fuzzy clustering

techniques to improve document categorization accuracy

and efficiency in web and text mining tasks.

Mahmoud Al-Ayyoub's study [25] introduces a GPU-

powered breast cancer detection system using SPFCM

clustering algorithm, enhancing accuracy and efficiency

through advanced clustering techniques. Yangyang Li et

al. [26] introduced a new approach to the SPFCM

algorithm, incorporating density peaks to improve

accuracy and efficiency. The algorithm reorders samples

and assigns weights based on density peaks, but requires

significant time for computation. Mitchell D. Woodbright

[27] initiated the Unsupervised Incremental Clustering

Algorithm (UIClust), an incremental clustering technique

that detects concept drift, improving the accuracy and

adaptability of clustering processes. Sirisup Laohakiat

and Vera Saing[28] introduced Fuzzy Incremental

Density-based Clustering (FIDC). This incremental

density-based method enhances accuracy and adaptability

by combining incremental and fuzzy local clustering

techniques for large datasets. L. Wang, P. Xu, and Q. Ma

[29] presented a method for incrementally clustering time

series data using fuzzy clustering. This approach involves

two stages: offline and online. In offline, a fuzzy

clustering validity evaluation index determines the

optimal number of clusters. Online, the algorithm updates

existing clusters dynamically. Preeti Jha [30] designed

the Scalable Incremental Fuzzy Consensus Clustering

(SIFCC) algorithm for big data frameworks, enhancing

scalability by handling large-scale data efficiently

through an incremental approach using Apache Spark

cluster framework.

Existing fuzzy clustering methods are designed for small,

static datasets. However, with the expansion of streaming

data sources, the dataset size can become enormous,

making it challenging to store the entire data in memory.

Non-incremental techniques are not frequently applicable

to clustering streaming data sets since they assume that

all of the data can be put into memory. Although SPFCM

and OFCM algorithms are inadequate when addressing

streaming data. The present study investigates the

challenges of the abovementioned algorithms and

proposes to address the shortcomings by introducing a

novel algorithm called the Incremental Fuzzy c-Means

Double Clustering (IFDC) method. IFDC allows for the

clustering of data points as they are acquired, eliminating

the need to load the entire dataset into memory

simultaneously. IFDC optimizes memory usage, adapts to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2137

changes in data, and seamlessly integrates new data sets

into existing clusters. This enhances performance and

efficiently handles large data sets. It effectively manages

streaming datasets by consistently accommodating new

data and utilizing sampling techniques. As a result,

accuracy is improved, execution time is minimized, and

the need for complete re-clustering is eliminated.

3. BACKGROUND ALGORITHMS

The proposed system is a novel approach called IFDC,

designed to address the issues of clustering streaming or

large data. The outline of the main background algorithms

used in the proposed system is as follows:

3.1 FUZZY C-MEANS CLUSTERING (FCM)

FCM, a variant of the c-means clustering method, is the

most widely utilized fuzzy-based clustering algorithm[4].

A dataset may be divided into clusters using the FCM

clustering technique, in which each data point has a

particular degree of membership in each cluster. In

contrast to more traditional methods like k-means or

hierarchical clustering, the fuzzy clustering algorithm

provides a more nuanced and adaptable method of data

grouping. The objective function of FCM is minimized as

Where V={v1, v2, v3,vc} is c cluster centers,

U={uij}n×c is the membership matrix, and X={x1, x2, x3, ·

· · xn} is the data set with n data points. The uij is the

membership of xj in class i, ∥xj − vi∥
2 Euclidean distance

between the data point xj and the cluster center vi. FCM

is attempting to find the best U and V values to minimize

the objective function. Algorithm 1 shows the FCM

algorithm[31]. The input parameters are the dataset X=xj,

j=1,2,..n, c number of clusters, m the degree of

fuzzification i.e. m > 1, ε the target value.

Algorithm 1: FCM

1. State the number of the cluster k.

2. Randomly initialize the cluster center V

3. Compute the membership value uij using the cluster

centers

4. Update the cluster center V’, using the new

membership values

5. Check the difference between the old and new cluster

centers ie. V’-V

6. Repeat steps 3, 4 and 5 until V’-V ≤ target value or a

maximum number of iterations is reached.

The number of clusters is selected and randomly

initialized. In step 3, the membership value uij of each data

point is evaluated using the cluster centers, where uij

represents the degree to which data point i belongs to

cluster j. Then in step 4, update the cluster centres based

on the newly calculated membership value. The sets of

current and previous cluster centres are compared and

evaluate the differences. FCM algorithm is stopped when

the difference value (V’-V) reaches the target value or a

maximum number of iterations is reached. The

convergence speed of the FCM is influenced by the initial

value and may fall into local optimization in the case of a

huge number of clusters. The steps to compute the degree

of membership and the new centres of each cluster are

repeated until the algorithm terminates.

3.2 INCREMENTAL CLUSTERING

The time series data sets are quite large and it is not

possible to accommodate in the main memory. One way

to handle this is to move the time series to the main

memory and store the whole data matrix in a secondary

memory. This approach stores just the cluster structure in

the main memory to get around the space constraint and

updates it piecemeal. Incremental clustering allows for

the processing of large datasets by dividing them into

smaller subsets, which are clustered separately[32]. This

method avoids the need to load the entire dataset into

memory at once, making it feasible to analyze massive

data incrementally. Rather than analyzing the full dataset

at once, the clustering algorithm works on a subset of the

data at a time. A separate clustering technique, such as K-

means or FCM, is applied to each data segment.

Following that, the cluster centers are merged or

amalgamated and clustered once again. The most recent

cluster center is used to group all of the data points.

Iterative repetition of the technique is necessary if the

dataset is huge. The clustering procedure should be

restarted whenever new data is introduced to the dataset.

Although these techniques are challenging to use, they

somewhat address the issue of grouping enormous

datasets.

4. PROPOSED SYSTEM

 Clustering large datasets and data that were too large to

fit in the main memory took longer with the FCM

approach. Additionally, it is challenging to mine useful

information from the whole data collection while

accepting flowing input and responding to data changes.

For FCM clustering, all of the data must be in the main

memory at all times. OFCM clustering partially solves

these issues. In the event of a huge dataset, further

computations are required, and the procedure must be

repeated. The issue of limited memory storage can be

resolved by the IFDC system, which can manage flowing

data. Additionally, it minimizes the number of

calculations and algorithm iterations.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2138

4.1 Incremental FCM Double Clustering Algorithm

The IFDC algorithm's structure is shown in Fig. 1. The

entire dataset is split up into smaller groups, called

chunks, chunks 1, chunk 2,... chunk n. The first chunk is

divided into n number of clusters via the FCM method.

Representatives from each cluster will be selected using

Fig 1: Structure of the IFDC

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2139

the sampling procedure, and they will be combined into

chunk 2. This procedure keeps on till chunk n. Since the

information of one subset spreads to the next, it is simple

to cluster datasets based on this knowledge when a fresh

stream of data is added. The large data is simply handled

by the IFDC. To manage the subsets, the IFDC clustering

only needs a small amount of memory space at a time. As

a result, more RAM will be used, and massive data can be

clustered.

The IFDC system is designed to handle large datasets

efficiently and incrementally. The algorithm for this

system is outlined in Algorithm 2. The IFDC algorithm

takes the input parameters: X the dataset, c the number of

clusters, m the fuzzification factor, n the size of the data

subset. The large dataset of N items is divided into s

smaller subsets, X1, X2, ..., Xs, where each subset Xi

contains data points from x(i-1)n+1 to xin. ie. X1 contains n1

items. The final subset's dimensions could vary

somewhat. This divide-and-conquer approach allows the

system to handle very large datasets effectively.

The first subset X1 is loaded into memory and clustered

using the FCM algorithm, which returns the

ClusterLabels. The ClusterLabels, sampling rate rs, and

the current subset Xi are used as input to the GetReps()

function. The GetReps() function considers each cluster

and extracts representative data points as reps using the

Sampling() function. The Sampling() function determines

the number of representatives k based on the sampling

rate rs and the size of the cluster. The k-medoids

algorithm is used to find the cluster centers, which are

returned reps. The representative data points from the

current subset are added to the next subset, which helps

to increase the speed of clustering and allows for faster

convergence.

The k-medoids algorithm used in the IFDC system

reduces the cost and improves the efficiency of the

clustering process. It ensures an equal contribution of data

points from every cluster, and each member of the group

has an equal chance of being chosen as a representative

using the sampling method. By iterating through the

subsets and adding representative data points from one

subset to the next, the IFDC system achieves faster

convergence and increased clustering speed. This

knowledge transmission between subsets is a key feature

of the algorithm. The algorithm iterates through each

subset.

The first subset involves fetching and storing n1 items in

memory out of a total of N items. The FCM technique is

used to cluster the n1 objects into c partitions. r1 items as

reps were chosen as representatives from these c clusters

using the k-medoid algorithm and a sampling technique.

The first chunk of data is clustered using FCM, the

memory is cleaned, and the subsequent n2 items are put

into memory in the subsequent subset, adding to the r1

items that were chosen in the preceding stage. There will

be n2 + r1 items in the memory for clustering.

 The FCM technique is used to cluster the data, and

r2 items are chosen for the following step. Similarly, the

r2 items from the second level are added to the n3 things

that are retrieved in the third subset. n3 + r2 will be the

total number of elements for clustering at the third level.

Similarly, following the mth subset, the memory for

clustering will include just nm + rm−1 items. As a result,

just a portion of the data is loaded into the memory

depending on memory availability, as opposed to loading

N items. Every subset's significance increases from the

start to the finish, allowing for the same clustering of

newly received data.

5. PERFORMANCE EVALUATION

The performance evaluation involves a systematic

assessment of the algorithm's accuracy, speed, scalability,

and robustness. It determines the effectiveness and

efficiency of IFDC in solving a particular problem. By

analyzing these metrics, it is easy to identify the strengths

and weaknesses of the algorithm, compare it with other

existing methods, and make informed decisions about its

practical applicability. It also conducts a comprehensive

performance evaluation of IFDC, utilizing a range of

datasets and performance indicators to ensure a thorough

and objective assessment.

5.1 DATESET & EVALUATION CRITERIA

The following two-dimensional datasets, IRIS, Diamond,

and Codon Datasets, are utilized in this study. These

datasets have been sourced from the UCI machine

learning repository. The IRIS dataset encompasses 150

samples and 4 features, which provide measurements for

the length and width of sepals and petals of three distinct

species of the iris flower. The Diamond dataset comprises

observations regarding the patterns and behaviours of

various diamond types, encompassing both continuous

and categorical features. It encompasses a total of 53,941

samples with 10 features. The Codon dataset contains

13,028 data rows, each consisting of 65 attributes. This

dataset elucidates the codon usage frequencies observed

in the genomic coding DNA of a diverse sample of

organisms.

The performance evaluation of the IFDC system is based

on the distances between clusters and the distances

between data points within a cluster, as this algorithm

operates as an unsupervised clustering method. To

measure the reliability of clustering, three clustering

metrics are utilized: the Silhouette Index (SI), Davies-

Bouldin Index (DB), and Calinski-Harabasz Index (CH).

The Silhouette Index is computed by considering each

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2140

sample's mean intra-cluster distance and the mean inter-

cluster distance [33][29]. Let N represent the total number

of data points in the dataset, Nc denote the number of

clusters, Ci represents the ith cluster, ni indicates the

number of objects in Ci, and Vi symbolises cluster Ci's

centre. The Silhouette Index is defined as

Where a, represents the average distance between an

object and all other objects in the same cluster, and b,

represents the mean distance between an object and the

nearest cluster that it does not belong to. It is crucial to

highlight that the Silhouette coefficient can only be

defined when the number of labels falls within the range

of 2 <= nlabels <= nsamples –1. The Silhouette coefficient

ranges from 1 to -1, with 1 indicating well-defined

clusters, negative values indicating incorrect cluster

assignments, and values close to zero suggesting

overlapping clusters.

The Davies-Bouldin index (DB)[34][35] is used to assess

the average ratio of within-cluster distances to between-

cluster distances. The better cluster is indicated by values

that are closer to zero. The mathematical formula for the

Davies-Bouldin index is as follows:

where the distance between x and vi is denoted by d(x,

vi). Values that are closer to 0 imply a better cluster.

The Calinski Harabasz index is a ratio that compares the

within-cluster dispersion to the between-cluster

dispersion [29]. This ratio is used to assess the quality of

the clustering.

For CH, the equation is:

Where N is total number of points in a dataset, Nc is the

number of clusters, d(x,vi) is the distance between x and

vi, ni number of objects in Ci, Ci the ith cluster, vi is the

centre of cluster Ci, d(vi, vj) is the distance between the

centers vi and vj .

5.2 RESULTS

The main objective of this study is to investigate the

clustering ability of the IFDC algorithm. To assess the

clustering optimization performance of IFDC, the

algorithm was tested on three datasets: IRIS, Diamond,

and Codon.The results of applying the IFDC algorithm to

the three datasets are presented in the following tables and

figures. In this experiment, the sample rates of 25%, 50%,

and 75% are considered.

Table 1 contains results from an analysis of clustering

algorithms on the IRIS dataset, evaluated with the CH,

DB and SI indices across different sampling rates of 25%,

50%, 75% and numbers of clusters. The experiment

evaluates clustering performance for clusters of 2, 3, 4, 5,

and 6. The average values of the evaluation

measurements are given in the table.

Lower values of the DB index at higher sampling rates

indicate better clustering performance with more data.

From table 1, it is inferred that better DB values occur

for all the clusters except 2 at the sampling rate of 0.5.

The higher sampling rates generally improve cluster

quality and the increasing cluster numbers can reduce

performance, as evidenced by lower DB values.

Table 1:DB, SI and CH values at sampling rates 25%,50% and 75% of IRIS

IRIS Dataset

DB Value

Clusters 2 3 4 5 6

S
a

m
p

li
n

g

ra
te

25 0.709246 0.84248 0.9868 1.134478 1.02757

50 0.530241 0.79597 0.90932 0.98965 0.94418

75 0.526976 0.80149 0.91786 1.010647 0.98154

SI Value

Clusters 2 3 4 5 6

S
a

m
p

li
n

g
 r

a
te

25 0.503529 0.38814 0.32199 0.256179 0.29881

50 0.601448 0.44612 0.38121 0.371213 0.34435

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2141

75 0.612414 0.46768 0.41128 0.358394 0.32286

CH Value

Clusters 2 3 4 5 6

S
a

m
p

li
n

g

ra
te

25 95.2483 99.25 83.3217 70.8782 80.6906

50 191.1109 203.605 179.083 168.7035 160.854

75 295.084 296.54 264.995 260.2495 215.033

The higher SI values represent better-defined clusters.

The peak SI values were recorded at a sampling rate of

0.75 for clusters 2, 3, and 4, while for the remaining two

clusters, the highest SI values were achieved at a

sampling rate of 0.5. It shows an improvement in

clustering quality with a higher sampling rate. The value

decreases as the number of clusters increases. The higher

sampling rates consistently yield higher SI values,

indicating better clustering performance with more data.

The CH value generally decreases as clusters increase,

suggesting diminishing returns for adding more clusters

beyond a certain point. The table effectively shows how

clustering performance, measured by the Calinski-

Harabasz index, varies with different sampling rates and

cluster counts. The higher sampling rate ie 0.75 leads to

higher CH values, indicating better clustering

performance. However, increasing the number of clusters

tends to lower the CH value, implying a trade-off in

cluster quality. The highest cluster homogeneity CH

values are observed across all clusters at a sampling rate

of 0.75.

Table 2 illustrates the performance of different clustering

configurations of the dataset Diamond. The metrics are

analyzed across various cluster numbers, including 5, 7,

9, 10, and 12. Different sampling rates of 25%, 50%, and

75% are also considered. The choice of cluster number is

based on the number of options available in different

features. For instance, a feature like ‘cut’ has 5 options,

so cluster 5 is considered.

DB values show how different configurations perform in

terms of cluster separation, with lower values being

preferable. The lowest DB is detected for clusters 5,10

and 12 at the rate 0.5, for cluster 7 at the rate of 0.25 and

for cluster 9 at the rate of 0.75. The lowest DB value

occurred at the sampling rate of 0.5. The higher SI values

indicate better clustering. The highest SI value occurs for

clusters 5 and 10 at the rate of 0.75 and for clusters 7,9

and 12 at 0.25. The better SI value is detected at the rate

of 0.25. CH values vary significantly across different

sampling rates and cluster numbers. The better CH value

is observed at different sampling rates for the different

clusters. The highest CH values are observed for clusters

5 and 9 at a sampling rate of 0.25, for clusters 10 and 12

at a sampling rate of 0.75, and for cluster 7 at a sampling

rate of 0.5. The highest CH value is detected at the

sampling rate of 0.75. It explains that the better DB value

for clusters 5, 10, and 12 at the sampling rate is 0.5, and

for other clusters at the rate of 0.75. The good SI value is

obtained at sample rates of 0.5 and 0.75. The biggest CH

value occurred at different sampling rates for other

clusters.

Table 2: DB, SI and CH values at sampling rate 25%,50% and 75% of Diamond

DIAMOND Dataset

DB Value

Clusters 5 7 9 10 12

S
a

m
p

li
n

g

ra
te

25 0.374925 0.471 0.45625 0.439072 0.44904

50 0.37273 0.43814 0.4378 0.37991 0.4109

75 0.406356 0.42786 0.4183 0.450351 0.43512

SI Value

Clusters 5 7 9 10 12

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2142

S
a

m
p

li
n

g

ra
te

25 0.699423 0.598 0.5786 0.613647 0.6095

50 0.715096 0.60799 0.63204 0.691537 0.62092

75 0.67506 0.65422 0.63976 0.6121 0.61058

CH Value

Clusters 5 7 9 10 12

S
a

m
p

li
n

g

ra
te

25 336357 132844 456955 211509.1 261580

50 249950.6 203560 245157 368012 416925

75 195373 298110 375260 322169.7 401276

This study effectively demonstrates the impact of

sampling rates and cluster numbers on clustering

performance across three metrics. By analyzing these

metrics, it can determine the highest value of CH obtained

at the rate of 0.75, better DB at the rate of 0.5 and SI at

the rate of 0.25.

Table 3 provides the three indices DB, SI and CH values

on the CODON dataset at different sampling rates. The

results are analyzed across various numbers of clusters (4,

6, 8, 10) and sampling rates (25, 50, 75).

The DB index evaluates cluster separation and

compactness. The lowest DB values are observed with a

sampling rate of 25 suggesting the best compactness and

separation under these conditions. The SI index assesses

the quality of clusters based on cohesion and separation.

Higher sampling rates improve SI values, indicating

better cohesion and separation with more data. The

sampling rate of 0.75 offers the best clusters. The CH

index measures the separation between clusters. The

highest CH value is obtained at the sampling rate of 0.25.

The CH index suggests that more clusters are better

defined in smaller samples. It illustrates the values of

different criteria on the dataset Codon. The smallest DB

and the highest CH value have occurred at the sampling

rate of 0.25. The sampling rate of 0.75 gives a better value

of SI. It can be inferred that better results occur at a higher

sampling rate.

Table 3: DB, SI and CH values at sampling rates 25% ,50% and 75% of Codon

CODON Dataset

DB Value

Clusters 4 6 8 10

S
a

m
p

li
n

g

ra
te

25 0.274633 0.2871426 0.2955118 0.359897

50 0.338189 0.3099534 0.3272583 0.402313

75 0.339609 0.3903017 0.4080424 0.452782

SI Value

Clusters 4 6 8 10

S
a

m
p

li
n

g

ra
te

25 0.967591 0.9384476 0.9207127 0.861704

50 0.971292 0.9408224 0.9213075 0.879243

75 0.97209 0.9447104 0.9367976 0.905392

CH Value

Clusters 4 6 8 10

S
a

m
p

li
n

g

ra
te

25 115710.6 280781.1 249304.63 658381.6

50 26790.16 101967.21 186975.80 192611.4

75 24697.26 51682.155 65256.20 107526.9

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2143

The implementation of IFDC algorithm on three datasets

IRIS, Diamond and Codon and the corresponding graphs

are demonstrated. Figure 2, 3 and 4 illustrates the values

of three evaluation criteria DB, SI, and CH of each

incremental block of IRIS. The whole data is divided into

blocks of size 50. i.e. 3 blocks, and added in the

incremental order. The horizontal axis represents the

number of blocks. It goes from 1 to 3. The DB, SI, and

CH are shown on the vertical axis. Every block has been

clustered and use the validity measurements to evaluate

it. The IRIS dataset case study considers clusters 2, 3, 5,

and 6 at the sampling rate of 0.75.

Fig 2: DB score of IRIS at Incremental blocks

Figure 2 indicates that the best DB values are associated

with cluster 2. It suggests that cluster 2 is the most

compact and well-defined structure among all the clusters

in the dataset. SI values are explained in Figure 3. It is

clear from the graph that cluster 2 has the best SI value.

Figure 4 shows the CH value and it recommends the

cluster 3. From the three validity measures its

recommended cluster option is 2 or 3 for the IRIS dataset.

Fig 3: SI score of IRIS at Incremental blocks

Fig 4: CH score of IRIS at Incremental blocks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2144

Figures 5, 6 and 7 indicate the criteria values DB, SI, and

CH of dataset Diamond for clusters 5,7,9,10,12. The

dataset is divided into 6 blocks of size 10000. The size of

the last block varies. From Table 2, it can be understood

that the sampling rate of 0.5 is acceptable for DB and SI

values. So the DB and SI values are calculated using the

sampling rate of 0.5, and CH at 0.75. The x-axis

represents the number of blocks, ranging from 1 to 6. The

y-axis corresponds to the DB, SI, and CH values. Based

on Figures 5, 6 and 7 it can be deduced that cluster 7 is

the best.

Fig 5: DB value of Diamond at Incremental blocks

Fig 6: SI value of Diamond at Incremental blocks

Fig 7:CH value of Diamond at Incremental blocks

Figures 8, 9 and 10 exhibit the values of dataset Codon for

clusters 4, 6, 8, and 10. The whole dataset is divided into

14 blocks. There are 13 blocks with a size of 1000 and

the last one with a different size. Based on Table 3, the

preferable sampling rate for DB and CH is 0.25 and for

SI it is 0.75. Figures 8, 9 and 10 visually represent the

clustering performance for each cluster in the dataset

Codon. The horizontal axis depicts the number of blocks

from 1 to 14. The vertical axis represents the values for

DB, SI and CH. According the graphs 8 and 9 it is

understood that cluster 6 is the best one. The figure 10

depicts CH value and shows that cluster 8 is the best.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2145

Fig 8:DB value of Codon at Incremental blocks

Fig 9:SI value of Codon at Incremental blocks

Fig 10:CH value of Codon at Incremental blocks

Figures 11, 12 and 13 illustrate the analytical study of the

three clustering techniques i.e. IFDC, Simple FCM, and k-

means. The analysis was done on three datasets IRIS,

Diamond, and Codon using three validity measures. The

promising two clusters from each dataset were considered

for comparison study. According to Figures 2, 3, and 4,

clusters 2 and 3 of the IRIS dataset are selected. From

Figures 6, 7, and 8, clusters 9 and 12 of the Diamond

dataset are chosen. Similarly, from Figures 9, 10, and 11,

clusters 6 and 8 of the Codon dataset are considered. The

sampling rate taken in this experiment is 0.75.

The vertical axis represents two criteria number of clusters

and the validity measures. The horizontal axis represents

the values of each validity measure. In essence, the graph

suggests that the IFDC depicts better results while

clustering large data.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2146

Fig 11: Comparison of IFDC, FCM and K-means on IRIS

Fig 12: Comparison of IFDC, FCM and K-means on Diamond

Fig 13: Comparison of IFDC, FCM and K-means on Codon

It can be inferred that IFDC clustering has the highest

index values compared to the FCM and k-means clustering

methods. From the values, it is deciphered that while using

a small dataset the results of the IFDC are not always

superior to that of the others. IFDC operates similarly to

simple FCM and k-means when employing a small dataset

as a single set such as the IRIS dataset. At the same time,

it performs well in a large dataset. This is deciphered by

the values of criteria measures of other datasets. IFDC

segregates the complete data into small chunks according

to the size of the memory and then processes it. It enhances

memory consumption while reducing the problem of

limited memory. IFDC also handles streaming data very

efficiently by propagating the characteristics of each block

to the next one.

6. CONCLUSION

The Incremental FCM Double Clustering (IFDC)

algorithm offers a significant advancement in handling

large datasets and streaming data by overcoming the

limitations of traditional FCM clustering. IFDC segments

the data into manageable chunks processes each chunk

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2147

individually, and uses a representative sampling technique

to merge and propagate knowledge through subsequent

chunks. This method reduces the need for extensive

memory and repetitive calculations, enhancing efficiency

and performance, particularly with large and dynamic

datasets.

However, while IFDC addresses many challenges, some

issues remain. Anomalies and the selection of initial

cluster centers still pose difficulties, and further research

is needed to refine these aspects. Overall, IFDC marks a

notable improvement in data clustering, particularly for

real-time applications and streaming data, providing a

robust foundation for future advancements in the field.

This study provided insights into the strengths, potential

and weaknesses areas for improvement of the IFDC

algorithm.

REFERENCE

[1] T. J. Ross, Fuzzy Logic with Engineering

Applications. 2010.

[2] J. C. Dunn, “A fuzzy relative of the ISODATA

process and its use in detecting compact well-

separated clusters,” J. Cybern., vol. 3, no. 3, pp. 32–

57, 1973, doi: 10.1080/01969727308546046.

[3] J. C. Bezdek, Pattern Recognition with Fuzzy

Objective Function Algorithms. 1981.

[4] J. C. Bezdek, “FCM : THE FUZZY c-MEANS

CLUSTERING ALGORITHM 1 ; yk E Y ~ l,” vol.

10, no. 2, pp. 191–203, 1984.

[5] A. S. Bozkir and E. A. Sezer, “FUAT - A fuzzy

clustering analysis tool,” Expert Syst. Appl., vol. 40,

no. 3, pp. 842–849, 2013, doi:

10.1016/j.eswa.2012.05.038.

[6] Agbonifo and O. Catherine, “Fuzzy C-Means

Clustering Model for Identification of Students ’

Learning Preferences in Online Environment,” Int.

J. Comput. Appl. Inf. Technol., vol. 4, no. I, pp. 15–

21, 2013.

[7] H. Izakian and A. Abraham, “Fuzzy C-means and

fuzzy swarm for fuzzy clustering problem,” Expert

Syst. Appl., vol. 38, no. 3, pp. 1835–1838, 2011,

doi: 10.1016/j.eswa.2010.07.112.

[8] T. M. Silva Filho, B. A. Pimentel, R. M. C. R.

Souza, and A. L. I. Oliveira, “Hybrid methods for

fuzzy clustering based on fuzzy c-means and

improved particle swarm optimization,” Expert

Syst. Appl., vol. 42, no. 17–18, pp. 6315–6328,

2015, doi: 10.1016/j.eswa.2015.04.032.

[9] M. R. Mahmoudi, D. Baleanu, Z. Mansor, B. A.

Tuan, and K. H. Pho, “Fuzzy clustering method to

compare the spread rate of Covid-19 in the high

risks countries,” Chaos, Solitons and Fractals, vol.

140, pp. 1–9, 2020, doi:

10.1016/j.chaos.2020.110230.

[10] T. Lei, X. Jia, Y. Zhang, L. He, H. Meng, and A. K.

Nandi, “Significantly Fast and Robust Fuzzy C-

Means Clustering Algorithm Based on

Morphological Reconstruction and Membership

Filtering,” IEEE Trans. Fuzzy Syst., vol. XXX, no.

XXX, pp. 1–15, 2018, doi:

10.1109/TFUZZ.2018.2796074.

[11] T. Bonis and S. Oudot, “A fuzzy clustering

algorithm for the mode-seeking framework,”

Pattern Recognit. Lett., vol. 102, pp. 37–43, 2018,

doi: 10.1016/j.patrec.2017.11.019

[12] Z. Siqing, T. Yang, and Y. Feiyue, “ScienceDirect

ScienceDirect Fuzzy Logic-Based Clustering

Algorithm for Multi-hop Wireless Fuzzy Logic-

Based Clustering Algorithm for Multi-hop Wireless

Sensor Networks Sensor Networks,” Procedia

Comput. Sci., vol. 131, pp. 1095–1103, 2018, doi:

10.1016/j.procs.2018.04.270.

[13] O. M. Saad, A. Shalaby, L. Samy, and M. S. Sayed,

“Automatic arrival time detection for earthquakes

based on Modified Laplacian of Gaussian filter,”

Comput. Geosci., vol. 113, pp. 43–53, 2018, doi:

10.1016/j.cageo.2018.01.013.

[14] P. Karczmarek, A. Kiersztyn, W. Pedrycz, and D.

Czerwiński, “Fuzzy C-Means-based Isolation

Forest,” Appl. Soft Comput., vol. 106, p. 107354,

2021, doi: 10.1016/j.asoc.2021.107354.

[15] M. Salah, “Filtering of remote sensing point clouds

using fuzzy C-means clustering,” Appl. Geomatics,

vol. 12, no. 3, pp. 307–321, 2020, doi:

10.1007/s12518-020-00299-3.

[16] J. P. Mei, Y. Wang, L. Chen, and C. Miao, “Large

Scale Document Categorization With Fuzzy

Clustering,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5,

pp. 1239–1251, 2017, doi:

10.1109/TFUZZ.2016.2604009.

[17] R. Jiao, S. Liu, W. Wen, and B. Lin, “Incremental

kernel fuzzy c-means with optimizing cluster center

initialization and delivery,” Kybernetes, vol. 45, no.

8, pp. 1273–1291, 2016, doi: 10.1108/K-08-2015-

0209.

[18] A. Ribert, A. Ennaji, Y. Lecourtier, P. S. I. F.

Sciences, and U. De Rouen, “An Incremental

Hierarchical Clustering,” Interface, no. May, pp.

19–21, 1999, [Online]. Available:

http://scholar.google.com/scholar?hl=en&btnG=Se

arch&q=intitle:An+incremental+hierarchical+clust

ering#3.

[19] R. J. Kuo, T. C. Lin, F. E. Zulvia, and C. Y. Tsai, “A

hybrid metaheuristic and kernel intuitionistic fuzzy

c-means algorithm for cluster analysis,” Appl. Soft

Comput. J., vol. 67, pp. 299–308, 2018, doi:

10.1016/j.asoc.2018.02.039.

[20] F. Can, “Incremental Clustering for Dynamic

Information Processing,” ACM Trans. Inf. Syst.,

vol. 11, no. 2, pp. 143–164, 1993, doi:

10.1145/130226.134466.

[21] W. Zhao, L. Li, S. Alam, and Y. Wang, “An

incremental clustering method for anomaly

detection in flight data,” Transp. Res. Part C Emerg.

Technol., vol. 132, no. September 2019, p. 103406,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134–2148 | 2148

2021, doi: 10.1016/j.trc.2021.103406.

[22] P. Hore, L. O. Hall, and D. B. Goldgof, “Single pass

fuzzy c means,” IEEE Int. Conf. Fuzzy Syst., 2007,

doi: 10.1109/FUZZY.2007.4295372.

[23] P. Hore, L. O. Hall, D. B. Goldgof, and W. Cheng,

“Online fuzzy C means,” Annu. Conf. North Am.

Fuzzy Inf. Process. Soc. - NAFIPS, pp. 1–5, 2008,

doi: 10.1109/NAFIPS.2008.4531233.

[24] J. P. Mei, Y. Wang, L. Chen, and C. Miao,

“Incremental fuzzy clustering for document

categorization,” IEEE Int. Conf. Fuzzy Syst., pp.

1518–1525, 2014, doi: 10.1109/FUZZ-

IEEE.2014.6891554.

[25] M. Al-Ayyoub, S. M. Alzu’Bi, Y. Jararweh, and M.

A. Alsmirat, “A GPU-based breast cancer detection

system using Single Pass Fuzzy C-Means clustering

algorithm,” Int. Conf. Multimed. Comput. Syst. -

Proceedings, vol. 0, pp. 650–654, 2017, doi:

10.1109/ICMCS.2016.7905595.

[26] Y. Li, Q. Wang, K. Ran, and L. Jiao, “Weighted

Single-Pass Fuzzy c-Means Algorithm Based on

Density Peaks,” IEEE Reg. 10 Annu. Int. Conf.

Proceedings/TENCON, vol. 2018-Octob, no.

October, pp. 2214–2217, 2019, doi:

10.1109/TENCON.2018.8650348.

[27] M. D. Woodbright, M. A. Rahman, and M. Z. Islam,

“A Novel Incremental Clustering Technique with

Concept Drift Detection,” 2020, [Online].

Available: http://arxiv.org/abs/2003.13225.

[28] S. Laohakiat and V. Sa-ing, “An incremental

density-based clustering framework using fuzzy

local clustering,” Inf. Sci. (Ny)., vol. 547, pp. 404–

426, 2021, doi: 10.1016/j.ins.2020.08.052.

[29] X. Wang and Y. Xu, “An improved index for

clustering validation based on Silhouette index and

Calinski-Harabasz index,” IOP Conf. Ser. Mater.

Sci. Eng., vol. 569, no. 5, 2019, doi: 10.1088/1757-

899X/569/5/052024.

[30] P. Jha, A. Tiwari, N. Bharill, M. Ratnaparkhe, N.

Nagendra, and M. Mounika, “Scalable incremental

fuzzy consensus clustering algorithm for handling

big data,” Soft Comput., vol. 25, no. 13, pp. 8703–

8719, 2021, doi: 10.1007/s00500-021-05733-1.

[31] A. D. Kochuveettil and R. Mathew, “A novel

approach to fuzzy c-Means clustering using kernel

function,” Intell. Decis. Technol., vol. 16, no. 4, pp.

643–651, 2022, doi: 10.3233/IDT-210091.

[32] J. C. . R. E. ;WILLIAM F. Bezdek, “FCM: THE

FUZZY c-MEANS CLUSTERING

ALGORITHM,” FCM Fuzzy c-Means Clust.

Algorithm, vol. 10, no. 2, pp. 191–203, 1984.

[33] P. J. Rousseeuw, “Silhouettes: A graphical aid to the

interpretation and validation of cluster analysis,” J.

Comput. Appl. Math., vol. 20, no. C, pp. 53–65,

1987, doi: 10.1016/0377-0427(87)90125-7.

[34] X. Gu, Q. Ni, and G. Tang, “A Novel Data-Driven

Approach to Autonomous Fuzzy Clustering,” IEEE

Trans. Fuzzy Syst., vol. 30, no. 6, pp. 2073–2085,

2022, doi: 10.1109/TFUZZ.2021.3074299.

[35] D. L. Davies and D. W. Bouldin, “A Cluster

Separation Measure,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. PAMI-1, no. 2, pp. 224–227,

1979, doi: 10.1109/TPAMI.1979.4766909.

