International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
IJISAE ENGINEERING

ISSN:2147-6799

www.ijisae.org Original Research Paper

Incremental Fuzzy Clustering Algorithm For Large Datasets

Ani Davis K. !, Dr. Raj Mathew ?
Submitted:14/03/2024 Revised: 29/04/2024 Accepted: 06/05/2024

Abstract: Clustering streaming data poses unique challenges that are different from traditional batch processing. Conventional clustering
methods struggle with the high volume, speed, and diversity of data due to limitations in memory, computing power, and processing time.
The challenges of clustering large datasets include limited storage capacity, the requirement to process the data in a single pass, and the
concept drift of the data. A novel method, incremental fuzzy double clustering (IFDC) has been proposed to tackle these challenges. IFDC
is an innovative version of Fuzzy c-Means (FCM) and incremental clustering. It divides the data into groups based on memory capacity
and clusters them. Relevant samples from each group are selected using stratified sampling and k-Medoid methods and then transferred to
the next group. This process carries the essence of the data from the beginning to the end. The newly reached dataset can be easily merged
with the last block of data and clustered, instead of clustering the entire dataset as it arrives. The performance of IFDC was evaluated using
Silhouette, Davies-Bouldin, and Calinski Harabasz Indexes, and the results demonstrate that IFDC outperforms traditional techniques such
as FCM and k-means by successfully overcoming the challenges of clustering large data. The benefits of IFDC include improved efficiency
and reduced clustering time. It efficiently manages large streaming datasets by continuously accommodating new data and utilizing

sampling methods, thereby enhancing accuracy, reducing execution time, and eliminating the need for complete re-clustering.

Keywords: Incremental Fuzzy c-Means Double clustering, Fuzzy c-Means, Silhouette, Davies-Bouldin, Calinski Harabasz

1. INTRODUCTION

The encroachment of technology leads to the generation
of a massive amount of data daily. This data contains
essential information. The large data sometimes refers
streaming data, is a continuous flow of generated and
processed in real-time or near real-time. Unlike
traditional batch processing, where data is collected and
processed in discrete chunks or batches, large data is
processed as it is produced, allowing for immediate
analysis and response. The large or streaming data is
typically generated from various sources such as loT
devices, sensors, social media platforms, financial
transactions, and weblogs. These sources consistently
produce a steady stream of data, which can be substantial
in terms of volume, velocity, and variety. In today's real-
world applications, data streams are widely utilized. Data
clustering is an effective method for analyzing and
extracting valuable information from large datasets.
However, clustering huge datasets presents significant
challenges in data analysis and machine learning. This is
because it involves partitioning a massive amount of data
into meaningful groups or clusters based on their
similarities. This process aims to uncover inherent
structures, patterns, or relationships within the dataset,
even when dealing with large volumes of data. Clustering
essentially involves dividing a set of data objects or
populations into homogeneous groups. Traditional

Vimala College, Thrissur, Kerala 680009, India
E-mail: anidavisk@gmail.com

2 St Thomas College, Palai, Kerala 686574, India
E-mail:mathewrajm@gmail.com

clustering techniques may struggle to handle these
challenges due to limitations in memory, processing
power, and time constraints.

With the rise of Big Data, which has led to an exponential
growth in dataset size, clustering algorithms need to be
scalable, efficient, and capable of handling the
computational complexity associated with such vast
amounts of data. Cluster analysis of streaming data poses
unique challenges due to data streams' dynamic and
continuous nature. Unlike batch data, huge data cannot be
stored entirely in memory, requiring the clustering
process to be performed in a single pass. Conducting an
additional scan is often unfeasible. Consequently,
algorithms must process the data using limited memory,
which can influence the quality of clustering results.

The vast data often exhibits concept drift, meaning that
the underlying data distribution may change over time.
Additionally, large data can contain outliers and noisy
data points that can significantly impact the accuracy of
the clustering process. ldentifying and handling these
anomalies in real-time presents a considerable challenge.
Clustering algorithms must be able to adapt to these
changes to maintain accurate clusters. Moreover,
selecting initial cluster centers for data stream clustering
can be challenging. Traditional methods that rely on all
data points for initialization are not suitable for streaming
data.

Several clustering methods, such as FCM clustering, have
been developed to handle large amounts of data. FCM is
a highly effective data technique that allows for the

International Journal of Intelligent Systems and Applications in Engineering

IISAE, 2024, 12(4), 2134-2148 | 2134

classification of objects into multiple clusters by
assessing their similarities. Unlike traditional clustering
algorithms, FCM offers a soft assignment of data points
to clusters, allowing for partial membership. This results
in a more nuanced representation of complex data
patterns. However, traditional static clustering algorithms
are not appropriate for dynamic datasets, especially when
data is entered in batches. This is because FCM, the
clustering algorithm, requires the entire data to be in
memory at once, which becomes unreasonably time-
consuming for datasets that are too large for the main
memory. This slows down the clustering process and
reduces its performance. Additionally, the results of FCM
can be influenced by the initial placement of cluster
centers, leading to different cluster structures with
different initializations. FCM is computationally
demanding, especially for large datasets or when there are
a high number of clusters. Ensuring the robustness of
FCM in the presence of data variations or concept drift is
a challenge, especially for real-time applications.
Moreover, outliers can have a significant impact on FCM
results, so it is important to identify and handle them
appropriately.

The majority of existing fuzzy clustering methods are
primarily intended for small, static datasets. However,
with the continuous expansion of streaming data sources,
the size of these datasets can become enormous at
different intervals. Consequently, it becomes challenging
to store the entirety of the data in memory all at once. An
effective streaming algorithm should possess the
capability to adapt to changes in the data, while still
extracting valuable information from the complete
dataset. Since it is assumed that loading all the data into
memory is not feasible, non-incremental algorithms for
expediting FCM or hard c-means are typically not
applicable to clustering very large datasets.

An innovative approach known as Incremental Fuzzy c-
Means Double clustering (IFDC), which is based on
incremental style FCM, is proposed to address the
challenges of clustering a data stream. Incremental
clustering is a data analysis technique that allows for the
clustering of data points as they are acquired, rather than
clustering all of them at once. This approach eliminates
the need to load the entire dataset into memory
simultaneously. The utilization of memory is optimized
through the wuse of incremental clustering. The
characteristics of each chunk are passed on to the next
chunk by incorporating selected elements. IFDC can
easily incorporate new data sets into the existing clusters,
rather than repeatedly clustering the entire dataset as new
data arrives. This approach improves performance and
reduces the workload. The IFDC method is efficient in

terms of memory storage and effectively handles large
data.

2. RELATED WORKS

Fuzzy logic has been successfully applied in various
fields, including control systems, decision-making,
pattern recognition, image processing, natural language
processing, and expert systems[1].

Fuzziness was incorporated into the ISODATA algorithm
to improve the detection of compact, well-separated
clusters. This was initiated by Dunn who introduced a
fuzzy version of the ISODATA process[2]. J.C. Bezdek
[3] has made significant contributions to the field of fuzzy
clustering. He focuses on developing and applying fuzzy
clustering algorithms that use fuzzy objective functions to
partition data into meaningful groups. Bezdek[4]
transmitted FCM into the FORTRAN-IV code. A S
Bozkire and E A Sezer[5] designed the Fuzzy Clustering
Analysis Tool (FUAT) to perform clustering algorithms
that incorporate the concept of fuzziness. FUAT also
analyses, investigates, and visualises the clusters
produced using the FCM method.

Fuzzy clustering has applications in many fields,
including control systems, decision-making, data mining,
and artificial intelligence. Agbonifo and O Catherine[6]
determine students’ learning inclinations by applying
FCM clustering in the Honey and Mumford learning
fashion. H. lzakian and A Abraham[7] propose a
crossover between Fuzzy Clustering (FCM) and Fuzzy
Particle Swarm Optimization (FPSO), aiming to enhance
clustering by leveraging swarm algorithms' exploration
and exploitation capabilities. Telmo M. Silva Filho[8]
introduced two particle swarm optimization methods,
FCM-IDPSO and FCM2-IDPSO. They are the result of
combining FCM with a recent version of PSO and
enhanced self-adaptive particle swarm optimization
(IDPSO). Mahmoudi et al [9] proposed a fuzzy clustering
approach to analyse and compare the spread rate of
COVID-19 and the population size in high-risk countries
using Pearson correlation. Tao Lei et al. [10] improved
the FCM algorithm based on morphological
reconstruction and membership filtering called Fast and
Robust FCM (FRFCM). Thomas Bonis and Steve Oudot
[11] presented an advanced FCM for the mode-seeking
framework. Mode-finding algorithm determines a
density function's modes or local maxima, and FCM
clusters the dataset.

Zhang Siqing et al. [12] introduced a clustering protocol
based on fuzzy logic for Multi-hop wireless sensor
networks (FLCMN). The FLCMN extends the life of
wireless sensor networks (WSNs) and lessens energy
consumption. O. M. Saad [13] enhanced the Earthquake
Early Warning System (EEWS) with the help of FPCM

International Journal of Intelligent Systems and Applications in Engineering

IISAE, 2024, 12(4), 2134-2148 | 2135

algorithm. It recognises the arrival time of the earthquake
and sounds an alarm as a warning. Pawet Karczmarek et
al. [14] improved the Isolation Forest algorithm by
incorporating FCM, which calculates anomaly scores by
calculating membership grades of elements and forming
Isolation Forest nodes into clusters. Mahmoud Salah [15]
utilized FCM clustering to partition point cloud data into
clusters based on spatial characteristics, a technique
widely used in point cloud processing and filtering tasks.
Jian-Ping Mei [16] introduces Hyperspherical FCM
(HFCM) and Fuzzy Co-clustering. These novel
approaches offer a fresh perspective on managing high-
dimensional data by enhancing scalability, which
addresses the challenges associated with clustering
sizable document datasets.

Incremental clustering is an efficient technique for
handling large volumes of data. It dynamically updates
clustering models as new data becomes available, without
reprocessing the entire dataset. This makes it well-suited
for streaming or large-scale data, allowing the model to
adapt to changes in data distribution over time.
Incremental clustering is a scalable and memory-
optimized approach that can process data in smaller
batches, making it an effective solution for working with
enormous volumes of data. Runhai Jiao et al. [17]
proposed two methods to improve incremental kernel
fuzzy clustering effectiveness: optimizing the initial
cluster center based on distance and incremental
clustering characteristics, and using multiple passing
points. Arnaud Ribert etal [18] presented a new
algorithm that uses hierarchical clustering to handle time
incremental data. It modifies the hierarchical
representation of data rather than recomputing the entire
tree when new patterns need to be taken into
consideration. F.Can [19] developed the Cover-
Coefficient-based Incremental Clustering Methodology
(C?ICM), an economical and versatile algorithm for
updating and removing old documents from a large
number of documents. Fazli Can et al [20] conducted
experiments on the MARIAN database, implementing the
C?ICM method for incremental clustering, addressing
C3M's shortcomings and saving time and money
compared to C3M.

W Zhao et al [21] introduced an incremental anomaly
detection technique based on the Gaussian Mixture
Model (GMM) to identify typical patterns and
exceptional cases in digital flight data. The model updates
clusters using new data, retaining model parameters and
addressing challenges in flight operations. Prodip Hore et
al. [22] have developed a Single Pass FCM(SPFCM)
algorithm for large data sets, offering efficient,
comparable data partitions and improved clustering speed
compared to traditional algorithms. P. Hore et al [23]

introduced an online fuzzy clustering algorithm capable
of clustering both streaming data and significantly large
datasets, addressing the challenge of the unavailability of
the entire dataset and the difficulty in determining
partitions. Jian-Ping Mei et al [24] developed a
methodology incorporating incremental fuzzy clustering
techniques to improve document categorization accuracy
and efficiency in web and text mining tasks.

Mahmoud Al-Ayyoub's study [25] introduces a GPU-
powered breast cancer detection system using SPFCM
clustering algorithm, enhancing accuracy and efficiency
through advanced clustering techniques. Yangyang Li et
al. [26] introduced a new approach to the SPFCM
algorithm, incorporating density peaks to improve
accuracy and efficiency. The algorithm reorders samples
and assigns weights based on density peaks, but requires
significant time for computation. Mitchell D. Woodbright
[27] initiated the Unsupervised Incremental Clustering
Algorithm (UIClust), an incremental clustering technique
that detects concept drift, improving the accuracy and
adaptability of clustering processes. Sirisup Laohakiat
and Vera Saing[28] introduced Fuzzy Incremental
Density-based Clustering (FIDC). This incremental
density-based method enhances accuracy and adaptability
by combining incremental and fuzzy local clustering
techniques for large datasets. L. Wang, P. Xu, and Q. Ma
[29] presented a method for incrementally clustering time
series data using fuzzy clustering. This approach involves
two stages: offline and online. In offline, a fuzzy
clustering validity evaluation index determines the
optimal number of clusters. Online, the algorithm updates
existing clusters dynamically. Preeti Jha [30] designed
the Scalable Incremental Fuzzy Consensus Clustering
(SIFCC) algorithm for big data frameworks, enhancing
scalability by handling large-scale data -efficiently
through an incremental approach using Apache Spark
cluster framework.

Existing fuzzy clustering methods are designed for small,
static datasets. However, with the expansion of streaming
data sources, the dataset size can become enormous,
making it challenging to store the entire data in memory.
Non-incremental techniques are not frequently applicable
to clustering streaming data sets since they assume that
all of the data can be put into memory. Although SPFCM
and OFCM algorithms are inadequate when addressing
streaming data. The present study investigates the
challenges of the abovementioned algorithms and
proposes to address the shortcomings by introducing a
novel algorithm called the Incremental Fuzzy c-Means
Double Clustering (IFDC) method. IFDC allows for the
clustering of data points as they are acquired, eliminating
the need to load the entire dataset into memory
simultaneously. IFDC optimizes memory usage, adapts to

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(4), 2134-2148 | 2136

changes in data, and seamlessly integrates new data sets
into existing clusters. This enhances performance and
efficiently handles large data sets. It effectively manages
streaming datasets by consistently accommodating new
data and utilizing sampling techniques. As a result,
accuracy is improved, execution time is minimized, and
the need for complete re-clustering is eliminated.

3. BACKGROUND ALGORITHMS

The proposed system is a novel approach called IFDC,
designed to address the issues of clustering streaming or
large data. The outline of the main background algorithms
used in the proposed system is as follows:

3.1 FUZZY C-MEANS CLUSTERING (FCM)

FCM, a variant of the c-means clustering method, is the
most widely utilized fuzzy-based clustering algorithm[4].
A dataset may be divided into clusters using the FCM
clustering technique, in which each data point has a
particular degree of membership in each cluster. In
contrast to more traditional methods like k-means or
hierarchical clustering, the fuzzy clustering algorithm
provides a more nuanced and adaptable method of data
grouping. The objective function of FCM is minimized as

2

JUV) =% 3 uflle; —v,
j=li=

Where V={vi, Vo, V3,V} iS ¢ cluster centers,
U={Uij}nxc is the membership matrix, and X={x1, X2, X3, -
-+Xn} is the data set with n data points. The uj; is the

membership of x; in classi, //x; — vi//2 Euclidean distance
between the data point x; and the cluster center v;. FCM
is attempting to find the best U and V values to minimize
the objective function. Algorithm 1 shows the FCM
algorithm[31]. The input parameters are the dataset X=x;,
j=1,2,.n, ¢ number of clusters, m the degree of
fuzzification i.e. m > 1, ¢ the target value.

Algorithm 1: FCM

1. State the number of the cluster k.

2. Randomly initialize the cluster center V

3. Compute the membership value uj using the cluster
centers

4. Update the cluster center V’, using the new
membership values

5. Check the difference between the old and new cluster
centers ie. V-V

6. Repeat steps 3, 4 and 5 until 7’-V < target value or a
maximum number of iterations is reached.

The number of clusters is selected and randomly
initialized. In step 3, the membership value u;;of each data
point is evaluated using the cluster centers, where uijj
represents the degree to which data point i belongs to

cluster j. Then in step 4, update the cluster centres based
on the newly calculated membership value. The sets of
current and previous cluster centres are compared and
evaluate the differences. FCM algorithm is stopped when
the difference value (7-V) reaches the target value or a
maximum number of iterations is reached. The
convergence speed of the FCM is influenced by the initial
value and may fall into local optimization in the case of a
huge number of clusters. The steps to compute the degree
of membership and the new centres of each cluster are
repeated until the algorithm terminates.

3.2 INCREMENTAL CLUSTERING

The time series data sets are quite large and it is not
possible to accommodate in the main memory. One way
to handle this is to move the time series to the main
memory and store the whole data matrix in a secondary
memory. This approach stores just the cluster structure in
the main memory to get around the space constraint and
updates it piecemeal. Incremental clustering allows for
the processing of large datasets by dividing them into
smaller subsets, which are clustered separately[32]. This
method avoids the need to load the entire dataset into
memory at once, making it feasible to analyze massive
data incrementally. Rather than analyzing the full dataset
at once, the clustering algorithm works on a subset of the
data at a time. A separate clustering technique, such as K-
means or FCM, is applied to each data segment.
Following that, the cluster centers are merged or
amalgamated and clustered once again. The most recent
cluster center is used to group all of the data points.
Iterative repetition of the technique is necessary if the
dataset is huge. The clustering procedure should be
restarted whenever new data is introduced to the dataset.
Although these techniques are challenging to use, they
somewhat address the issue of grouping enormous
datasets.

4. PROPOSED SYSTEM

Clustering large datasets and data that were too large to
fit in the main memory took longer with the FCM
approach. Additionally, it is challenging to mine useful
information from the whole data collection while
accepting flowing input and responding to data changes.
For FCM clustering, all of the data must be in the main
memory at all times. OFCM clustering partially solves
these issues. In the event of a huge dataset, further
computations are required, and the procedure must be
repeated. The issue of limited memory storage can be
resolved by the IFDC system, which can manage flowing
data. Additionally, it minimizes the number of
calculations and algorithm iterations.

International Journal of Intelligent Systems and Applications in Engineering

LISAE, 2024, 12(4), 2134-2148 | 2137

e —
Dataset

Data
Chunking

= ...
1

| Sampling | Sampling | . o0

1 1

[Representatives] Representatives] LA

Fig 1: Structure of the IFDC

|

g,

-

Algorithm 2 Incremental FCM Double Clustering

Input: X, c,m, e

Output: U, V'

Load X = Xy, Xy, X3, X, where X; = ;1)1
to

Xoew =

2 reps =P

fori= 1tosdo

1 Load X;

5 if reps # None then

o X;=X;Ureps

x end if

3 Cluster Labels = FCM(X;, e, m, £)
0 reps = GetReps(X;, rs, Cluster Labels)
w: end for

i return C

function: GetReps(X, r,, ClusterLabels)
L reps = ¢
cluster = ¢
for ¢ = 1 to length(X) do
if Cluster Labels not in cluster then

cluster|gpe = ¢
6 end if
- clustery,. = cluster;pq U x;
s end for

o for j= 1toc do

10 reps = Sampling(rs, cluster;)
n: end for

12 return reps

function: Sampling (rs, cluster;)
. k= max(1,rs * length(cluster;))
s clustercenters = K Medoids(cluster = k)
s return clustercenters

4.1 Incremental FCM Double Clustering Algorithm

The IFDC algorithm's structure is shown in Fig. 1. The
entire dataset is split up into smaller groups, called

chunks, chunks 1, chunk 2,... chunk n. The first chunk is
divided into n number of clusters via the FCM method.
Representatives from each cluster will be selected using

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(4), 2134-2148 | 2138

the sampling procedure, and they will be combined into
chunk 2. This procedure keeps on till chunk n. Since the
information of one subset spreads to the next, it is simple
to cluster datasets based on this knowledge when a fresh
stream of data is added. The large data is simply handled
by the IFDC. To manage the subsets, the IFDC clustering
only needs a small amount of memory space at a time. As
a result, more RAM will be used, and massive data can be
clustered.

The IFDC system is designed to handle large datasets
efficiently and incrementally. The algorithm for this
system is outlined in Algorithm 2. The IFDC algorithm
takes the input parameters: X the dataset, ¢ the number of
clusters, m the fuzzification factor, n the size of the data
subset. The large dataset of N items is divided into s
smaller subsets, Xi, Xz, ..., Xs, where each subset X;
contains data points from X¢-yyn+1 t0 Xin. i€. X1 contains ny
items. The final subset's dimensions could vary
somewhat. This divide-and-conquer approach allows the
system to handle very large datasets effectively.

The first subset X; is loaded into memory and clustered
using the FCM algorithm, which returns the
ClusterLabels. The ClusterLabels, sampling rate rs, and

the current subset X; are used as input to the GetReps()
function. The GetReps() function considers each cluster
and extracts representative data points as reps using the
Sampling() function. The Sampling() function determines
the number of representatives k based on the sampling
rate rs and the size of the cluster. The k-medoids
algorithm is used to find the cluster centers, which are
returned reps. The representative data points from the
current subset are added to the next subset, which helps
to increase the speed of clustering and allows for faster
convergence.

The k-medoids algorithm used in the IFDC system
reduces the cost and improves the efficiency of the
clustering process. It ensures an equal contribution of data
points from every cluster, and each member of the group
has an equal chance of being chosen as a representative
using the sampling method. By iterating through the
subsets and adding representative data points from one
subset to the next, the IFDC system achieves faster
convergence and increased clustering speed. This
knowledge transmission between subsets is a key feature
of the algorithm. The algorithm iterates through each
subset.

The first subset involves fetching and storing n; items in
memory out of a total of N items. The FCM technique is
used to cluster the n; objects into ¢ partitions. r; items as
reps were chosen as representatives from these c clusters
using the k-medoid algorithm and a sampling technique.
The first chunk of data is clustered using FCM, the

memory is cleaned, and the subsequent n, items are put
into memory in the subsequent subset, adding to the r;
items that were chosen in the preceding stage. There will
be n, + ry items in the memory for clustering.

The FCM technique is used to cluster the data, and
r, items are chosen for the following step. Similarly, the
r, items from the second level are added to the ns things
that are retrieved in the third subset. n3 + r, will be the
total number of elements for clustering at the third level.
Similarly, following the m™ subset, the memory for
clustering will include just nm + 1, items. As a result,
just a portion of the data is loaded into the memory
depending on memory availability, as opposed to loading
N items. Every subset's significance increases from the
start to the finish, allowing for the same clustering of
newly received data.

5. PERFORMANCE EVALUATION

The performance evaluation involves a systematic
assessment of the algorithm's accuracy, speed, scalability,
and robustness. It determines the effectiveness and
efficiency of IFDC in solving a particular problem. By
analyzing these metrics, it is easy to identify the strengths
and weaknesses of the algorithm, compare it with other
existing methods, and make informed decisions about its
practical applicability. It also conducts a comprehensive
performance evaluation of IFDC, utilizing a range of
datasets and performance indicators to ensure a thorough
and objective assessment.

5.1 DATESET & EVALUATION CRITERIA

The following two-dimensional datasets, IRIS, Diamond,
and Codon Datasets, are utilized in this study. These
datasets have been sourced from the UCI machine
learning repository. The IRIS dataset encompasses 150
samples and 4 features, which provide measurements for
the length and width of sepals and petals of three distinct
species of the iris flower. The Diamond dataset comprises
observations regarding the patterns and behaviours of
various diamond types, encompassing both continuous
and categorical features. It encompasses a total of 53,941
samples with 10 features. The Codon dataset contains
13,028 data rows, each consisting of 65 attributes. This
dataset elucidates the codon usage frequencies observed
in the genomic coding DNA of a diverse sample of
organisms.

The performance evaluation of the IFDC system is based
on the distances between clusters and the distances
between data points within a cluster, as this algorithm
operates as an unsupervised clustering method. To
measure the reliability of clustering, three clustering
metrics are utilized: the Silhouette Index (SI), Davies-
Bouldin Index (DB), and Calinski-Harabasz Index (CH).
The Silhouette Index is computed by considering each

International Journal of Intelligent Systems and Applications in Engineering

IISAE, 2024, 12(4), 2134-2148 | 2139

sample's mean intra-cluster distance and the mean inter-
cluster distance [33][29]. Let N represent the total number
of data points in the dataset, Nc denote the number of
clusters, Ci represents the i cluster, n; indicates the
number of objects in C;, and V; symbolises cluster Ci's
centre. The Silhouette Index isdefined as

_ 1 1 b(z) — a(z)
SI= Ne Z { ;i Z maz[b(z), a(z)] }

i zeC

Where a, represents the average distance between an
object and all other objects in the same cluster, and b,
represents the mean distance between an object and the
nearest cluster that it does not belong to. It is crucial to
highlight that the Silhouette coefficient can only be
defined when the number of labels falls within the range
of 2 <= Njaels <= Nsamples —1. The Silhouette coefficient
ranges from 1 to -1, with 1 indicating well-defined
clusters, negative values indicating incorrect cluster
assignments, and values close to zero suggesting
overlapping clusters.

The Davies-Bouldin index (DB)[34][35] is used to assess
the average ratio of within-cluster distances to between-
cluster distances. The better cluster is indicated by values
that are closer to zero. The mathematical formula for the
Davies-Bouldin index is as follows:

1 1 . 1)
DB = mz{:mm‘}#; { [aa; d(z,v;) + - Z d(z, L:J}} ‘,fd[vl-‘t'j)}

1 zEC)

where the distance between x and vi is denoted by d(x,
vi). Values that are closer to 0 imply a better cluster.

The Calinski Harabasz index is a ratio that compares the
within-cluster dispersion to the between-cluster
dispersion [29]. This ratio is used to assess the quality of
the clustering.

For CH, the equation is:

- > ngd(vg, v) /(N — 1)
> i 2 pec, A, v:) /(N — Ne)

Where N is total number of points in a dataset, N is the
number of clusters, d(x,vi) is the distance between x and
vi, N number of objects in C;, C; the i cluster, v; is the
centre of cluster Ci, d(vi, vj) is the distance between the
centers vi and v; .

5.2 RESULTS

The main objective of this study is to investigate the
clustering ability of the IFDC algorithm. To assess the
clustering optimization performance of IFDC, the
algorithm was tested on three datasets: IRIS, Diamond,
and Codon.The results of applying the IFDC algorithm to
the three datasets are presented in the following tables and
figures. In this experiment, the sample rates of 25%, 50%,
and 75% are considered.

Table 1 contains results from an analysis of clustering
algorithms on the IRIS dataset, evaluated with the CH,
DB and Sl indices across different sampling rates of 25%,
50%, 75% and numbers of clusters. The experiment
evaluates clustering performance for clusters of 2, 3, 4, 5,
and 6. The average values of the evaluation
measurements are given in the table.

Lower values of the DB index at higher sampling rates
indicate better clustering performance with more data.
From table 1, it is inferred that better DB values occur
for all the clusters except 2 at the sampling rate of 0.5.
The higher sampling rates generally improve cluster
quality and the increasing cluster numbers can reduce
performance, as evidenced by lower DB values.

Table 1:DB, Sl and CH values at sampling rates 25%,50% and 75% of IRIS

IRIS Dataset

DB Value
Clusters | 2 3 4 5 6

25 | 0.709246 | 0.84248 | 0.9868 1.134478 | 1.02757

g 50 | 0.530241 | 0.79597 | 0.90932 | 0.98965 0.94418
§ % 75 | 0.526976 | 0.80149 | 0.91786 | 1.010647 | 0.98154
o Sl Value
Clusters | 2 3 4 5 6
£ 25 | 0.503529 | 0.38814 | 0.32199 | 0.256179 | 0.29881
% % 50 | 0.601448 | 0.44612 | 0.38121 | 0.371213 | 0.34435
) o

International Journal of Intelligent Systems and Applications in Engineering

LISAE, 2024, 12(4), 2134-2148 | 2140

75 | 0.612414 | 0.46768 | 0.41128 | 0.358394 | 0.32286
CH Value
Clusters | 2 3 4 5 6
25 | 95.2483 99.25 83.3217 | 70.8782 80.6906
E’ 50 [191.1109 [203.605 | 179.083 | 168.7035 | 160.854
(‘,é“:-% 75 | 295.084 | 296.54 | 264.995 | 260.2495 [215.033

The higher SI values represent better-defined clusters.
The peak Sl values were recorded at a sampling rate of
0.75 for clusters 2, 3, and 4, while for the remaining two
clusters, the highest SI values were achieved at a
sampling rate of 0.5. It shows an improvement in
clustering quality with a higher sampling rate. The value
decreases as the number of clusters increases. The higher
sampling rates consistently yield higher SI values,
indicating better clustering performance with more data.

The CH value generally decreases as clusters increase,
suggesting diminishing returns for adding more clusters
beyond a certain point. The table effectively shows how
clustering performance, measured by the Calinski-
Harabasz index, varies with different sampling rates and
cluster counts. The higher sampling rate ie 0.75 leads to
higher CH wvalues, indicating better clustering
performance. However, increasing the number of clusters
tends to lower the CH value, implying a trade-off in
cluster quality. The highest cluster homogeneity CH
values are observed across all clusters at a sampling rate
of 0.75.

Table 2 illustrates the performance of different clustering
configurations of the dataset Diamond. The metrics are
analyzed across various cluster numbers, including 5, 7,
9, 10, and 12. Different sampling rates of 25%, 50%, and
75% are also considered. The choice of cluster number is
based on the number of options available in different
features. For instance, a feature like ‘cut’ has 5 options,
so cluster 5 is considered.

DB values show how different configurations perform in
terms of cluster separation, with lower values being
preferable. The lowest DB is detected for clusters 5,10
and 12 at the rate 0.5, for cluster 7 at the rate of 0.25 and
for cluster 9 at the rate of 0.75. The lowest DB value
occurred at the sampling rate of 0.5. The higher Sl values
indicate better clustering. The highest Sl value occurs for
clusters 5 and 10 at the rate of 0.75 and for clusters 7,9
and 12 at 0.25. The better Sl value is detected at the rate
of 0.25. CH values vary significantly across different
sampling rates and cluster numbers. The better CH value
is observed at different sampling rates for the different
clusters. The highest CH values are observed for clusters
5and 9 at a sampling rate of 0.25, for clusters 10 and 12
at a sampling rate of 0.75, and for cluster 7 at a sampling
rate of 0.5. The highest CH value is detected at the
sampling rate of 0.75. It explains that the better DB value
for clusters 5, 10, and 12 at the sampling rate is 0.5, and
for other clusters at the rate of 0.75. The good Sl value is
obtained at sample rates of 0.5 and 0.75. The biggest CH
value occurred at different sampling rates for other
clusters.

Table 2: DB, Sl and CH values at sampling rate 25%,50% and 75% of Diamond

DIAMOND Dataset
DB Value

Clusters |5 7 9 10 12

25 | 0.374925 | 0.471 0.45625 | 0.439072 | 0.44904
g 50 | 0.37273 | 0.43814 | 0.4378 | 0.37991 | 0.4109
% % 75 | 0.406356 | 0.42786 | 0.4183 0.450351 | 0.43512
s Sl Value
Clusters |5 7 9 10 12

International Journal of Intelligent Systems and Applications in Engineering

LISAE, 2024, 12(4), 2134-2148 | 2141

25 | 0.699423 | 0.598 0.5786 0.613647 | 0.6095
g 50 | 0.715096 | 0.60799 | 0.63204 | 0.691537 | 0.62092
% £| 75 | 0.67506 | 0.65422 | 0.63976 | 0.6121 0.61058
s CH Value
Clusters | 5 7 9 10 12

25 | 336357 132844 | 456955 | 211509.1 | 261580
g 50 | 249950.6 | 203560 | 245157 | 368012 416925
&%— £| 75 | 195373 298110 | 375260 | 322169.7 | 401276

This study effectively demonstrates the impact of
sampling rates and cluster numbers on clustering
performance across three metrics. By analyzing these
metrics, it can determine the highest value of CH obtained
at the rate of 0.75, better DB at the rate of 0.5 and Sl at
the rate of 0.25.

Table 3 provides the three indices DB, Sl and CH values
on the CODON dataset at different sampling rates. The
results are analyzed across various numbers of clusters (4,
6, 8, 10) and sampling rates (25, 50, 75).

The DB index evaluates cluster separation and
compactness. The lowest DB values are observed with a
sampling rate of 25 suggesting the best compactness and

separation under these conditions. The Sl index assesses
the quality of clusters based on cohesion and separation.
Higher sampling rates improve Sl values, indicating
better cohesion and separation with more data. The
sampling rate of 0.75 offers the best clusters. The CH
index measures the separation between clusters. The
highest CH value is obtained at the sampling rate of 0.25.
The CH index suggests that more clusters are better
defined in smaller samples. It illustrates the values of
different criteria on the dataset Codon. The smallest DB
and the highest CH value have occurred at the sampling
rate of 0.25. T he sampling rate of 0.75 gives a better value
of SI. It can be inferred that better results occur at a higher
sampling rate.

Table 3: DB, Sl and CH values at sampling rates 25% ,50% and 75% of Codon

CODON Dataset
DB Value
Clusters | 4 6 8 10
25 | 0.274633 | 0.2871426 | 0.2955118 | 0.359897
g 50 | 0.338189 | 0.3099534 | 0.3272583 | 0.402313
% £| 75 | 0.339609 | 0.3903017 | 0.4080424 | 0.452782
s Sl Value
Clusters | 4 6 8 10
25 | 0.967591 | 0.9384476 | 0.9207127 | 0.861704
g 50 | 0.971292 | 0.9408224 | 0.9213075 | 0.879243
% £ 75 | 0.97209 | 0.9447104 | 0.9367976 | 0.905392
s CH Value
Clusters | 4 6 8 10
25 | 115710.6 | 280781.1 249304.63 | 658381.6
g 50 | 26790.16 | 101967.21 | 186975.80 | 192611.4
{,%- % 75 | 24697.26 | 51682.155 | 65256.20 107526.9
g

International Journal of Intelligent Systems and Applications in Engineering

IISAE, 2024, 12(4), 2134-2148 | 2142

The implementation of IFDC algorithm on three datasets
IRIS, Diamond and Codon and the corresponding graphs
are demonstrated. Figure 2, 3 and 4 illustrates the values
of three evaluation criteria DB, Sl, and CH of each
incremental block of IRIS. The whole data is divided into
blocks of size 50. i.e. 3 blocks, and added in the
incremental order. The horizontal axis represents the

DB value of IRIS at Rate 0.75

14

-
[S]

[y

DB Value
< o o
B (=] 00
(/

=
o

o
-

2
No.of Block

number of blocks. It goes from 1 to 3. The DB, SI, and
CH are shown on the vertical axis. Every block has been
clustered and use the validity measurements to evaluate
it. The IRIS dataset case study considers clusters 2, 3, 5,
and 6 at the sampling rate of 0.75.

—)

— 1]

—

Fig 2: DB score of IRIS at Incremental blocks

Figure 2 indicates that the best DB values are associated
with cluster 2. It suggests that cluster 2 is the most
compact and well-defined structure among all the clusters
in the dataset. Sl values are explained in Figure 3. It is
clear from the graph that cluster 2 has the best Sl value.

SI Value of IRIS Rate 0.75

08

0.7

06

0.5

0.4

S| Score

\

0.3

0.2

01

-

No of Blocks >

Figure 4 shows the CH value and it recommends the
cluster 3. From the three validity measures its
recommended cluster option is 2 or 3 for the IRIS dataset.

—)

e

—

w

Fig 3: Sl score of IRIS at Incremental blocks

CH Value of IRIS Rate 0.75

600

500

400

300

CH Score

Y

200

100

-

2

No of Blocks

Fig 4: CH score of IRIS at Incremental blocks

International Journal of Intelligent Systems and Applications in Engineering

IISAE, 2024, 12(4), 2134-2148 | 2143

Figures 5, 6 and 7 indicate the criteria values DB, Sl, and
CH of dataset Diamond for clusters 5,7,9,10,12. The
dataset is divided into 6 blocks of size 10000. The size of
the last block varies. From Table 2, it can be understood
that the sampling rate of 0.5 is acceptable for DB and SI
values. So the DB and Sl values are calculated using the
sampling rate of 0.5, and CH at 0.75. The x-axis

represents the number of blocks, ranging from 1 to 6. The
y-axis corresponds to the DB, SI, and CH values. Based
on Figures 5, 6 and 7 it can be deduced that cluster 7 is
the best.

—

DB Value for Diamond at Rate 0.5

0.6

3
No of Blocks

— O
—] ()

12

Fig 5: DB value of Diamond at Incremental blocks

—

Sl Value for Diamond at Rate 0.5 7

—)
— ()

12

038
i —
:
=06 —
=

Fig 6: Sl value of Diamond at Incremental blocks

—

CH Value for Diamond at Rate 0.75 7

800000

700000

600000

500000

H Value

C

]

—)
10
12

= 400000 /- ’
“ 300000 — //

200000
100000 \/

No of Blocks

Fig 7:CH value of Diamond at Incremental blocks

Figures 8, 9 and 10 exhibit the values of dataset Codon for
clusters 4, 6, 8, and 10. The whole dataset is divided into
14 blocks. There are 13 blocks with a size of 1000 and
the last one with a different size. Based on Table 3, the
preferable sampling rate for DB and CH is 0.25 and for
Sl it is 0.75. Figures 8, 9 and 10 visually represent the
clustering performance for each cluster in the dataset

Codon. The horizontal axis depicts the number of blocks
from 1 to 14. The vertical axis represents the values for
DB, Sl and CH. According the graphs 8 and 9 it is
understood that cluster 6 is the best one. The figure 10
depicts CH value and shows that cluster 8 is the best.

International Journal of Intelligent Systems and Applications in Engineering

LISAE, 2024, 12(4), 2134-2148 | 2144

DB Value of CODON at Rate 0.25 —i
0.8

0.7
0.6
0.5

04

DB Value

03
0.2]

01

7 8
No of Blocks

Fig 8:DB value of Codon at Incremental blocks

SI Value of CODON at Rate 0.75

1.2 —

1
038 E

06

ST Value

04

02

1 2 3 4 5 6 7 8 9 i0 11 12 13 14
No of Blocks

Fig 9:SI value of Codon at Incremental blocks

—

CH Value of CODON at Rate 0.25
4500000 —
—] ()
4000000
3500000
3000000
2500000

CH Value

2000000
1500000
1000000

500000

0 ™
1 2 3 4 5 6 7 8 9 0 11 12 13 14
No of Blocks

Fig 10:CH value of Codon at Incremental blocks

Figures 11, 12 and 13 illustrate the analytical study of the clusters 6 and 8 of the Codon dataset are considered. The
three clustering techniques i.e. IFDC, Simple FCM, and k- sampling rate taken in this experiment is 0.75.

means. The analysis was done on three datasets IRIS,
Diamond, and Codon using three validity measures. The
promising two clusters from each dataset were considered
for comparison study. According to Figures 2, 3, and 4,
clusters 2 and 3 of the IRIS dataset are selected. From
Figures 6, 7, and 8, clusters 9 and 12 of the Diamond
dataset are chosen. Similarly, from Figures 9, 10, and 11,

The vertical axis represents two criteria number of clusters
and the validity measures. The horizontal axis represents
the values of each validity measure. In essence, the graph
suggests that the IFDC depicts better results while
clustering large data.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2134-2148 | 2145

Clusters and Validity Measures
O I I | I I I I I

[

IRIS

CH

SH

DB

CH

SH

DB

2 3 4 5 6
Values

H K-means FCM ®mIFDC

Fig 11: Comparison of IFDC, FCM and K-means on IRIS

12

Clusters and Validity Measures

Daimond
CH
I
SH I
I
DB |
CH
]
SH I
]
DB]
0 1 2 3 4 5 6 7
Values

M K-means FCM mIFDC

Fig 12: Comparison of IFDC, FCM and K-means on Diamond

Codon

CH

8

SH

DB

CH

6

SH

Clusters and Validity Measures

DB

(=]
h*]

4

B K-means

10 12 14 16

FCM ®IFDC

Fig 13: Comparison of IFDC, FCM and K-means on Codon

It can be inferred that IFDC clustering has the highest
index values compared to the FCM and k-means clustering
methods. From the values, it is deciphered that while using
a small dataset the results of the IFDC are not always
superior to that of the others. IFDC operates similarly to
simple FCM and k-means when employing a small dataset
as a single set such as the IRIS dataset. At the same time,
it performs well in a large dataset. This is deciphered by
the values of criteria measures of other datasets. IFDC
segregates the complete data into small chunks according
to the size of the memory and then processes it. It enhances

memory consumption while reducing the problem of
limited memory. IFDC also handles streaming data very
efficiently by propagating the characteristics of each block
to the next one.

6. CONCLUSION

The Incremental FCM Double Clustering (IFDC)
algorithm offers a significant advancement in handling
large datasets and streaming data by overcoming the
limitations of traditional FCM clustering. IFDC segments
the data into manageable chunks processes each chunk

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(4), 2134-2148 | 2146

individually, and uses a representative sampling technique
to merge and propagate knowledge through subsequent
chunks. This method reduces the need for extensive
memory and repetitive calculations, enhancing efficiency
and performance, particularly with large and dynamic
datasets.

However, while IFDC addresses many challenges, some
issues remain. Anomalies and the selection of initial
cluster centers still pose difficulties, and further research
is needed to refine these aspects. Overall, IFDC marks a
notable improvement in data clustering, particularly for
real-time applications and streaming data, providing a
robust foundation for future advancements in the field.
This study provided insights into the strengths, potential
and weaknesses areas for improvement of the IFDC
algorithm.

REFERENCE

[1] T. J. Ross, Fuzzy Logic with Engineering
Applications. 2010.

[2] J. C. Dunn, “A fuzzy relative of the ISODATA
process and its use in detecting compact well-
separated clusters,” J. Cybern., vol. 3, no. 3, pp. 32—
57, 1973, doi: 10.1080/01969727308546046.

[3] J. C. Bezdek, Pattern Recognition with Fuzzy
Objective Function Algorithms. 1981.

[4] J. C. Bezdek, “FCM: THE FUZZY c¢-MEANS
CLUSTERING ALGORITHM 1; ykEY ~1,” vol.
10, no. 2, pp. 191-203, 1984.

[5] A. S. Bozkir and E. A. Sezer, “FUAT - A fuzzy
clustering analysis tool,” Expert Syst. Appl., vol. 40,
no. 3, pp. 842-849, 2013, doi:
10.1016/j.eswa.2012.05.038.

[6] Agbonifo and O. Catherine, “Fuzzy C-Means
Clustering Model for Identification of Students ’
Learning Preferences in Online Environment,” Int.
J. Comput. Appl. Inf. Technol., vol. 4, no. I, pp. 15—
21, 2013.

[7] H. Izakian and A. Abraham, “Fuzzy C-means and
fuzzy swarm for fuzzy clustering problem,” Expert
Syst. Appl., vol. 38, no. 3, pp. 1835-1838, 2011,
doi: 10.1016/j.eswa.2010.07.112.

[8] T. M. Silva Filho, B. A. Pimentel, R. M. C. R.
Souza, and A. L. I. Oliveira, “Hybrid methods for
fuzzy clustering based on fuzzy c-means and
improved particle swarm optimization,” Expert
Syst. Appl., vol. 42, no. 17-18, pp. 6315-6328,
2015, doi: 10.1016/j.eswa.2015.04.032.

[91 M. R. Mahmoudi, D. Baleanu, Z. Mansor, B. A.
Tuan, and K. H. Pho, “Fuzzy clustering method to
compare the spread rate of Covid-19 in the high
risks countries,” Chaos, Solitons and Fractals, vol.
140, pp. 1-9, 2020, doi:
10.1016/j.chaos.2020.110230.

[10] T. Lei, X. Jia, Y. Zhang, L. He, H. Meng, and A. K.
Nandi, “Significantly Fast and Robust Fuzzy C-
Means Clustering Algorithm Based on

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Morphological Reconstruction and Membership
Filtering,” IEEE Trans. Fuzzy Syst., vol. XXX, no.
XXX, pp. 1-15, 2018, doi:
10.1109/TFUZZ.2018.2796074.

T. Bonis and S. Oudot, “A fuzzy clustering
algorithm for the mode-seeking framework,”
Pattern Recognit. Lett., vol. 102, pp. 3743, 2018,
doi: 10.1016/j.patrec.2017.11.019

Z. Siqing, T. Yang, and Y. Feiyue, “ScienceDirect
ScienceDirect Fuzzy Logic-Based Clustering
Algorithm for Multi-hop Wireless Fuzzy Logic-
Based Clustering Algorithm for Multi-hop Wireless
Sensor Networks Sensor Networks,” Procedia
Comput. Sci., vol. 131, pp. 1095-1103, 2018, doi:
10.1016/j.procs.2018.04.270.

O. M. Saad, A. Shalaby, L. Samy, and M. S. Sayed,
“Automatic arrival time detection for earthquakes
based on Modified Laplacian of Gaussian filter,”
Comput. Geosci., vol. 113, pp. 43-53, 2018, doi:
10.1016/j.cage0.2018.01.013.

P. Karczmarek, A. Kiersztyn, W. Pedrycz, and D.
Czerwinski, “Fuzzy C-Means-based Isolation
Forest,” Appl. Soft Comput., vol. 106, p. 107354,
2021, doi: 10.1016/j.as0c.2021.107354.

M. Salah, “Filtering of remote sensing point clouds
using fuzzy C-means clustering,” Appl. Geomatics,
vol. 12, no. 3, pp. 307-321, 2020, doi:
10.1007/s12518-020-00299-3.

J. P. Mei, Y. Wang, L. Chen, and C. Miao, “Large
Scale Document Categorization With Fuzzy
Clustering,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5,
pp. 1239-1251, 2017, doi:
10.1109/TFUZZ.2016.26040009.

R. Jiao, S. Liu, W. Wen, and B. Lin, “Incremental
kernel fuzzy c-means with optimizing cluster center
initialization and delivery,” Kybernetes, vol. 45, no.
8, pp. 1273-1291, 2016, doi: 10.1108/K-08-2015-
0209.

A. Ribert, A. Ennaji, Y. Lecourtier, P. S. I. F.
Sciences, and U. De Rouen, “An Incremental
Hierarchical Clustering,” Interface, no. May, pp.
19-21, 1999, [Online]. Available:
http://scholar.google.com/scholar?hl=en&btnG=Se
arch&g=intitle: An+incremental+hierarchical+clust
ering#3.

R.J.Kuo, T.C. Lin, F. E. Zulvia, and C. Y. Tsai, “A
hybrid metaheuristic and kernel intuitionistic fuzzy
c-means algorithm for cluster analysis,” Appl. Soft
Comput. J., vol. 67, pp. 299-308, 2018, doi:
10.1016/j.as0c.2018.02.039.

F. Can, “Incremental Clustering for Dynamic
Information Processing,” ACM Trans. Inf. Syst.,
vol. 11, no. 2, pp. 143-164, 1993, doi:
10.1145/130226.134466.

W. Zhao, L. Li, S. Alam, and Y. Wang, “An
incremental clustering method for anomaly
detection in flight data,” Transp. Res. Part C Emerg.
Technol., vol. 132, no. September 2019, p. 103406,

International Journal of Intelligent Systems and Applications in Engineering

IISAE, 2024, 12(4), 2134-2148 | 2147

2021, doi: 10.1016/j.trc.2021.103406.

[22] P. Hore, L. O. Hall, and D. B. Goldgof, “Single pass
fuzzy ¢ means,” IEEE Int. Conf. Fuzzy Syst., 2007,
doi: 10.1109/FUZZY .2007.4295372.

[23] P. Hore, L. O. Hall, D. B. Goldgof, and W. Cheng,
“Online fuzzy C means,” Annu. Conf. North Am.
Fuzzy Inf. Process. Soc. - NAFIPS, pp. 1-5, 2008,
doi: 10.1109/NAFIPS.2008.4531233.

[24] J. P. Mei, Y. Wang, L. Chen, and C. Miao,
“Incremental fuzzy clustering for document
categorization,” IEEE Int. Conf. Fuzzy Syst., pp.
1518-1525, 2014, doi: 10.1109/FUZZ-
IEEE.2014.6891554.

[25] M. Al-Ayyoub, S. M. Alzu’Bi, Y. Jararweh, and M.
A. Alsmirat, “A GPU-based breast cancer detection
system using Single Pass Fuzzy C-Means clustering
algorithm,” Int. Conf. Multimed. Comput. Syst. -
Proceedings, vol. 0, pp. 650-654, 2017, doi:
10.1109/ICMCS.2016.7905595.

[26] Y. Li, Q. Wang, K. Ran, and L. Jiao, “Weighted
Single-Pass Fuzzy c-Means Algorithm Based on
Density Peaks,” IEEE Reg. 10 Annu. Int. Conf.
Proceedings/TENCON, vol. 2018-Octob, no.
October, pp. 2214-2217, 2019, doi:
10.1109/TENCON.2018.8650348.

[27] M. D. Woodbright, M. A. Rahman, and M. Z. Islam,
“A Novel Incremental Clustering Technique with
Concept Drift Detection,” 2020, [Online].
Available: http://arxiv.org/abs/2003.13225.

[28] S. Laohakiat and V. Sa-ing, “An incremental
density-based clustering framework using fuzzy
local clustering,” Inf. Sci. (Ny)., vol. 547, pp. 404—
426, 2021, doi: 10.1016/j.ins.2020.08.052.

[29] X. Wang and Y. Xu, “An improved index for
clustering validation based on Silhouette index and
Calinski-Harabasz index,” IOP Conf. Ser. Mater.
Sci. Eng., vol. 569, no. 5, 2019, doi: 10.1088/1757-
899X/569/5/052024.

[30] P. Jha, A. Tiwari, N. Bharill, M. Ratnaparkhe, N.
Nagendra, and M. Mounika, “Scalable incremental

[31]

[32]

[33]

[34]

[35]

fuzzy consensus clustering algorithm for handling
big data,” Soft Comput., vol. 25, no. 13, pp. 8703—
8719, 2021, doi: 10.1007/s00500-021-05733-1.

A. D. Kochuveettil and R. Mathew, “A novel
approach to fuzzy c-Means clustering using kernel
function,” Intell. Decis. Technol., vol. 16, no. 4, pp.
643-651, 2022, doi: 10.3233/IDT-210091.

J. C. . R. E.;WILLIAM F. Bezdek, “FCM: THE
FUZZY c-MEANS CLUSTERING
ALGORITHM,” FCM Fuzzy c-Means Clust.
Algorithm, vol. 10, no. 2, pp. 191-203, 1984.

P. J. Rousseeuw, “Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis,” J.
Comput. Appl. Math., vol. 20, no. C, pp. 53-65,
1987, doi: 10.1016/0377-0427(87)90125-7.

X. Gu, Q. Ni, and G. Tang, “A Novel Data-Driven
Approach to Autonomous Fuzzy Clustering,” IEEE
Trans. Fuzzy Syst., vol. 30, no. 6, pp. 2073-2085,
2022, doi: 10.1109/TFUZZ.2021.3074299.

D. L. Davies and D. W. Bouldin, “A Cluster
Separation Measure,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. PAMI-1, no. 2, pp. 224-227,
1979, doi: 10.1109/TPAMI.1979.47669009.

International Journal of Intelligent Systems and Applications in Engineering

IISAE, 2024, 12(4), 2134-2148 | 2148

