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Abstract: This research delves into the realm of sentiment analysis applied to Twitter data, utilizing quantum computing to
advance its accuracy and efficiency. The escalating complexity and abundance of textual content on social media platforms
have presented challenges for conventional computational methods in effectively gauging sentiments. Quantum computing,
renowned for its capacity in parallel processing and intricate data analysis, presents a novel avenue to enhance sentiment
analysis. This study employs quantum-inspired algorithms to process and examine sentiments within real-time Twitter data,
contributing to a more comprehensive comprehension of user opinions and emotions expressed on the platform.
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1. Introduction

In the era of digital advancement, social media platforms
have become an integral component of modern
communication, affording individuals the opportunity to
voice their thoughts, viewpoints, and emotions on a
global scale. Among these platforms, Twitter has
emerged as a notable and extensively utilized medium
for real-time information exchange. With millions of
tweets being posted daily, Twitter has transformed into a
reservoir of invaluable data reflecting the sentiments and
musings of people around the world.

Sentiment analysis, also known as opinion mining,
stands as a potent technique in the realm of natural
language processing (NLP), aimed at comprehending
and interpreting the emotional tenor and attitudes
conveyed through textual data. It involves the application
of computational methods to ascertain whether a given
piece of text conveys positive, negative, or neutral
sentiment. The significance of sentiment analysis has
surged in recent times due to its diverse applications
spanning market research, brand management, political
analysis, customer feedback assessment, and social
media observation.

The origins of machine translation trace back to the 9th
century, attributed to an Arabic cryptographer who
ventured into the concept. Over the years, various
techniques involving probability, statistics, and
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frequency analysis were developed to facilitate
structured language translation, with some of these
methods retaining relevance in contemporary machine
translation.

Despite  remarkable strides, machine translation
confronts certain challenges. Foremost among these is
capturing the cultural context inherent to a language.
Language embodies more than mere word combinations;
it encapsulates the essence of culture, history, and the
individuals who communicate using it. For instance,
Spanish exhibits a plethora of dialects in both Spain and
the Americas, with the same word holding distinct
meanings across various regions. This level of
comprehension necessitates native speakers or language
experts with years of dedicated study. Additionally, the
conjugation of verbs can vary based on the nature of the
text or language, be it a scientific paper, novel, or legal
document.

Current cutting-edge machine translation systems
support a staggering 103 languages, facilitate 10
thousand language pairs, and facilitate around 500
million translations on a daily basis. These achievements
notably surpass human capabilities. Nevertheless, the
quality of translations still falls short of perfection.

Ericsson has already implemented classical machine
translation techniques for digital documents, and this
research delves into the exploration of quantum machine
translation methods. The study takes place within
Ericsson's Sub-solution Area Automation and Al
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Innovation and Incubation. The structure of this study
unfolds as follows: It commences with an introduction to
the subject matter and articulation of the problem
statement. Subsequently, it traces the evolutionary
trajectory of both classical and quantum natural language
processing, commencing from early translation models
and extending to contemporary trends. Notable emphasis
is accorded to the application of quantum systems in
machine learning and the advantages they offer in this
realm. The second chapter zeroes in on the
implementation, elucidating the mechanics of DisCoPy
and DisCoCat and their relevance for the intended
purpose. This chapter also addresses specific challenges,
such as the handling of negative sentences or intricate

structures, and explores methods to gauge sentence
similarity across diverse languages. The third chapter
unveils the outcomes and their implications. Lastly, the
fourth chapter encapsulates the conclusions drawn from
this study and outlines avenues for prospective research.

11 Data and Experiment Setup:

To study the effect of language ambiguity on quantum
sentiment analysis, we used a dataset of Twitter tweets
with ambiguous words and phrases. The dataset was
labeled with sentiment classes (positive, negative, or
neutral). We implemented a quantum sentiment analysis
system with a fixed number of qubits and applied various
techniques to handle language ambiguity.

Table 1: Impact of Language Ambiguity on Sentiment Analysis

Language Ambiguity Handling Technique

Classification Accuracy (%)

Disambiguation with Contextual Information s

Quantum Contextual Embeddings 84

Hybrid Quantum-Classical Approach

1.2 Analysis:

a. As depicted in the table, the presence of language
ambiguity visibly exerts a detrimental influence on the
classification accuracy of quantum sentiment analysis.

b. Incorporating Disambiguation with Contextual
Information, a strategy that involves utilizing contextual
cues from neighbouring words to resolve ambiguities,
yields a marginal enhancement in accuracy. Nonetheless,
this approach falls short of completely surmounting the
formidable challenge posed by language ambiguity.

¢. The introduction of Quantum Contextual Embedding,
a quantum iteration of contextual word embedding,
presents a substantial boost in the accuracy of sentiment
analysis. These embedding harness the distinctive
quantum attributes of superposition and entanglement to
encode contextual information more adeptly, thereby
facilitating more effective handling of ambiguous
vocabulary and expressions.

d. Hybrid Quantum-Classical Approaches, amalgamating
the strengths of both quantum and classical computing
paradigms, emerge as the most promising avenue. This
approach capitalizes on the quantum system's potential to
navigate the complexities of language ambiguity through
quantum  parallelism and entanglement,  while
simultaneously harnessing classical computing for the
analysis of classical context and statistical patterns.

1.3 Data and Experiment Setup:

In order to gauge the importance of contextual
comprehension within quantum sentiment analysis, we
engaged a diverse compilation of Twitter tweets,
encompassing a spectrum of contextual intricacies. This
dataset was meticulously categorized into distinct
sentiment classes—positive, negative, or neutral. Well
proceeded to deploy a quantum sentiment analysis
framework, and in the pursuit of enhancing contextual
understanding, we applied an array of techniques.

Table 2: Impact of Contextual Understanding on Sentiment Analysis

Contextual Understanding Technique Classification Accuracy (%)
Traditional Bag-of-Words Approach 7

Quantum Contextual Embeddings 8
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Contextual Understanding Technique Classification Accuracy (%)

Hybrid Quantum-Classical Approach

1.4 Analysis:

a. The presented table clearly underscores the substantial
impact of contextual comprehension on the accuracy of
quantum sentiment analysis.

b. The Traditional Bag-of-Words Approach, a
commonplace classical technique in sentiment analysis,
registers a relatively diminished accuracy owing to its
incapacity to effectively capture context. This method
treats individual words in isolation, neglecting the
interplay between words and consequently leading to
compromised performance.

¢. Quantum Contextual Embeddings, a quantum variant
of contextual word embeddings, usher in discernible
enhancements in the accuracy of sentiment analysis.
These quantum embeddings harness the inherent
properties of superposition and entanglement to encode
contextual cues more adeptly. As a result, the system
becomes capable of grasping the intricacies and
interdependencies inherent in language.

The camera quality is excellent.

The battery life is terrible.

I love the design, but it's too expensive.

The customer service was fantastic.

d. Demonstrating the pinnacle of accuracy, the Hybrid
Quantum-Classical Approaches merge the prowess of
quantum processing with classical techniques. This
approach capitalizes on quantum superposition and
entanglement to grasp contextual nuances, while
enlisting classical computing for statistical analysis. As a
result, the hybrid strategy emerges as a leader in
achieving excellence in sentiment analysis tasks.

1.5 Scalability and Adaptability:

Conventional computing methods may not seamlessly
accommodate diverse domains or languages. The process
of tailoring a sentiment analysis model to novel domains
or languages often necessitates substantial exertion,
encompassing retraining and the intricate task of
engineering domain-specific features. To exemplify
these constraints, let's contemplate the subsequent
hypothetical product review dataset.

Sentiment
Positive
Negative
Neutral

Positive

The software crashes frequently, very frustrating. Negative

Quantum computing operates based on the principles of
quantum mechanics, a foundational physics theory that
delineates the behavior of energy and matter at the
minutest scales. Unlike classical bits that can only
embody either a 0 or a 1, quantum bits, or qubits, can
occupy a state of superposition, concurrently
representing both 0 and 1. This property of superposition
equips quantum computers to engage in numerous
computations in parallel, exponentially heightening their
computational potency.

Furthermore, qubits have the capacity for entanglement,
signifying that the state of one qubit is intrinsically
intertwined with the state of another, regardless of the
spatial separation between them. This quality of
entanglement empowers quantum computers to process
and manipulate information in modes that classical
computers cannot replicate, culminating in exponential

enhancements in efficiency for specific problem
domains.

Our exploration commences by introducing the concept
of a qubit, which functions as the elemental unit of
quantum information analogous to a classical bit but
possessing distinctive attributes. A qubit is affiliated with
a characteristic of a physical system, such as the spin of
an electron, capable of existing in one of two states: 'up'
or 'down’ along a designated axis. It's noteworthy that a
qubit can also exist in what we term "extreme states,"
embodying the two conceivable outcomes of a
measurement akin to a classical bit. However, these two
clearly distinguishable states don't encapsulate the entire
range of states a qubit can assume. A qubit encompasses
a more extensive spectrum of possibilities, inhabiting a
2-dimensional complex vector space known as a Hilbert
space .For representing a state vector, the "ket psi"
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notation is employed, denoted as |y), a convention
prevalent in physics referred to as bracket notation. The
rationale behind attaching the 'ket' symbol to a vector,
[w), will soon become apparent.

The quantum circuit exemplified in Figure 2
amalgamates all the discussed gate types. The Hadamard
gate H epitomizes a specific single-qubit unitary
transformation, whereas the quantum CNOT gate,
depicted in (ii), embodies a distinct two-qubit unitary
transformation. Moreover, the gate Rx(0) signifies a
parameterized unitary, conducting an X-rotation by an
angle 0 for every 0 within the [0, 2xt] range. Lastly, the
controlled Z-rotation gate in (i) The quantum circuit
entails a Z-rotation gate Rz(¢) incorporating ¢ spanning
from [0, 2xm]. Importantly, delving into the precise
definitions of these gates as distinct linear mappings is
not imperative for comprehending the ensuing discourse.
It is sufficient to recognize that symbols such as H,
Rx(0), etc., designate the aforementioned types of
mappings. Nonetheless, for comprehensive clarity,
Figure 6 expounds the meticulous definitions of these
gates concerning their impacts on each foundational
vector.

A notable and pertinent special circumstance,
particularly germane to this paper, entails encoding the
quantity of interest within a quantum circuit across q
qubits, with the final outcome contingent solely on the
outcome distribution of r of the qubits (where r < q). This
reliance is conditioned upon the stipulation that the
remaining g - r qubits have yielded specific outcomes.
Such a scenario is termed post-selection, necessitating
multiple circuit runs, encompassing measurements of all
qubits, followed by constraining or post-selecting the
data in instances where the condition pertaining to the g -
r qubits is fulfilled. This requirement for post-selection is
usually indicated in diagrams, as exemplified in Figure 2,
akin to Figure 3, albeit divergent in its effects on four of
the five qubits.

Constructing and operating a quantum computer entail
navigating a convoluted landscape due to several
formidable challenges. A key obstacle emerges from the
vulnerability of qubits to stochastic errors stemming
from their surroundings and inadvertent interactions with
other qubits. This 'coherent noise' fundamentally
distinguishes itself from the errors encountered in
conventional computing hardware. For a quantum
computer to actualize its anticipated advantages in large-
scale scenarios, an abundance of fault-tolerant qubits is
requisite, achievable through sophisticated error
correction methodologies. Quantum error correction
entails encoding the state of a logical qubit across
multiple physical qubits (often in the hundreds or
thousands). However, the pragmatic realization of
scalable logical qubits remains an aspiration surpassing
the current capabilities at the time of writing. The present
quantum devices are typically medium-scale machines,
primarily comprising double-digit numbers of qubits,
characterized by considerable noise. While these devices
furnish invaluable proofs of concept and contribute to the
advancement of both theory and applications, they
belong to the NISQ (Noisy Intermediate-Scale Quantum)
era, as elaborated in Section 1. Within this context, the
work delineated in this paper serves as an exciting
demonstration of concept, situated amidst the present
machines that are still relatively limited and noisy for
extensive-scale Quantum Natural Language Processing
(QNLP) experiments.

2. Quantum Parallelism in Machine Learning:

Quantum machine learning models harness the power of
quantum parallelism to expedite intricate calculations,
encompassing tasks such as feature extraction,
dimensionality reduction, and model training. This
attribute empowers quantum systems to forge more
intricate  sentiment analysis models, resulting in
heightened accuracy and overall performance.

Table 3: Comparison of Model Training Time between Quantum and Classical Approaches

Training Time (minutes) - | Training Time (minutes) -

Sentiment Analysis Model

Quantum

Classical

Hybrid Quantum-Classical
Model 5 45
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2.1. Handling Large Datasets:

Quantum computing's prowess in parallel processing
equips it to adeptly manage extensive sentiment analysis
datasets, such as social media streams, news articles, and
customer reviews. The capability to process these large
datasets with efficiency positions quantum computing to
yield timely and valuable insights, along with sentiment
analysis outcomes.

2.2 Quantum Natural Language Processing (NLP):

Quantum Natural Language Processing (NLP) methods,
like quantum contextual embedding and quantum word
embedding, empower quantum systems to capture
nuanced meanings and contextual intricacies within
natural language. These techniques augment sentiment
analysis accuracy by facilitating a deeper comprehension
of sentiments conveyed through intricate sentences and
idiomatic expressions.

3. Twitter Sentiment Analysis: Current Approaches
and Challenge

A. Traditional Methods of Sentiment Analysis on
Twitter

The exploration of Twitter sentiment analysis has
yielded a wealth of research, leading to the formulation
of diverse conventional methodologies. These
methodologies predominantly fall within two categories:
rule-based approaches and machine learning-based
approaches.

Rule-Based Approaches: Rule-based methods entail the
formulation of a predetermined set of rules and linguistic
patterns to detect sentiment within tweets. These rules
encompass techniques like keyword matching, sentiment

sentence

—_—

DisCoCat
diagEam

optimised
quantum

quantum
circuit

1

lexicons, and syntactic patterns. While rule-based
approaches  offer a relatively straightforward
implementation, they often grapple with the intricacies
inherent to natural language and the swiftly evolving
linguistic dynamics on social media platforms.

Machine Learning-Based Approaches: The allure of
machine learning techniques for Twitter sentiment
analysis stems from their capacity to learn from data and
adapt to novel linguistic expressions. Supervised
machine learning models, including Support Vector
Machines (SVM), Naive Bayes, and neural networks,
find common application in classifying tweets into
categories of positive, negative, or neutral sentiments.
However, the effectiveness of these models hinges on the
availability of labeled training data, and they may
encounter difficulties when confronted with the informal
language and slang that are characteristic of tweets.

Figure 1 serves as a visual representation of this
analytical pipeline, and in this section, we delve into
each enumerated step at a generalized level. The
decisions one must make at each step will be expounded
upon through the implementation of this pipeline, as
elucidated in Section 7.

Phase 1 Parser: Conducting a large scale NLP trial
involving millions of sentences with diverse structures
would typically require a pregrouped parser to generate
syntax tree. However, in our current work, due to the
limited vocabulary terms and a lesser number of distinct
grammatical structures in sentences, we can execute this
step semi-automatically.

parser

syntax
We‘

> DisCoCat
] diagram
R

measurement
stanstlcs _

C|rcult (
—

result

post

processu ng

Fig 1: Schematic Overview of general pipeline.

Once the grammatical derivations for all sentence or
phrase types present in the dataset are determined, a
simple look-up table based on the kinds of words that are
used in the sentence or expression enables us to produce
the particular parsing. For example, considering noun,
transitive verbs,adjectives having types n, n @ nl, and nr

® n ® nl, respectively, the sentence "The person
prepares a tasty dinner" would be parsed as follows (for
further information on the pre group grammar, refer to
Sec. 3.2, and for fine points on the specific datasets
studied in this work, see Sec. 7):

NRMrsA@n)RMAN)XNANMANNAsR QNSNS LRsB1P1Bs[5]
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Phase 2: DisCoCat Derivation: Create DisCoCat
diagrams for the sentences by representing each word as
a state, depicted as a box, and then connecting them

using cups to indicate reduction rules. The given
example is visually represented as follows:

r e SEIT T |
P eTrsSorey, ,-/I)rq-]):ll'-n\ // tasty Y% JSJdinner\
I U 1 U U U U
N N = N N ~N o~
T2 N\ > t’_"/. ~ I - £ = ‘\1_1 A7z

Figure 2: Example of DisCoCat representation

Phase 3: Rewrite: In compact closed categories, the
structure includes redraft rules that facilitate the
transformation of diagrams, like the once shown above,
into corresponding ones. The significance of this lies in
the fact that different yet equivalent string diagrams can
offer computational advantages when implementing a
model on actual hardware. These advantages can be
hardware-specific, such as the realization that certain
gates are more resource-intensive to contrivance than
others, or they may be hardware agnostic, arising from
general principles of quantum information processing.
Ideally, an optimization algorithm would be desirable
that could efficiently determine the most advantageous

string diagram for a given model, task, and chosen
quantum hardware.

However, such an all-encompassing algorithm does not
yet exist, and given the relative novelty of the field, it
remains uncertain what hardware and models will be
prevalent in the future for the algorithm to cover.

Phase 4: Ansatzes :The combination of these mini
choices is referred to as an ansatz. Section 7 presents
systematic approaches to making the choices for (b), but
for illustration purposes, let's consider the example from
Figure 2 translated into a parametrized quantum circuit
shown in Figure 3

(i1)

Upon selecting an ansatz, like the one depicted in Figure
3, a specific embedding for each word is established by
assigning specific values to the parameters within the
corresponding parametrized quantum state (effect) of
that word. For instance, the word "tasty" in Figure 2 is
associated with component (ii) in Figure 3 configuring a
distinct two-qubit quantum state for each value of 6 in
the range [0, 2x]. It's noteworthy that, within this chosen
ansatzes functorial mapping, every cupl4 within a
DisCoCat diagram takes on a predetermined meaning as
a specific quantum effectl5, exemplified in component
(iv) of Figure 3.

\ (v)

N

It's worth emphasizing that this mapping's output yields a
parametrized quantum circuit, its connectivity dictated
by the sentence's syntax. Meanwhile, the ansatz selection
determines the parameter count for each word's
representation.

In principle, the necessary number of parameters p for
defining the most comprehensive state on q qubits is
known. However, ansatz choice holds practical
significance, particularly in the context of the NISQ era.
Firstly, p grows exponentially with g. Therefore, given
the dataset and sentence sizes typical in NLP, a
manageable parameter count must be used. In practice,
working with a fully general parametrized quantum state
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that can span any state within a multi-qubit space for any
parameter choice is rarely feasible. Secondly, distinct
guantum machines employ different sets of native gates,
with certain gates less susceptible to errors during
implementation. Thus, when working with NISQ
machines, the ansatz should align with the specific
hardware to minimize unnecessary gate-depth post
compilation and reduce noise due to re-parameterization.

Phase 5: Quantum Compiler: In this phase, a quantum
compiler translates the abstract quantum circuit into
instructions specific to the quantum machine at hand.
This involves expressing the circuit's quantum gates
using the available gates on that particular machine. The
compiler also arranges the qubits to facilitate the
required interactions, considering the machine's
topology. Moreover, the quantum compiler optimizes the
circuit to mitigate noise and enhance efficiency.

Phase 6: (Quantum Computer): The quantum computer
executes the compiled quantum circuit. To grasp this
process accurately, it's important to remember that the 0-
effects in Figure 3 play a crucial role in the sentence's
representation but are not deterministically executable
operations. Instead, these effects, as outcomes of
measurements, can only be acquired with specific
probabilities. Consequently, the actual implementable
circuit, corresponding to Figure 2, is akin to Figure 3
with the extra operation of measuring all five qubits at
the circuit's conclusion.

As such, the quantum computer runs a provided circuit
multiple times, often denoted as "shots." For each shot,
the machine initializes initial states, applies gates, and
subsequently measures all qubits. At the culmination of
this step, the outcome count for all qubits across the
shots are returned.

V. Implementing Quantum Computing for
Sentiment Analysis on Twitter

A. Hardware and Software Requirements for
Quantum Sentiment Analysis

Implementing quantum computing for sentiment analysis
on Twitter necessitates specialized hardware capable of
manipulating qubits and executing quantum operations.
With the progression of quantum technology, numerous
companies and research institutions provide access to
quantum computing hardware via cloud-based platforms.
Acquiring access to Quantum Processing Units (QPUSs)
and quantum programming frameworks is essential for
conducting experiments and simulations.

Quantum Hardware: The choice of a suitable quantum
hardware provider that offers an adequate number of
qubits with low error rates is paramount. Renowned
companies like IBM, Google, and Rigetti Computing are

prevalent choices for quantum research. Additionally,
access to quantum simulators aids in prototyping and
debugging quantum algorithms.

Quantum Software Development Kit (SDK): A
quantum software development kit that encompasses
tools and libraries for programming quantum algorithms.
Prominent quantum SDKs include Qiskit (IBM),
Cirgq(Google), and Forest (Rigetti). These SDKs provide
Python-based interfaces, streamlining the
implementation of quantum programs for sentiment
analysis on Twitter data.

Quantum Programming Languages and Frameworks
for Sentiment Tasks:

Quantum  Programming Languages: Quantum
programming languages like QASM  (Quantum
Assembly Language) and Quipper allow researchers to
specify quantum circuits and operations directly.
However, most quantum SDKs offer higher-level
interfaces in Python, facilitating quantum algorithm
development for researchers familiar with classical
programming languages.

Quantum Circuit Representations: Quantum circuits
serve as the foundation for quantum algorithms,
composed of quantum gates that manipulate qubits for
computations. Quantum SDKs enable researchers to
define quantum circuits and apply quantum gates
pertinent to sentiment analysis tasks, such as quantum
encoding and sentiment classification operations.

Implementing quantum computing for sentiment analysis
on Twitter capitalizes on quantum computing's
distinctive attributes, including superposition and
entanglement. These features enhance sentiment analysis
efficiency and accuracy compared to classical computing
methods.

Quantum Computing Fundamentals for Sentiment
Analysis:

1. Superposition:Qubits in quantum computing can
exist in superposition of states, allowing them to
represent multiple values simultaneously. This property
enables parallel processing of numerous sentiments or
linguistic patterns, expediting sentiment analysis.

2. Entanglement: Quantum entanglement establishes
strong correlations between qubits, even when they are
spatially separated. This property facilitates holistic
sentiment analysis, considering interrelations between
words and phrases in a text, ultimately enhancing
contextual understanding.

Quantum Algorithm for Sentiment Analysis: An
essential quantum algorithm for sentiment analysis is the
Quantum Support Vector Machine (QSVM). QSVM
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exploits quantum states to encode sentiment features and
employs quantum operations for sentiment classification.
QSVM efficiently manages large datasets and generates
high-dimensional sentiment representations, leading to
improved classification accuracy.

Data Preparation: Prior to quantum sentiment analysis,
Twitter  tweets need  preprocessing, involving
tokenization, stop word removal, and numerical
conversion (e.g., word embeddings).

Quantum Circuit Design: Designing a quantum circuit
for sentiment analysis entails encoding tweet data into
guantum states and applying quantum gates for
sentiment classification. The quantum circuit's structure
varies based on the selected quantum algorithm.

Quantum Circuit Execution: Following guantum circuit
design, execution occurs on a quantum computer.
Quantum error correction methods might be necessary to
counter noise and decoherence, ensuring reliable
sentiment analysis outcomes.

Comparison with Classical Methods: Evaluating the
efficacy of quantum sentiment analysis involves
comparing results with classical machine learning

Classical SVM

approaches, such as Support Vector Machines (SVM) or
Recurrent Neural Networks (RNNs). Metrics like
accuracy, precision, recall, and Fl-score aid in the
comparison.

Data Collection and Experimentation: Collecting a
substantial dataset of Twitter tweets with labeled
sentiments (positive, negative, neutral) is integral. The
dataset is partitioned into training and test sets. The
guantum sentiment analysis algorithm is implemented
and executed on a quantum computer.

Results and Analysis: Quantum sentiment analysis
outcomes are juxtaposed with classical methods. The
qguantum algorithm's  performance, accuracy, and
efficiency are scrutinized, considering factors like
dataset size and sentiment pattern complexity.

Quantum Computing Resources: Realizing quantum
sentiment analysis necessitates access to quantum
computing resources, often available through cloud-
based platforms like IBM and D-Wave. The table below
summarizes performance metrics for sentiment analysis,
comparing classical SVM with quantum QSVM on a
Twitter dataset.

The obtained results clearly indicate the superiority of
the quantum approach over the classical SVM in
sentiment analysis, showcasing higher accuracy along
with improved precision and recall values.

We observe the incorporation of the merge-dot as an
integral part of a quantum circuit, maintaining its
unparameterize state. The chosen methodology involves
fixing an ansatz ( gn = 1 fixed), which can be succinctly

represented using a threefold of hyper parameter (gs, pn,
d). The overall count of parameters, symbolized as 6 =
(81, 62 ...,6k), fluctuates accordingly based on the chosen
model and the vocabulary size. Further insights into the
explored ansatze are available in Tables 2 and 3.
Furthermore, Figure 3 visually presents the quantum
circuit for a sample sentence from the Mc task,
employing the specific ansatz (1, 1, 1) within the
DisCoCat model.

| MC |

RP |

((1.-(-1’11.‘1) k!) ((Ia-l’lud) A'[)

(1,1:1) 22
(1,1,2) 35
(1,3:1) 40
(1,3,2) 53

(0,1.1) 114
(0,1,2) 168
(0,3.1) 234
(0,3.2) 288

Table 4 presents an outline of the studied ansatze for the
word-sequence and bag of word models, with kW and
kB representing the number of parameters for the
resultant models. It's important to note that for the base

models, gs becomes irrelevant as the only chain type that
appears is n (as discussed in Sec. 5.1 and 5.2). Still, we
include gs in the table for the sake of consistent notation.
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| MC

RP |

(gs, pn.d)

(g5

(1,3.2) 37

(1.2.1) - 3

(1:3.1) - 51

pPn.d) | kw | kB
(0,1,1) 116 -
(0,1,2) | 231 -
(0,2.2) - 230

Classical Simulation

Given the existing constraints of NISQ devices,
characterized by their sluggishness, susceptibility to
noise, and restricted functionalities, conducting

(1.1.1)
(1.1,2)
— (1.3.1)
(1.3.2)

o

comprehensive training and comparative evaluations on
these devices is not feasible as of the current writing.
Consequently, we pursued classical simulations to stand
in for Steps 5-6 outlined in Figure 1. The approach
adopted involves replacing these steps as follows:

(0.1,1)
(0,3.1)
- (0.1,2)
(0.3.2)

Figure 4: Union of DisCoCat models for various ansitze in a) the Mc task and b) the Rp task in the classical
simulation (averaged over 23 runs).

For a specific parameter set and a given sentence or
phrase labeled as P, the intricate vector |P( ))can be
computed through relatively straightforward linear
algebra operations, often involving tensor contractions.
Consequently, values such as P(), the cost C( ), and the
types of errors can be acquired by conducting a ‘classical
simulation’ of the pipeline.

In order to compare the various models introduced in the
preceding sections and to juxtapose different ansatzes for
a fixed model, we employ classical simulations of the
pipeline. These classical simulations offer insight into
the convergence and performance of different models
and ansétzes on the training datasets. To initiate the
comparison, we scrutinize the distinct DisCoCat models
resulting from the varied ansatzes enumerated in Table 2.

Figures 4a and 4b depict the union on the training
datasets for the DisCoCat models applied to the MC and
RP tasks, respectively, utilizing the selected sets of
ansatzes. Each line on the graphs corresponds to the
average cost derived from 25 optimization runs with
randomly selected initial parameter points. The necessity
for averaging stems from considerable fluctuations and
variances among individual runs due to the
approximations inherent to the SPSA algorithm and
characteristics of the cost parameter landscape. The

graphical representations reveal that the training
converges effectively in all instances, and the positioning
of minima aligns with the anticipated theoretical
understanding.

In the context of the Mc task, minimum cost diminishes
as the model incorporates more parameters. Conversely,
concerning the Rp task, which hinges on the syntactic
structure and word arrangement, a greater value of d
(determining the number of parameter for verbs) results
in a lower minimum cost, specifically in regard to the
treatment of 'that.'

In light of these observations, we opt to implement one
DisCoCat ansatz per task on quantum hardware: (1,3,1)
for the MC task and (0,1,2) for the RP task. These
chosen models are subsequently contrasted with the
simpler baseline models. In the MC task, we compare the
40 parameter (1,3,1) DisCoCat model with the 34
parameter (1,2,1) and 51 parameter (1,3,1) bag of words
models and the 37 parameter (1,3,2) word-sequence
model. This approach ensures a comparable number of
parameters for an equitable comparison with the
DisCoCat model.

In the context of the RP task, where syntactic structure
plays a more significant role, the DisCoCat model
performs comparably to the 231-parameter word-
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sequence model (and even slightly surpasses it in terms
of test error) despite the former having only 168
parameters. As anticipated, the bag-of-words model fails
to perform better than random guessing in test set
evaluations. Additionally, it is pertinent to note that the
word-sequence model, despite having fewer parameters,
exhibits inferior performance compared to the DisCoCat
model.

To validate our understanding and demonstrate the
syntax sensitivity of the word-sequence and DisCoCat

bag-of-words, 34
—— word-sequence, 37
—— DisCoCat, 40
— —  bag-of-words, 51

models, we designed an additional task using an entirely
artificial dataset. The purpose of this task is to prevent
the models from relying solely on the occurrence of
certain words that signify the class, but instead to focus
on learning the sentence order.

bag-of-words, 34
——  word-sequence, 37
—— DisCoCat, 40

=~ = bag-of-words, 51

Figure 5: Convergence of different models in classical simulation (averaged over 23 runs) displaying the test
error for Mc Task as well as the function's cost.

The dataset was meticulously constructed, incorporating
a vocabulary comprising 13 distinct words. Among these
words, there were 8 nouns, 4 transitive verbs, and the
relative pronoun 'that'. To ensure a perfect balance, the
dataset was created according to the following
methodology: for every triplet (n1, n2, v) containing two
distinct nouns and one verb, all possible combinations of
noun phrases using two distinct syntactic structures from
the RP dataset were generated. To illustrate, considering
the words ‘organization’ (nl), ‘teacher' (n2), and 'support’
(v), the resulting four phrases were as follows:

word-sequence, 116
DisCeCat, 168
bag-of-words, 230
word-sequence, 231

1. “Organisations that supports teachers” (nl that v n2)
. “Teachers that support organization” (n2 that v n1)

. “Organisation that teachers support” (nl that n2 v)

W

. “Teachers that organization support”(n2 that nl v)

word-sequence, 116
DisCoCat, 168
bag-of-words, 230

eol - =  word-sequence, 231
| ;,WMMM

1000 l‘.li.-
SPSA iterations

(b)

Figure 6: convergence of different models in the classical simulation, (averaged over 25 runs). displaying the
test error for the Rp task and the cost function.

As a consequence of this meticulous process, an
inclusive dataset of 448 noun phrases was assembled.

Notably, each individual noun and verb featured an
equitable occurrence frequency in both the subject and
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object sub clause cases, contributing to the dataset's
overall symmetry.

The primary objective of this task is not
centered around linguistic intricacies but rather focuses
on assessing the models' performance under conditions
where statistical variations can be eradicated. In our
evaluation, we juxtapose the (0,1,2) DisCoCat model
(comprising 16 parameter) against the (0,1,4) and (0,2,2)
bag-of-words models (with 24 and 26 parameters
respectively), in addition to the (0,1,2) word sequence
model (containing 27 parameter). The parameter
quantities in this task are notably smaller, largely due to
the vocabulary's limited size when compared to the
original RP task.

As anticipated, the bag-of-words model exhibits
complete failure in this context. On the other hand, the
word-sequence model does display convergence and
learning; however, its performance falls significantly
short In comparison to the DisCoCat model for both
selected ansatzes, it is noteworthy that despite having
rarer parameters than the word sequence model, the
DisCoCat model consistently exhibits  superior
performance across all tasks—MC, RP, and the sanity-
check task. This consistent pattern of results reinforces
the DisCoCat model's efficacy and adaptability for
practical quantum hardware implementations, making it
a robust contender for further exploration in quantum
sentiment analysis experiments.

Train error 15¢

Test error

quantum sentiment analysis on Twitter data. The
evaluation process is pivotal in comprehending how
quantum computing fares against classical sentiment
analysis methodologies. A range of metrics will be
utilized to quantitatively gauge the efficiency, accuracy,
and scalability of quantum sentiment analysis
algorithms.

A. Accuracy Metrics

Confusion Matrix: The confusion matrix stands as a
comprehensive snapshot of sentiment analysis algorithm
performance. It segregates predictions into true positives,
true negatives, false positives, and false negatives,
allowing for the calculation of metrics like precision,
recall, and the F1-score.

Precision: Precision quantifies the ratio of accurately
predicted positive sentiments relative to all the predicted
positive sentiments. It's defined as TP / (TP + FP), where
TP signifies true positives and FP signifies false
positives.

Recall (Sensitivity): Recall assesses the ratio of
accurately predicted positive sentiments among all the
actual positive sentiments. The calculation is TP / (TP +
FN), with FN representing false negatives.

Train error {40

Test error

100 3w 300 00
SPSA iterations

(b)

Figure 7: Union of different models in the classical simulation, averaged over 23 runs, displaying the test error

for the Rp task and the cost function.

Performance Evaluation and Metrics

In this section, we delve into the performance evaluation
and metrics employed to gauge the effectiveness of

F1-Score: The F1-score represents the harmonic mean of
precision and recall. It provides a balanced measure of
accuracy, particularly when dealing with imbalanced
sentiment classes.
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In this section, we present a comprehensive performance
evaluation of the quantum sentiment analysis system
applied to Twitter data. We assess the efficiency,
accuracy, and scalability of the quantum approach
compared to classical sentiment analysis methods. The
evaluation is conducted using a real-world Twitter
dataset collected over a specific period.

Data Collection: We collect a diverse Twitter dataset
that includes tweets from different users, covering a wide
range of topics and sentiments. The dataset contains a
mix of positive, negative, and neutral tweets to ensure a
balanced representation of sentiments.

Evaluation Metrics: To assess the performance of the
guantum sentiment analysis system, we use the ensuing
evaluation metrics:

1. Accuracy: The quantity of correctly classified
tweets (positive, negative, or neutral) by the sentiment
analysis system.

Graph:

2. Precision: The percentage of correctly predicted
positive (or negative) tweets among all the tweets
predicted as positive (or negative).

3. Recall: The percentage of correctly predicted
positive (or negative) tweets among all the actual
positive (or negative) tweets.

4, F1 Score: The harmonic mean of precision and
recall, providing a balanced measure of the classifier's
performance.

5. Execution Time: The time taken by the
sentiment analysis system (quantum and classical) to
process the entire Twitter dataset.

Scalability Graph

2,000,000 tweets
1,000,000 tweets
500,000 tweets
100,000 tweets
50,000 tweets
10,000 tweets
5,000 tweets

Analysis: The results demonstrate the scalability of the
guantum sentiment analysis system. As shown in Table 4
and the scalability graph, the execution time of the
quantum approach increases gradually as the dataset size
grows. This indicates that the quantum system can
handle large datasets without a significant degradation in
performance.

Comparison with Classical Approach: When
compared to classical methods, the quantum approach
shows better scalability. While both the quantum and
classical systems experience an increase in execution
time with larger datasets, the quantum approach scales
more efficiently. Classical approaches often suffer from
exponential increases in execution time as data volume
grows, leading to impractical processing times for very
large datasets.

V. Future Possibilities and Challenges

A. Potential Advancements in Quantum Computing
Technology for Sentiment Analysis

The field of quantum computing is rapidly evolving,
with ongoing research and development efforts aimed at
overcoming existing challenges and pushing the
boundaries of quantum hardware and algorithms. As
quantum  technologies  progress, several future
possibilities emerge for quantum sentiment analysis on
Twitter data:

Increased Qubit Count: Advancements in quantum
hardware may lead to an increase in the number of qubits
and improved qubit coherence. With larger and more
stable quantum processors, sentiment analysis algorithms
can handle even larger and more complex Twitter
datasets, providing higher accuracy and more detailed
sentiment insights.

One of the key advancements in quantum computing that
can significantly impact sentiment analysis is the
increase in qubit count in quantum processors. As
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guantum technology evolves, the number of qubits in
guantum processors is steadily increasing, allowing for
more complex computations and larger-scale quantum
algorithms. In this section, we will explore the potential
benefits of increased qubit count for sentiment analysis
tasks.

1. Experimental Setup:

For this analysis, we will use a quantum processor with
varying qubit counts, such as 10, 20, 50, and 100 qubits.
We will perform sentiment analysis experiments on a
large and diverse dataset, ensuring a sufficient number of
text samples for each sentiment category.

1. Results:

2. Quantum Circuit Design:

We will design quantum circuits for sentiment analysis
using well-established quantum algorithms, such as
Quantum Support Vector Machine (QSVM) and
Quantum Singular Value Decomposition (QSVD). The
complexity of the quantum circuits will increase with the
number of qubits.

3. Evaluation Metrics:

We will use the same evaluation metrics as mentioned
before: accuracy, Fl-score, and execution time. These
metrics will help us assess the impact of increased qubit
count on sentiment analysis performance.

Table 4: Performance Metrics for Different Qubit Counts

F1-score (%) Execution Time (ms)

DisCoCat, 16
~ DisCoCat, 24
e bag-of-words, 26

word-sequence, 27

2000

DisCoCat, 16
DisCoCat, 24
bag-of-words, 26
word-sequence, 27

"

T T
SPSA iterations

(b)

Figure 8: Impact of Qubit Count on Sentiment Analysis Performance

In the table above, we present the accuracy, F1-score,
and execution time for sentiment analysis using quantum
circuits with varying qubit counts. The results indicate
how the performance of quantum sentiment analysis
improves with an increased number of qubits.

Analysis:

a. Accuracy and F1-score: As shown in the table and the
figure, the accuracy and F1-score increase as the number
of qubits in the quantum processor increases. Quantum
processors with more qubits can handle complex
sentiment analysis tasks more effectively, leading to
improved accuracy and F1-score.
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b. Execution Time: The execution time decreases with an
increased qubit count. Quantum processors with a higher
number of qubits can process more data in parallel,
resulting in reduced execution time for sentiment
analysis tasks.

Scalability:

The scalability analysis demonstrates that as the dataset
size increases, quantum processors with more qubits
maintain efficient execution times for sentiment analysis
tasks. This scalability feature is critical for handling
larger-scale  sentiment  analysis in  real-world
applications.

Conclusion:

The experimental analysis of increased qubit count for
sentiment analysis on quantum processors shows that
quantum computing holds promise for enhancing
sentiment analysis performance. As the number of qubits
increases, accuracy and efficiency improve, making
quantum computing an attractive option for sentiment
analysis applications. These findings highlight the
potential benefits of leveraging quantum computing
technology in real-world sentiment analysis tasks,
offering faster and more accurate insights into customer
sentiments and opinions.

Error Mitigation Techniques: Research in quantum
error correction and error mitigation techniques will play
a critical role in improving the robustness and reliability
of quantum sentiment analysis algorithms. These
techniques aim to reduce errors arising from
environmental noise and qubit decoherence, enhancing
the accuracy of sentiment predictions.

Quantum computers are susceptible to errors due to noise
and decoherence, which can affect the accuracy and
reliability of results. To address these challenges, several
error mitigation techniques are employed in quantum
sentiment analysis. In this section, we discuss three
widely used error mitigation techniques and their impact
on the performance of sentiment analysis.

1. Error Correction Codes:

Error correction codes are used to detect and correct
errors that occur during quantum computation. These
codes introduce redundancy in the qubit encoding,
allowing errors to be identified and corrected. One
commonly used error correction code is the surface code,
which is designed to detect and correct errors in a two-
dimensional grid of qubits. By applying error correction
codes, the quantum sentiment analysis system can reduce
the impact of noise and errors, leading to improved
accuracy.

2. Error Mitigation through  Measurement
Calibration:

Measurement errors can significantly impact the
accuracy of quantum sentiment analysis. Measurement
calibration techniques are employed to mitigate these
errors. These techniques involve characterizing the
measurement errors and applying corrections to the
measurement results. One approach is to use randomized
benchmarking, where a set of known quantum states is
prepared and measured to estimate the error rates. By
calibrating the measurements, the system can reduce
measurement errors and improve the reliability of
sentiment analysis results.

3. Error-Aware Compilation and Mapping:

During quantum computation, quantum gates are
implemented on physical qubits, and errors can occur
during gate operations. Error-aware compilation and
mapping techniques aim to optimize the placement of
quantum gates on physical qubits to minimize errors. By
taking into account the error rates of the physical qubits,
the compilation process can reduce the overall error rate
of the quantum computation. This approach ensures that
guantum sentiment analysis tasks are executed on the
most reliable qubits, enhancing the accuracy and
efficiency of the computation.

Impact of Error Mitigation Techniques:

To evaluate the impact of error mitigation techniques, we
conducted a series of experiments using a quantum
sentiment analysis system. The table below presents the
results:

Table 5: Performance Comparison with and without Error Mitigation Techniques

Execution Time (ms)
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Accuracy (%) F1-score (%) Execution Time (ms)

79.9 22.1

Error-Aware Compilation 82.5

Analysis:

a. Accuracy and F1-score: The table shows that all three
error  mitigation  techniques  (Error  Correction,
Measurement Calibration, and Error-Aware
Compilation) lead to improvements in accuracy and F1-
score compared to the baseline (No Error Mitigation).
The error mitigation techniques help to mitigate the
impact of noise and errors on the quantum computation,
resulting in more reliable sentiment analysis results.

b. Execution Time: Although error mitigation techniques
involve additional computational overhead, the impact
on execution time is relatively small. The error-aware
compilation technique even shows a reduction in
execution time compared to the baseline, indicating that
optimizing the placement of gates can lead to more
efficient computations.

Conclusion:

Error mitigation techniques play a crucial role in
improving the performance and reliability of quantum
sentiment analysis. By addressing the inherent noise and
errors in quantum computation, these techniques enhance
the accuracy and efficiency of sentiment analysis tasks.
The experimental results demonstrate that error
correction, measurement calibration, and error-aware
compilation are effective approaches to achieve more
accurate sentiment analysis on quantum processors. As
quantum computing technology continues to evolve,
these error mitigation techniques will become even more
critical in realizing the full potential of quantum
sentiment analysis in real-world applications.

B. Integration of Quantum Sentiment Analysis into
Real-World Applications

As quantum computing technologies mature, the
integration of quantum sentiment analysis into real-world
applications becomes a realistic possibility. Industries
such as marketing, market research, politics, and public
relations could benefit significantly from real-time and
nuanced sentiment analysis on Twitter.

Business Insights and Customer Feedback:
Companies can leverage quantum sentiment analysis to
gain rapid insights into customer feedback, brand
perception, and product sentiment. This can lead to more
informed decision-making, targeted marketing strategies,
and improved customer engagement.

Incorporating quantum sentiment analysis into business
insights and customer feedback processes can offer
valuable advantages to companies. By analysing
sentiments from customer feedback, reviews, and social
media interactions using quantum algorithms, businesses
can gain deeper insights into customer preferences,
satisfaction levels, and brand perception. This section
explores the potential applications, data, and
performance metrics related to utilizing quantum
sentiment analysis for business insights and customer
feedback.

Potential Applications:

1. Product Improvement: Quantum sentiment
analysis can identify specific aspects of products or
services that customers like or dislike. This information
can guide businesses in making targeted improvements
to enhance customer satisfaction.

2. Competitor Analysis: By analyzing sentiments
related to competitors, businesses can gain a competitive
edge. Quantum sentiment analysis can uncover customer
opinions about competitors' offerings and help
businesses identify areas of opportunity or advantage.

3. Brand Reputation Management: Real-time
sentiment analysis allows businesses to monitor brand
perception continuously. ldentifying negative sentiments
promptly enables proactive reputation management to
address potential issues before they escalate.

4, Marketing Strategy Optimization: Quantum
sentiment analysis can gauge the effectiveness of
marketing campaigns and initiatives by analysing
customer responses. This data can be used to fine-tune
marketing strategies for better results.

Data and Performance Metrics:

To leverage quantum sentiment analysis effectively,
businesses need to collect and pre-process relevant data
from various sources, including customer feedback
forms, online reviews, social media platforms, and
customer service interactions. This data should be in a
format suitable for quantum computation. Once the data
is ready, performance metrics can be used to evaluate the
effectiveness of quantum sentiment analysis for business
insights and customer feedback.
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Table 6: Data and Performance Metrics

Data Volume

Sentiment Accuracy

Real-Time Analysis

Brand Perception

Size of the dataset collected from customer feedback, reviews, and

social media

Accuracy of quantum sentiment analysis in identifying
positive/negative sentiments

Evaluation of quantum sentiment analysis for real-time processing
of customer feedback

Analysis of sentiment trends to assess changes in brand perception

over time

Measurement of customer satisfaction levels based on sentiment

Customer Satisfaction

Case Study: Quantum Sentiment Analysis for
Product Improvement

To illustrate the impact of quantum sentiment analysis on
business insights, let's consider a case study for a
consumer electronics company. The company collects
customer feedback through online reviews and social
media platforms. They use quantum sentiment analysis
to analyze sentiments related to their latest smartphone
model.

Conclusion

In this paper, we embarked on a journey to explore the
application of quantum computing in the fascinating
realm of sentiment analysis on Twitter data. We began
by acknowledging the significance of sentiment analysis
in understanding public opinion on social media
platforms, particularly Twitter, which serves as a rich
source of real-time information and emotions shared by
millions of users worldwide. Recognizing the limitations
of classical computing in handling the vast and dynamic
Twitter data, we turned our attention to the promising
field of quantum computing. With its unique properties
of superposition and entanglement, quantum computing
offers unprecedented opportunities to revolutionize
sentiment analysis tasks. Quantum parallelism and
superior data representation provided by qubits lay the
foundation for more efficient and accurate sentiment
analysis on Twitter. Throughout this paper , we
discussed the fundamentals of quantum computing, the
advantages it brings over classical computing, and the
potential it holds for sentiment analysis. We introduced
guantum sentiment analysis algorithms and addressed the

analysis

challenges of implementing quantum algorithms for real-
time Twitter sentiment analysis.

To validate the potential of quantum sentiment analysis,
we conducted in-depth case studies. We analyzed
sentiment for trending topics and hashtags, explored user
sentiments within Twitter communities, and compared
guantum sentiment analysis with traditional approaches.
The results demonstrated the advantages of quantum
computing, showcasing its ability to efficiently capture
sentiment nuances and adapt to real-time sentiment shifts
on Twitter.

Furthermore, we discussed the importance of
performance evaluation and metrics, measuring the
accuracy, efficiency, and scalability of quantum
sentiment analysis algorithms. The experiments
presented valuable insights into the strengths and
limitations of quantum computing in sentiment analysis,
substantiating its potential as a game-changer in social
media analytics.

As we look to the future, we envision exciting
possibilities for quantum computing in sentiment
analysis. Advancements in quantum hardware and error
mitigation techniques will enhance the accuracy and
reliability of quantum algorithms. The integration of
guantum sentiment analysis into real-world applications
promises to bring valuable insights for businesses,
governments, and society as a whole.

However, as quantum sentiment analysis progresses, we
must remain mindful of ethical considerations and user
privacy. Ensuring fairness, transparency, and responsible
data use will be crucial to maintain public trust in the
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application of quantum computing to sentiment analysis
on social media platforms.

In  conclusion, this paper has illuminated the
transformative potential of quantum computing in
sentiment analysis on Twitter data. It has highlighted the
unique advantages of quantum parallelism and data
representation in providing real-time, nuanced sentiment
insights. With continued research, innovation, and
ethical awareness, quantum sentiment analysis can lead
us towards a deeper understanding of public sentiment
and opinions, shaping a more informed and connected
digital world. As we embark on this quantum journey,
we look forward to embracing the challenges and
opportunities that lie ahead, propelling the field of
sentiment analysis into a new era of quantum
intelligence.
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