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Abstract: This study presents the classification of cervical disc herniation patients and healthy persons by using muscle fatigue 

information. Cervical disc herniation patients suffer from neck pain and muscle fatigue in the neck increases these aches. Neck pain is the 

most common pain type encountered after back pain. The discomforts that occur in the neck region affect the daily quality of life, so the 

number of researches done in this area is increasing. In this study surface Electromyography (EMG) signals were used to examine muscle 

fatigue. EMG signals were obtained from Trapezius and Sternocleidomastoid (SCM) muscles in the cervical region of 10 control subject 

and 10 cervical disc herniation patients. Surface EMG was preferred because it is a noninvasive method. In the first step of this study, 

EMG signals were filtered and adapted for analysis. In the second step, muscle fatigue was determined using Median and Mean frequency 

values obtained by Fourier Transform and Welch methods. Feature extraction was the third step which was performed by Short Time 

Fourier Transform (STFT), Discrete Wavelet Transform (DWT) and Autoregressive method (AR).  Finally, Artificial Neural Network 

(ANN) was used for classification. Training and test data were created by using feature vectors to classify patients with ANN. According 

to the results, the superior feature extraction method was investigated on patient classification using muscle fatigue information. The best 

results were obtained by AR method with %99 classification accuracy.  Also, the best results were obtained by DWT with %100 

classification accuracy for SCM muscle. This study has contributed that AR and DWT are a suitable feature extraction methods for surface 

EMG signals by providing high accuracy classification with artificial intelligence methods for cervical disc herniation disease. Besides, it 

is shown that muscle fatigue distinguishes cervical disc herniation patients from healthy people. 
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1. Introduction  
The electromyogram is defined as the electrical activity that occurs 
when muscles are resting and contracting. Movements and 
positions of limbs are controlled by the conduction of electrical 
signals between the muscles and the central and peripheral nervous 
system. When a pathological condition occurs in the motor system 
(spinal cord, neurons, muscles, neuromuscular connections), the 
characteristics of the electrical signals in the muscles change. The 
recording of electrical signals in the muscles provides important 
information in the diagnosis of anomalies in both muscles and 
motor system. Electromyography (EMG) is the recording and 
interpretation of muscle action potentials [1]. 
Surface electromyography (sEMG) is a non-invasive technique 
that recognizes signals with time-related characteristics and it is 
very useful for understanding stimulus responses of muscles. 
Surface electrodes are placed on the skin and measure the 
combined activity from many motor units [2]. sEMG is widely 
used for muscle strength estimation, muscle fatigue measurement 
and ergonomics, sports physiology, and diagnostic tools in 

rehabilitation medicine [3]. It is also a non-invasive indication of 
muscle activation level, therefore, it can be used directly to identify 
weak muscles[4].  EMG signals are also used to detect and measure 
muscle fatigue [5],[6],[7],[8]. There are differences between the 
sEMG signals obtained from a muscle with local muscle fatigue 
and the signals obtained whereas there is no fatigue. The two most 
general changes are the shift in the frequency component of the 
signal toward the end of the power spectrum and increasing in the 
amplitude [9]. Spectral analysis methods are used to show the 
presence of fatigue in the majority of studies. The results of 
analysis have shown that the frequency shift and the increase in 
amplitude in the spectrum are related to muscle fatigue. Muscle 
fatigue produces a maximum reduction in power and the power 
spectrum generally shift towards low frequencies [10], [11], [12]. 
The studies on ‘muscle fatigue’ show that the changes in the 
spectral characteristic and amplitude are caused by physiological 
reasons. In addition to this, almost all of the shift in the frequency 
is dependent on the propagation speed of action potentials[13]. 
Mean Frequency (MNF) and Median Frequency (MDF) are 
spectral variables commonly used in muscle fatigue studies [10], 
[14], [15]. Both variables have some disadvantages. MDF is less 
sensitive to noise whereas MNF is more sensitive and stable to 
changes in the spectrum [16]. In addition to the shift in the power 
spectrum, muscle fatigue causes an increase in the amplitude of the 
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sEMG signal [12], [10], [17]. 
Muscle fatigue can occur in various muscles and it can be 
measured. Researches in the neck muscles confirm the changes in 
the spectral variables. 
Mousavi et al. investigated the relationship between muscle fatigue 
and muscle’s functional role in Trapezius muscle during isotonic 
and isometric contractions. In their studies, EMG signals were 
simultaneously recorded from upper Trapezius and middle deltoid 
muscles with surface electrodes from 8 healthy subjects. For each 
second of recorded EMG signals; square root means square (RMS) 
and mean power frequency (MPF) values were calculated. The 
results show that the MPF is shifting to lower frequencies and RMS 
values increase when the Trapezius is in equilibrium and decreases 
when it is attractive [18]. McLean et al. recorded EMG signals 
from the lumbar and cervical regions with surface electrodes to 
examine muscle fatigue during prolonged postural contractions. 
The records were obtained from six subjects sitting in a seat 
without waist and armlet for two hours. In their studies, they used 
MDF and MNF which are myoelectric spectral parameters. As a 
result of this study, they showed that both the mean frequency 
value shifts towards lower frequencies as fatigue duration 
increases and an increase in the amplitude of the signal occurs [19]. 
Subaşı ve Kıymık aimed to determine muscle fatigue in biceps by 
time-frequency methods and independent component analysis 
(ICA). For this purpose; the EMG signals were obtained from 14 
normal young people during phasic voluntary movements. EMG 
signals were analyzed in the time-frequency domain for the 
detection of muscle fatigue. In the study, muscle fatigue, which 
occurs on the upper extremity, is determined using multi-layered 
artificial neural networks (MLPP). Feature extraction operations 
were performed with STFT, Wigner-Ville and Continuous 
Wavelet Transform. The dimensions of the extracted signals are 
then reduced by ICA and the unknown EMG signal is classified by 
Levenberg-Marquart (LM) and Gradient Descent (GD) algorithms. 
According to the results, it is observed that the specificity and 
sensitivity values are found to be over 90% and the MLPP 
classifier using the LM algorithm could be used for muscle fatigue 
studies [20]. 
In this study, determination of local muscle fatigue in cervical disc 
herniation patients was investigated. As mentioned in the 
literature; it was necessary to detect the shift of the power spectrum 
density towards low frequencies. For this purpose, MDF and MNF 
values were used to examine muscle fatigue in the neck region. The 
power spectrum of the filtered EMG signals was obtained by the 
Welch method and MDF and MNF values for 
Resting/Working/Fatigue cases were calculated for each 
healthy/patient subject. The other part of this study is patient 
classification. It is aimed to differentiate patients from healthy 
subjects with EMG signals recorded during muscle fatigue. The 
main outlines of this work are pre-processing, feature extraction 
and classification. STFT, DWT and AR methods were used to 
extract the feature from the EMG segments. The power spectrum 
density (p) is used as a feature for STFT.  Coefficients of CA6, 
CD6, CD5, CD4, CD3 obtained using Daubechies wavelets of 
dB2, dB3, dB4 were selected as the features for DWT. In AR 
method, the coefficients obtained with Burg, Yule-Walker and 
Covariance methods were used as features. In this study, a Multi-
layer Artificial Neural network (MANN) was used to classify 
sEMG signals.  Multi-layered networks were created from three 
layers: the input layer, the hidden layer, and the output layer. 
‘Logarithmic sigmoid’ network structure was used as an activation 
function for the hidden layer and output layer. This network 
structure was trained by momentum and adaptive learning rate 

backpropagation algorithm (Traingdx).  
For each of the classification stages, optimum values were sought 
in the test procedure in order to obtain the best result. The test error 
was taken into consideration after the optimum values were 
determined. Also, each classification period was recorded. 
Classification accuracy, sensitivity, and specificity were 
determined to evaluate the classification results with optimum 
values. This study compared the performance of different feature 
extraction methods in the same ANN architecture. It was observed 
that the STFT is not preferred for nonstationary signals due to the 
imbalance between time and frequency resolution. Generally, 
DWT which is time scaled method is preferred instead of STFT.  
The classification performance shows that STFT is more 
unsuccessful than other methods for this study. AR and DWT 
methods are more effective tools for non-stationary signals such as 
EMG. 

2. Materials and methods 
This study consists of the steps of recording sEMG signals, 
converting the signals to the appropriate form for analysis, 
filtering, muscle fatigue analysis, feature extraction, and 
classification. The sEMG data used in this study were recorded 
from 10 healthy subjects (4 male- 6 female, age: 19-48) and 10 
patients (8 male, 2 female, age: 17-67). Patients who participated 
in the study were diagnosed with a cervical disc herniation by a 
doctor. Healthy subjects were selected from those who did not have 
any complaints from the neck region. sEMG data were recorded by 
a doctor and a technician in the neurology clinic with the approval 
of Selcuk University Medical Faculty ethics committee. The 
recording process was performed from Trapezius and SCM 
muscles simultaneously using two channels of the multi-channel 
EMG device. Two Ag-AgCl surface electrodes were used for each 
muscle. In addition, the reference electrode was placed on the other 
fixed stationary arm to reduce the noise problem. In this study, the 
surface electrode was chosen instead of the needle electrode, so the 
recording process was carried out non-invasively. sEMG 
recordings were obtained in three steps for each subject. For the 
first step called resting state; the participant was asked to wait 20 
seconds without moving the right arm in the upright sitting 
position. In the second step, the subject held a pound of weight in 
the right hand and turned his right arm full direction right to left 
for 20 s. Simultaneously a constant force was applied in the 
direction of the left arm to the neck of the subject while at the same 
time trying to rotate the neck to the right side for 20 seconds. 
Simultaneously a constant force was applied in the direction of the 
left arm to the neck of the subject while he was trying to rotate the 
neck to the right side for 20 seconds. This step is called working. 
The purpose of working step is to incorporate the Trapezius and 
SCM muscles in motion at the same moment. The third step is 
fatigue process.  
For this step, the subject was asked to hold his weight for 20 
seconds, parallel to the right arm without moving.  

Fig.1.  sEMG recording process [21] 
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As a result of these operations, 60 sEMG data were recorded from 
20 participants. sEMG signals were recorded with a sampling rate 
of 10 kHz. Figure 1 shows the sEMG recording system 

2.1. Dataset and data pre-processing 

Recording procedures of sEMG signals consist of three phases: 
resting-working-fatigue. Each stage takes 20 seconds. A timer was 
used to hold the time for recording. Records were obtained 
manually by pressing the start / stop buttons of the EMG device 
both the beginning and the end of 20 s.  
 
                              (A)                                                   (B) 

 

                              (C)                                                  (D) 

 
Fig.2. (A) Original sEMG signals (B) Frequency spectrum of original 
sEMG signal (C) Filtered sEMG signals (D) Frequency spectrum of 

filtered sEMG signal, for a healthy subject 
 

                               (A)                                                   (B) 

 

                                (C)                                                    (D) 

 

Fig. 3. (A) Original sEMG signals (B) Frequency spectrum of original 
sEMG signal (C) Filtered sEMG signals (D) Frequency spectrum of 

filtered sEMG signal, for a healthy subject 

Each record typically contains 202496 samples. Since the timer 
was used manually, 2496 samples were obtained extra for 10 kHz 
in 20 seconds. After the extra samples were removed from the 
signal, filtering process was applied to remove the noise 

components. A Butterworth filter was used for the filtering the 
sEMG signals. In the second order Butterworth filter, a low pass 
and high pass filter were designed to use signals in the frequency 
range of 3-1000 Hz. Meaningful EMG signals are known to locate 
between 20 and 500 Hz of the frequency band. However, in this 
study; 3-1000 Hz band was used to protect the fatigue parameters. 
Figure 2 shows the frequency spectrum of original sEMG signal 
and its filtered frequency spectrum for a healthy subject. Figure 3 
shows the frequency spectrum of original sEMG signal and its 
filtered frequency spectrum for a patient subject. 

2.2. Examination of muscular fatigue in the neck region 

The muscle fatigue occurs as a result of the muscular activity 
which is characterized by changes in EMG in the time or frequency 
domain. Generally, local muscle fatigue occurs after prolonged and 
relatively strong muscle activity. Because of the varying muscle 
characteristics of the p, there is no simple function of muscle load 
and timing that define muscle fatigue threshold [22].  
The most common changes in muscle fatigue for EMG signal is 
the shift in the frequency component of the signal towards the end 
of the power spectrum and the increase in amplitude [9]. MDF and 
MNF are commonly used as spectral variables in muscle fatigue 
studies [10], [14],[15].  
Analysis of the EMG signals in the frequency domain is done by 
measuring and calculating the parameters that determine the 
properties of the signals in the frequency spectrum. Usually, the 
Fast Fourier Transform (FFT) is used to determine the power 
spectrum density (PSD). Mean frequency expresses the average 
frequency of the power spectrum. The median frequency 
represents the frequency dividing the power spectrum into two 
parts of equal power. 
EMG signals are non-stationary signals. However, it can be 
regarded as stationary when examined in short time intervals [23]. 
FFT is not appropriate for non-stationary signals. For this reason, 
the Welch method is preferred for analysing the power spectrum 
of EMG signal. In the process of Welch method, overlapped 
(overlapping) segments are used and windowing is applied to all 
segments [24]. MDF and MNF values used to define muscle 
fatigue were calculated by the Welch method. 
40 simultaneous recordings were obtained from Trapezius and 
SCM muscles of 20 subjects and MNF and MDF frequency values 
were calculated for resting-working-fatigue steps for each 
recording.  

Table1. MDF and MNF values obtained from Trapezius muscle for 
healthy and patient subjects 

Subject MDF 
Resting 

MDF 
Working 

MDF 
Fatigue 

MNF 
Resting 

MNF 
Working 

MNF 
Fatigue 

Healthy-1  48,29 511,61  437,44 583,17  63,02  514,83 
Healthy-2  250,08  216,69  226,17 286,17 349,63  299,23 
Healthy-3  45,63  314,47 251,56 384,30 101,39  326,71  
Healthy-4  47,80  467,26 442,97 537,3  102,14  513,54 
Healthy-5  44,44  443,16  458,47 513,67  85,1  521,74 
Healthy-6  40,59  278,22  233,58  349,99  58,76  309,67 
Healthy-7  43,55  449,68  430,72  521,54  60,327 504,65  
Healthy-8  54,22  337,38  150,02  406,6  104,19 237,56  
Healthy-9  53,532 447,21  357,83 512,98 116,89 426,74  
Healthy-10  53,236 332,41  293,00  403,37  90,10 359,01  
Patient-1  477,34 512,60  293,43 553,35  591,43  399,66  
Patient-2  54,71 65,28  92,93 84,131  107,66  157,44  
Patient-3  113,28 190,12  152,29 188,24  262,09 225,84 
Patient-4  383,81  311,11  276,35 454,20 381,28  352,77 
Patient-5  50,96 26,17  109,53  65,913  75,45 312,20 
Patient-6  63,11 82,86  311,21 90,262  139,10  401,68 
Patient-7  346,31  243,06  141,04  479,69 311,95  210,59  
Patient-8  131,06 176,3  143,21 202,25 248,30 219,29  
Patient-9  176,79 207,70  183,51  251,75 283,28 253,78 
Patient-10  129,07 166,4  155,05 198,75 258,10 205,23  
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For example, the MDF value of working state which is 332.41 Hz 
decreased to 293.01 Hz in fatigue phase of the Trapezius muscle 
for a healthy subject. The MNF value of working state which is 
349.63 Hz decreased to 299.23 Hz in fatigue phase of the Trapezius 
muscle for a healthy subject.  In addition, the MDF value of 
working state which is 311.11 Hz decreased to 276.35 Hz in fatigue 
phase of the Trapezius muscle for a patient subject. The MNF 
value of working state which is 479.69 Hz decreased to 311.95 Hz 
in fatigue phase of the Trapezius muscle for a healthy subject. 
More detailed information on the frequency values can be seen in  
Table 1. Table 2 shows the MDF and MNF values for SCM muscle 
[25]. 
 

Table2. MDF and MNF values obtained from SCM  muscle for healthy 
and patient subjects 

Subject MDF 
Resting 

MDF 
Working 

MDF 
Fatigue 

MNF 
Resting 

MNF 
Working 

MNF 
Fatigue 

Healthy-1  95,40 65,11  80,59 191,75 115,85 137,91 
Healthy-2  50,37 47,50 97,48  97,011  98,44 161,22 
Healthy-3  100,6 72,29  78,61  218,47 169,20  142,28 
Healthy-4  68,74 114,27 79,21  154,73 213,2  141,47 
Healthy-5  110,2 79,50  83,65  182,09 183,64 140,02 
Healthy-6  105,6  79,80 81,87  196,26 161,39 159,44 
Healthy-7  39,60 48,7 75,65  116,03 144,38 141,80 
Healthy-8  50,27 93,03  66,22  99,371  185,41 119,65 
Healthy-9  64,09  111,84  69,44  115,92 230,10 130,43 
Healthy-10  50,37 51,06 50,31  89,79  102,30 96,721  
Patient-1  103,2 107,65  155,56  162,64 166,02 227,51 
Patient-2  91,75 91,45  88,53  161,26 155,53 153,56 
Patient-3  103,4  82,27  79,92  205,41 154,75 164,08 
Patient-4  72,69 64,79  53,88  126,80 116,66 98,621  
Patient-5  51,16 61,92  53,79  69,14  114,94 106,64 
Patient-6  67,65 64,49  67,83  119,22 115,94 122,86 
Patient-7  10,76 81,77  80,01  54,72  137,39 141,60 
Patient-8  131,0  176,3  143,13  202,25 248,38 219,2  
Patient-9  176,7  207,70 183,51  251,75 283,28 253,78  
Patient-10  129,0 166,4  155,05 198,75 258,18 205,23 

 
According to the Table 1 and Table 2, it is observed that MNF 
values were insufficient to define muscle fatigue for the Trapezius 
muscle, however more suitable results were obtained for the SCM 
muscle. In addition, MDF provided the most stable results for both 
muscles. Through muscle fatigue analysis, it was determined that 
muscle fatigue occurred in both muscles by the experimental 
protocol which was developed for this study. So that, in the next 
step feature extraction and classification operations were 
performed using sEMG signals obtained during the fatigue phase. 

2.3. Feature extraction methods for sEMG signals 

Three different methods were used to extract features from filtered 
surface sEMG signals. These are STFT, DWT and AR methods. 
The extracted features were used as input vectors for ANN. 
2.3.1. Short Time Fourier Transform (STFT) 

Fast Fourier Transform is a method used to extract frequency 
characteristics from signals. Since it is not appropriate to use FFT 
on nonstationary signals, STFT which uses windowing method is 
recommended instead of FFT. The windowing method is used to 
handle a small piece of the signal in the time domain. Besides, it is 
used to express the sign in two dimensions as a function of time 
and frequency. In this transformation method, a certain part of the 
signal is assumed to be stationary, and Fourier analysis is 
performed by passing through a window [26]. There are two major 
problems with STFT. First, it is not possible to select the optimum 
window size for data segments with different properties. The 
second is; time-frequency imbalance. Increasing the time 
resolution reduces the frequency resolution. Also shortening of the 
data segments leads to the loss of low-frequency components. This 

imbalance between time-frequency resolutions can be solved by 
time-scale methods. In this study, hamming window structure with 
512 lengths is used to perform STFT. The amount of shift in the 
original signal of the window is chosen 50%.  
The power spectrum density of each sEMG segment is calculated 
and used as a feature for ANN input. Thus, sEMG segments 
obtained for each subject were obtained as 257*395 for 512*395 
of input data by calculating power vector. As a result, 257*3950 
input data were generated for 10 healthy subjects. The same values 
are also valid for fatigue step obtained from patients.  
2.3.2.       Discrete Wavelet Transform (DWT) 

The second feature extraction method is Discrete Wavelet 
Transform (DWT). The wavelet transform, a time-scaled method, 
is used to remove the STFT's resolution-related problems. DWT is 
based on the principle of providing more useful information from 
the original signal by dividing time and frequency into specific 
scales [24]. DWT uses a large window for areas where the 
bandwidth is narrow at low frequencies, a compressed, scalable 
window to analyse high-frequency details [27]. DWT is an 
effective tool for obtaining more variable time-frequency 
information from non-stationary signals such as EMG [28]. DWT 
provides high temporal resolution and low-frequency resolution at 
high frequencies, high-frequency resolution at low frequencies. 
Thus, compared to the uniform time resolution of all frequencies 
of STFT low time resolution can be obtained. In the process of 
DWT method, a two-channel low-pass filter is used for signal 
processing. In the first order filtering, the signal is decomposed 
into low frequency components (A, Approximation) and high 
frequency components (D, Detail) according to an arithmetic rule 
[29]. After one level of decomposing, the whole signal is 
represented by half the number of samples, so the resolution 
decreases as well. However, the resolution of the frequency is 
increased because the frequency band of the obtained signal is half 
of the frequency band of the signal at the upper level. Thus, the 
uncertainty in the frequency is reduced by half. Better time 
resolution is obtained at high frequencies and better frequency 
resolution at low frequencies [30]. In analysing the signals with 
DWT, the number of appropriate wavelet selection and 
decomposition levels is very important. 
The number of decomposition levels is determined by the 
dominant frequency components [31]. In this study, decomposition 
level was set to six to protect fatigue-related values in the sEMG 
signals. Thus, each sEMG segment was divided into as detail sub 
bands D1 to D6 and Approximate band A6. In this study, features 
were obtained using 2nd level, 3rd level and 4th level Daubechies 
wavelets. For using 2nd level Daubechies (dB2), the third, fourth, 
fifth and sixth level detail wavelet coefficients (66 + 34 + 18 + 10 
coefficients) and sixth level approximation wavelet coefficients 
(10 coefficients) were calculated for each sEMG segment and a 
total of 138 wavelet coefficients were obtained. Looking at the 
wavelet frequency ranges, the first and second wavelet coefficients 
are eliminated because there is no significant sEMG signal in the 
D1 and D2 wavelets.  Thus, 138*395 input data were obtained for 
each subject. As a result, 138*3950 input data were generated for 
10 healthy subjects. For using 3rd level Daubechies (dB3), the sum 
of the wavelet coefficients (68 + 36 + 20 + 12 + 12 coefficients) 
was calculated as 148. Thus, 148*395 input data were obtained for 
each subject. As a result, 148*3950 input data were generated for 
10 healthy subjects. For using 4th level Daubechies (dB4) using, 
the sum of the wavelet coefficients (70 + 38 + 22 + 14 + 14 
coefficients) was calculated as 158. Thus, 158*395 input data was 
obtained for each subject. As a result, 158*3950 input data were 
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generated for 10 healthy subjects. The same values are also valid 
for fatigue step obtained from patients. 
2.3.3. Autoregressive Model (AR) 

AR method is the third feature extraction method used in this 
study. Spectrum estimation methods are relatively easy to 
understand and can be easily calculated using the FFT algorithm. 
However, in order to obtain high-frequency resolution with these 
methods, it is necessary to work with long data records. Moreover, 
these methods are specific for finite data records and they are 
adversely affected by windows from spectral leakage effects. Often 
spectral leaks mask weak signals in the data. The model based 
approaches remove the requirement for window functions. As a 
result, parametric (model-based) power spectrum methods don't 
have the spectral leakage problem and provide better resolution 
than parametric methods [32]. In this study, AR method was used 
to handle the windowing problem. Fourth order coefficient vectors 
of yule-walker, Burg and Covariant estimators were selected as 
features for AR method. As a result of the calculations, 5*395 input 
data was obtained by three AR estimator for each subject. So that, 
5*3950 input data were generated for 10 healthy subjects. The 
same values are also valid for fatigue step obtained from patients. 
2.3.4. Artificial neural network (ANN) 

In this study, multi-layer artificial neural network (MANN), which 
is widely used for estimation problems in engineering applications, 
was selected. Multilayer networks are composed of three layers: 
input layer, hidden layer and output layer. The hidden layer 
activation function and the output layer activation function were 
chosen as 'logarithmic sigmoid'. This network structure is trained 
by momentum and adaptive learning rate backpropagation 
algorithm (Traingdx). For each of the classification stages, 
optimum values were sought in the test procedure in order to obtain 
the best results.  
First, optimum hidden node number was searched by keeping the 
momentum constant (mc) and learning rate (lr) constant. Second, 
the optimum learning rate was calculated by keeping the number 
of optimum hidden nodes and mc constant. In the third step, 
optimum momentum constant was found according to the number 
of hidden node and learning rate. 
After finding optimum values, the artificial neural network was 
trained with input vectors and the average training error was 
calculated. Equation (1) shows the average training error (T.E), 
where training result is e(i) and training target is h1(i) [33]. 
 

 
                                    (1) 

 
 

For Equation (1); k is the target data pattern number, m is the 
training data set number, and n is the network output number.  
The test error has similar to the calculation of the training error in 
Equation (2).  Equation (2) shows the average test error (Ts.E), 
where test result is t(i) and test target is h1(i).  
 

 
                                   (2) 
 
 

For Equation y, k is the number of test data patterns, m the number 
of sets for test and n is the number of network outputs [33].  
Confusion matrix is used to determine classification accuracy, 
sensitivity and specificity for evaluating the classification results. 
Table 2 shows the necessary information for the complexity 

matrix. 

Table 2.  Confusion matrix 

 False True 

False Positive False(PF) Negative True(NT) 
Positive Negative False(NF) Positive True (PT) 

 
For Table 2, the classification accuracy (CA) is calculated with 
equation (3), sensitivity (SE) with (4) and specificity (SP) with (5) 
[34]. 
 

(CA) = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

  x100 (3) 

(SE)   = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   x100 (4) 

(SP) = 𝑇𝑇𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇 

   x100 (5) 

3. Results  
This study aimed to examine muscle fatigue in the cervical region 
and to show that local muscle fatigue of cervical disc herniation 
patients is different from healthy subjects. Simultaneous surface 
sEMG signals were obtained from the Trapezius and SCM muscles 
in the cervical region using surface electrodes from 10 healthy and 
10 patient subjects. sEMG data were recorded from each subject 
for resting-working-fatigue steps. 
The recorded sEMG signals were filtered and adapted for analysis. 
The power spectrum of the filtered sEMG signals was calculated 
by Welch method and the MDF and MNF values of 
resting/working/fatigue were calculated. Frequency characteristics 
of sEMG signals for working step were compared with the 
frequency characteristics of sEMG signals for fatigue step.  Our 
goal here is to determine that MDF and MNF values decrease as 
the muscles become fatigued. The result of this study confirmed 
muscle fatigue by decreasing 22 MNF and 29 MDF values of 40 
records for Trapezius and SCM muscles. 
The second phase of this study is the classification of sEMG 
signals recorded during the fatigue phase. The input vectors for the 
ANN used for classification were calculated from the features 
extracted by the STFT, DWT and AR methods.  
 

Table 3. Classification performance of feature extraction methods for  
Trapezius muscle 

Feature 
extraction 
Method 

 DWT AR 

STFT dB2 dB3 dB4 Yule-
walker Cov. Burg 

Training 
error 2.311 3.045 1.10 2.197 2.27 0.63 0.17 

Test error 10.10 2.628 1.05 2.157 4.22 1.28 1.62 
Time 36.51 28.31 29.7 34.90 23.1 26.9 25.4 

Sensivity 77.94 95.38 97.7 97.33 83.8 99.8 100 
Specivity 89.07 92.3 97.5 93.07 95.0 98.1 97.3 
Accuracy 83.51 93.84 97.6 95.20 89.4 99 98.6 

 
In this study, a multi-layer artificial neural network was used to 
classify sEMG signals.  In order for ANN training to be more 
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efficient, the set of input vectors normalized to [0, 1.0]. In this 
study, ANN has two output vectors as patient and healthy. The 
threshold values for the classification results in the ANN model 
were accepted as 0.9 and 0.1. So that, output vectors are assumed 
to be 1 when α≥0.9 and output vectors are assumed to be 0 when 
outputs are α ≤0.1. Table 3 presents the results of ANN according 
to the features obtained with STFT, DWT and AR method for 
Trapezius muscle. 
As shown in Table 3, dB3 wavelet and AR-Cov parameters used 
to classify healthy and patient subjects were more successful than 
others for Trapezius muscle. The AR-Cov method gave the best 
results with 99% classification accuracy. The shortest 
classification time was obtained by the AR-yule-walker. 
Table 4 shows the results of ANN according to the features 
obtained with STFT, DWT and AR method for SCM muscle. 

Table 4. Classification performance of feature extraction methods for 
SCM muscle 

Feature 
extraction 
Method 

 DWT AR 

STFT dB2 dB3 dB4 Yule-
walker Cov. Burg 

Training 
error 4.084 0.121 1.3e-09 1.7e-09 8.382 0.872 3.6e-

09 
Test error  5.162 0.789 0.0019 0.018 11.597 0.91 0.026 

Time 37.788 28.625 27.4 30.873 25.1 25.1 24.44 

Sensivity 90.05 97.38 100 99.89 74.51 99.94 100 

Specivity 89.33 99.48 100 100 82.56 98.92 99.95 

Accuracy 89.6 98.43 100 99.94 78.53 99.43 99.97 

 
As shown in Table 4, dB3 wavelet and AR-Burg parameters used 
to classify healthy and patient subjects were more successful than 
others for SCM muscle. The dB3 coefficients gave the best results 
with 100% classification accuracy. The shortest classification time 
was obtained by the Ar-Burg method. 
This study compared the performance of different feature 
extraction methods for the same ANN architecture. According to 
the results; AR method provided the best classification accuracy 
for the Trapezius muscle and DWT gave the best classification 
accuracy for the SCM muscle. 

4. Conclusion 
This study was designed to examine muscle fatigue in the neck 
region and to classify cervical disc herniation patients using muscle 
fatigue.  The recording procedure is non-invasive since EMG data 
is recorded with surface electrodes. In addition, simultaneous 
recordings were made using the multi-channel EMG device from 
two different muscle.  
In the first step of the study, muscle fatigue was determined by 
MDF and MNF values obtained using the Welch methods. In the 
second step; feature vectors of sEMG signals were obtained with 
STFT, DWT and AR method. Training and test data were prepared 
for ANN using feature vectors.  
Finally, the superior feature extraction method for classification 
using muscle fatigue was investigated. According to the 
classification performance, STFT did not give sufficient results. In 
addition, AR and DWT methods were observed to be more 
effective tools for obtaining time-frequency information from non-
stationary signals such as sEMG. 

5. Discussion 
In this study, sEMG signals from two different muscles were 
recorded with the multi-channel EMG device to examine muscle 

fatigue in the neck region. In addition, the experimental procedure 
was specifically developed to fatigue the neck muscles for this 
study. According to the experimental procedure, the Trapezius 
muscle participated muscle actions in more. SCM is in motion as 
long as a force is applied to it. In other studies, multichannel EMG 
can be used for more muscle, and muscle fatigue can be examined 
by changing the procedure of the experiment. So that, more muscle 
fatigue information can be obtained from more muscles in the neck 
region. In this study, sEMG records were obtained from volunteers 
who came to the neurology clinic. It is difficult and time-
consuming to collect data in the same registration procedure from 
each subject in policlinic. At this point, it is very important that the 
participants and the staff who registers the data are informed about 
the registration. In addition to this, increasing the number of 
healthy and patient participants can provide more stable results. 
This study shows that muscle fatigue characteristic is different in 
cervical disc herniation patients from healthy people.  
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