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Abstract: Rice is a staple food for over half of the world's population, particularly in Asia. It's a major source of carbohydrates, providing 

essential energy for daily activities. Rice cultivation plays a crucial role in the livelihoods of millions of farmers worldwide. It contributes 

significantly to the GDP of many countries. If left unchecked, biotic stress can cause substantial yield losses, leading to food insecurity and 

economic hardship for farmers. Early detection and management are crucial for preventing these losses. CNNs are a class of deep learning 

models well-suited for image classification tasks and can be easily scaled to large datasets and complex classification problems. The 

Automatic stress severity assessment can save time and resources compared to manual assessments, allowing for more efficiency in terms 

of decision-making. We proposed a Deep-CNN model, that utilizes the Paddy Doctor dataset with nine stress classes and one healthy class. 

we also addressed the imbalance in the dataset to avoid overfitting and performed a targeted augmentation technique. Multiple classes were 

classified and predicted on the proposed model. Extensive experimentation was carried out for tuning the parameters of the model. The 

proposed model achieved high accuracy of 94.4% while EfficientNetB0 achieved 93.5%. Our findings demonstrate that the model 

outperformed classification for all the 10 classes of the dataset. Using the predicted image, for every stress class the stress characteristics 

vary with color, we define color thresholds and apply a mask on the image to evaluate the stressed area and generate a severity report. This 

research demonstrates a promising solution to combat biotic stress in rice. It offers the potential to revolutionize disease management and 

empower rice-growing communities worldwide to safeguard their livelihoods and contribute to global food security. 

Keywords: Biotic-Stress, Deep-CNN, Augmentation, Multi-Class Classification, Severity Assessment. 

1. Introduction 

Rice is one of the cereal foods called Oryza sativa which is 

a member of the grass family that includes Oryza 

glaberrima and Oryza Sativa [1]. It is the primary staple 

food for most of the South Indian population, providing 

over 50% of their dietary calorie intake. Rice cultivation is 

the backbone of many Asian economies, employing 

millions of people, particularly in rural areas. It contributes 

significantly to agricultural GDP and export revenues for 

countries like India, Vietnam, and Thailand. Ensuring a 

stable and adequate supply of rice is crucial for food 

security. Rice shortages can lead to price hikes, and 

widespread hunger, particularly among vulnerable 

populations. Rice cultivation has significant environmental 

implications, including water consumption, greenhouse gas 

emissions (methane from paddy fields), and land usage 

changes. Sustainable rice production practices are essential 

to mitigate these impacts. During the regular practices of 

paddy cultivation, the crops might be prone to biotic stress 

and abiotic stress. Biotic stress refers to the diminishing 

impact caused by living organisms on plant health [2]. This 

could be caused by pathogens like bacteria, fungi, and 

viruses, pests like insects, and nematodes like worms that 

can infest plant roots and cause damage [14] diseases that 

fall under biotic stress in paddy are listed below: 

a) Bacterial diseases: Bacterial Leaf Blight, Bacterial 

Leaf Streak, and Bacterial Panicle Blight. 

b) Fungal diseases: Blast, Brown Spot, and Downy 

Mildew. 

c) Insect pests: Dead Heart (caused by stem borers) 

and Hispa. 

d) Virus: Tungro. 

Bacterial Leaf Blight(BLB), Bacterial Leaf Streak(BLS), 

Bacterial Panicle Blight(BPB), Blast(BL), Brown 

Spot(BS), Dead Heart(DH)(Stem Borer Damage), Downy 

Mildew(DM), Hispa(HS), Tungro(TG) occurred in paddy, 

cause a huge loss that in the production of rice. The 

appearance of stress symptoms might be ambiguous as few 

stresses might differ with minute variation. This leads to 

ambiguity when diagnosed manually. The misconception 

may lead to the wrong treatment of pesticides which 

rigorously decreases the crop yield, wastage of manpower, 

and cost spent on those pesticides. Therefore, biotic stress 

has been quite an important aspect when taking food 

security and food production. Thus, it has been an 

immediate requirement to detect these stresses at an early 

stage. Performing stress detection manually by a pathologist 

based on visual symptoms may not effectively identify 

early-stage symptoms. Subsequently, there is a requirement 

for laboratory tests for analysis and calculation of stress 
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severity. Manual laboratory tests and stress detection are 

quite expensive and time-consuming. However, these 

methods are less effective in early-onset stress prediction 

and stress severity assessment. Hence, preventive measures 

are to be adopted promptly which can save farmers and 

result in substantial production of paddy. Several types of 

stresses can be caused and infected in paddy crops. They 

can potentially harm the crop at different stages of growth. 

Several pests/viruses/stresses occur in paddy crops. We 

have used nine stress classes Bacterial Leaf Blight(BLB), 

Bacterial Leaf Streak(BLS), Bacterial Panicle Blight   

Table 1: Indicative Parameters of Rice Leaf Diseases/ Stresses. 

Clas

s 
  

Stress 

Name 
  

Causal 

Agent 
  

Color of 

the Leaf 
  

Stress 

Region 

Shape 

  
Stage of 

Stress 
    

Affecte

d Part 

Environment

al 

Conditions 

C1  
Bacteri

al Leaf 

Blight 

 
Xanthomon

as oryzae 

pv. oryzae 

 Yellow 

to brown 
 

Initially 

water-

soaked 

lesions, 

later 

turning 

grayish 

white with 

a yellow 

halo 

 
Tillering 

to 

ripening 

  Leaves 

High 

temperature 

(25-34°C), 

high 

humidity 

(>90%), 

wind-driven 

rain 

C2  
Bacteri

al Leaf 

Streak 

 

Xanthomon

as oryzae 

pv. 

oryzicola 

 Brown to 

black 
 

Narrow, 

linear to 

irregular 

water-

soaked 

streaks, 

later 

turning 

brown with 

wavy 

edges 

 
Tillering 

to 

booting 

  Leaves 

High 

temperature 

(25-30°C), 

high 

humidity 

(>90%), 

prolonged 

leaf wetness 

C3  

Bacteri

al 

Panicle 

Blight 

 Burkholderi

a glumae 
 

Pale 

green to 

straw-

colored 

 

Grains 

become 

discolored 

and chaffy 

 

Panicle 

emergen

ce to 

grain 

filling 

  Panicle

s 

High 

temperature 

(28-36°C), 

high 

humidity 

(>80%), 

insect 

damage 

C4  Blast  Pyricularia 

oryzae 
 

Grayish-

white 

with 

brown 

margins 

 

Spindle-

shaped or 

diamond-

shaped 

lesions 

 
All 

growth 

stages 

  

Leaves, 

nodes, 

High 

humidity 

(>90%),   

 
neck 

 cool 

temperature 

(24-28°C), 

prolonged 

leaf wetness 
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C5  Brown 

Spot 
 Bipolaris 

oryzae 
 Dark 

brown 
 

Circular to 

oval spots 

with dark 

brown 

margins 

 
Seedling 

to 

ripening 

  Leaves 

High 

humidity 

(>85%), 

warm 

temperature 

(25-30°C), 

prolonged 

leaf wetness 

C6  

Dead 

Heart 

(Stem 

Borer 

Damag

e) 

 

Yellow 

stem borer 

or striped 

stem borer 

(insects) 

 
Yellowin

g and 

wilting 

 

Dead heart 

in young 

plants, 

whiteheads 

in older 

plants 

 
Tillering 

to 

booting 

  Stem 

Suitable 

temperature 

and 

humidity for 

insect 

development 

C7  Downy 

Mildew 
 Sclerospora 

graminicola 
 

Pale 

green to 

yellow 

 

Downward 

curling 

leaves with 

white 

downy 

growth on 

the 

underside 

 
Seedling 

to 

tillering 

  Leaves 

High 

humidity 

(>90%), 

moderate 

temperature 

(20-25°C), 

cloudy 

weather 

C8  
Hispa 

(Rice 

Hispa) 

 

Dicladispa 

 

Whitish 

streaks 

due to 

feeding 

 

Irregular 

feeding 

patterns on 

leaf surface 

 
Tillering 

to 

booting 

  Leaves 

Warm and 

dry    

 armiger 

(insect) 
weather 

C9  Tungro  

Rice 

Tungro 

Bacilliform 

Virus 

(RTBV) 

and Rice 

Tungro 

Spherical 

Virus 

(RTSV) 

transmitted 

by Green 

Leafhopper

s 

 
Yellow 

to orange 

yellow 

 

Stunting, 

discolorati

on starting 

from leaf 

tips, rusty 

spots 

 
Seedling 

to 

ripening 

  Whole 

plant 

Presence of 

virus-

carrying 

leafhoppers, 

favorable 

weather 

conditions 

for insect 

populations 

  

Blight(BPB), Blast(BL), Brown  Spot(BS), Dead 

Heart(DH) (Stem Borer Damage), Downy Mildew(DM), 

Hispa(HS), and Tungro(TG) are much more harmful to the 

crop.  These stresses when affected at an early stage of the 

crop are asymptomatic and not visible to the naked eye. As 

the severity prolongs from days to weeks or even months. 

The loss cannot be predictable where the spikelets will be 

with unfilled  

grains at the time of harvest.  There is an urge and need to 

automate the stress detection and stress severity assessment 

for the early onset of the crop. The responsiveness and 

popularity of computer vision using Deep Learning 

techniques for stress identification in rice [7], maize[12], 

soyabean[9], multi-class classification along with stress 

severity classification using CNN[14][15][16] and CNN 

with SVM[13], random forest classifier[16] and prediction 

with quantification has motivated us to employ these 

techniques for classification with stress prediction and 

stress severity assessment. In this research, we implemented 

a Deep-Convolutional Neural Network for the prediction of 

these stresses BLB, BLS, BPB, Blast, BS, DH, DM, Hispa, 

and Tungro for the  
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different varieties of rice like ADT45, Onthanel, Karnataka 

Ponni, Surya. The work focuses mostly on the disease, type 

of causal agent, the color of the leaf, the shape of the 

stressed region, the stage of stress, the part at which the 

stress is affected, and what could be the environmental 

aspects of the occurrence of stress as shown in Table 1. The 

proposed framework can accurately classify and predict 

normal and stressed images. It also has the potential to 

detect the area of spread on the predicted image. 

Based on the assessment it can predict the stress severity 

and generate a rating indicating how much percentage of the 

stress is affected on the specified predicted image. We used 

an ordinal rating method called Standard Evaluation System 

for Rice (SES) defined by IRRI[17].  A rating of 0 indicates 

no severity, likewise, rating-5 indicates highly severe, 

which means the stress spread on the leaf is more than 75%. 

The overview of the proposed work is shown in Fig.1, and 

the corresponding contributions for the proposed work are 

listed below: 

• Using optimal parameters for training the model. 

• Calculate the stress spread on the leaf (disease 

spread). 

• Predicting the disease severity based on the SES 

ordinal scale. 

• Dataset preparation, while we used benchmark 

dataset from IEEE Data port. 

• Developing a novel deep learning framework for 

stress predictions. 

 

Fig 1.  Overview of Proposed Approach 

2. Related works 

Recognition and Classification of paddy leaf diseases using 

optimized deep neural network [3] with Jaya Algorithm. A 

comparative study was performed with ANN, DAE, and 

DNN and achieved good accuracy for four stress classes. 

Automatic recognition and classification of biotic and 

abiotic stress using a deep convolutional neural network 

framework i.e., VGG-16 using field images of a paddy crop 

with an accuracy of 92.89% [4]. A two-stage small 

Convolutional Neural Network architecture [5] was 

demonstrated which resulted in an accuracy of 93.3%. The 

state-of-the-art methods in deep learning-based techniques 

[6] for plant leaf stresses were reviewed with 33 different 

crops which include vegetables, and fruits using 14 CNN 

architectures that are used in most of the work. 

Classification and recognition of rice disease using a hybrid 

network with a particle swarm optimization algorithm [7] 

had an accuracy of 94.03%. Disease identification, 

classification, and recognition from the current state-of-art 

methods are employed to perform the classification of 

diseases which alone won't be sufficient to perform severity 

estimation. The research has to be extended in terms of 

stress severity estimation based on which we can try to 

estimate crop loss also in the near future. The error 

estimates of disease severity in plants can occur which can 

be solved using Standard Area Diagrams (SADs) which 

improve accuracy and reliability [8].  Automatic assessment 

of abiotic stress factor called Iron Deficiency Chlorosis 

severity on field plots [9] in soybean was performed using 

classification techniques that help in decision making. One 

of the biotic stress severities on rice leaf blast using 

hyperspectral imaging [10] was demonstrated by 

calculating the standard deviation of the respective spectral 

reflectance of whole rice leaves with Support Vector 

Machines and Probabilistic Neural Networks to classify the 

degree of severity level at different stages of growth. A 

disease severity classification was implemented as an 

AgriDiet framework [11] that quantifies the disease severity 

into mild, moderate, and severe, while the same severity 

levels were quantified to mild, moderate, severe, and 

profound using CNN and SVM [12]. Many Studies have 

addressed the latent of deep learning and machine learning 

methods for biotic stress classification and stress severity 

assessment in paddy crops. However, deep learning-based 

multi-class classification for real-time applications still has 

a lot of space for improvement, extensive research can be 

carried out in this context to overcome the limitations and 

challenges. One of the major challenges to be addressed in 

the huge data set requirement with annotations, while 

training this huge data leads to time-consuming. The other 

challenge is the selection and tuning of model 

hyperparameters to achieve optimal performance by the 

proposed model. These challenges prevent the usage of 

these models for real-life decision-making. To address the 

above issue, in this research a new framework called Deep- 

Convolutional Neural Network has been proposed. This 

model uses a simple CNN architecture with few parameters. 

Experimental studies infer that the proposed model 

outperforms state-of-art models like EffiecientNetB0, and 

VGG-16 for Multi-class Classification and Prediction. A 

method that employs stress severity automatic assessment 

and rating is proposed. Further, the visualization of infected 

regions can be used for decision-making for future analysis 

of crop estimates. 
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3. Materials and Methods 

In this section, the detailed architecture and working of the 

proposed framework of Deep-Convolutional Neural 

Network will be discussed. The high-level overview of the 

workflow is shown in Fig. The framework is associated 

with image acquisition, pre-processing, classification, and 

prediction. Employed a severity assessment technique that 

rates the stress severity based on a specified scaling method. 

The description of the activities is elaborated below. 

 

Fig 2. Overview of the workflow. 

3.1 Dataset Acquisition 

The dataset used for the proposed model is a benchmark 

dataset that is available at the IEEE Data Port named Paddy 

Doctor dataset[13]. This dataset consists of 16,225 paddy 

leaf images with annotations by experts of about 13 classes 

(12 stress classes and healthy class. The image acquisition 

was from the paddy fields of Pallamadai, Tamil Nadu. 

These images were captured from February 2021 to April 

2021, with a resolution of 1080x1440 pixels using a 

smartphone device of CAT S62 Pro. The collected RGB 

images were cleaned and annotated under the supervision 

of Agronomist. The dataset is publicly available in the 

Kaggle competition with 10 classes (9 stress classes and 

healthy classes). Metadata for every image in the dataset 

consists of paddy age and variety is being provided. Further, 

the dataset comprising 10407 images was chosen for the 

current work. The sample images of the dataset are shown 

in Fig 3. 

 

Fig 3. Paddy Doctor Dataset Sample Images 

The Collected dataset was accessed through Kaggle-ap, and 

it was divided into train and validation splits of the ratios 

65:35, 70:30, 75:35, and 80:20. The observations noted that 

the model performs better classification when the ratio is 

80:20. We reserved 20% of the images for validation. This 

is crucial for evaluating the proposed model's performance 

during training and preventing overfitting. Out of 10,407 

images, 8326 images were used for training and 2081 for 

validation initially without augmentation. The test set 

consists of 3469 files belonging to 1 class which were used 

for prediction. After the augmentation out of 12594 images 

10,092 were chosen for training, 2522 images were chosen 

for validation and the test set remained the same. 

3.2 Dataset Preparation 

The dataset consists of about 10,407 images with imbalance 

problems among the classes in the dataset. Some diseased 

classes like bacterial_leaf_blight, bacterial_leaf_streak, 

bacterial_panicle_blight, downy_mildew, brown_spot, 

tungro have fewer images than normal, blast, hispa, 

dead_heart. We first chose the class that had a higher 

number of images and augmented all the other classes to 

represent the same number, performing this was not 

desirable as the model was overfitting. To address this issue 

targeted augmentation was applied by only focusing on 

underrepresented classes. Which in turn creates more 

diverse training data, such that it can improve model 

performance.  

These classes were divided into three classes: 

1. Priority classes where the disease classes that need 

stronger augmentation as their representation is very 

low in the dataset. Techniques like rotation, shifting, 

shear transformation, zooming, Flip, and brightness 

were applied for these classes. 

2. Moderate classes are the disease classes that need less 

intense augmentations like shifting and rotations.  

3. Minimal classes are the classes that already have plenty 

of samples and do not need any augmentation. Class 

class-wise size of the dataset before augmentation and 

after augmentation is shown in Table 2. 

 As the images are stored with pixel values ranging from 0 

to 255 (8-bit format), representing the intensity of each 

color channel of an RGB image. The model typically 

performs better when input data is normalized to a smaller 

scale. Rescaling by dividing each pixel value by 255 to 

normalize the pixel values into the range of 0 to 1, which 

can lead the model to faster convergence during training. 

Table 2: Class-wise dataset size 

    
Augmented Images   

Class 

Origin

al 

image

s 

Max 

Num_Cl

ass 

Targeted 

Augmentati

on 

normal 1764 1764 1764 

blast 1738 1764 1738 

hispa 1594 1764 1594 

dead_heart 1422 1764 1422 
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tungro 1088 1764 1333(MC) 

brown_spot 965 1764 1212(MC) 

downy_mildew 620 1764 869(PC) 

bacterial_panicle_b

light 
479 1764 830(PC) 

bacterial_leaf_strea

k 
380 1764 864(PC) 

bacterial_leaf_blig

ht 
337 1764 968(PC) 

Total Images 10407 17640 12594 

 

3.3 Proposed Deep-CNN for classification and 

prediction: 

After pre-processing and augmentation, the images from the 

Paddy Doctor dataset[13] are subjected for training 

purposes. The Deep-CNN model is given with diseased 

samples for the classification task. The proposed sequential 

model framework consists of the following layers i.e., input, 

convolution, Average Pooling, dropout, FC Layer, 

SoftMax, and Output. The architecture of the Deep-CNN 

Model as shown in Fig 4, is developed for multi-class 

classification of the dataset comprising of paddy leaves with 

ten class labels. There is a unique functionality that is 

performed at every layer of the defined Deep-CNN Model. 

Relu Activation is used after each convolutional layer to 

introduce non-linearity and help the network to learn 

complex patterns. Batch Normalization is used at certain 

convolutional layers to normalize activations, leading to 

faster and more stable training. Average Pooling retains the 

spatial information in the feature maps, which can be 

beneficial for tasks where precise localization is important. 

The average pooling layers progressively reduce the spatial 

dimensions of the feature maps while increasing the number 

of channels (filters). This allows the network to capture 

increasingly complex features at different scales. Fully 

Connected Layers, after flattening, two dense layers are 

used to combine and interpret the high-level features 

extracted by the convolutional layers. Dropout layers are 

added to prevent overfitting. 

 

Fig 4: Deep-CNN Model Architecture 

3.4 Training the model 

The proposed model Deep-CNN is being executed in the 

verified environment with all dependencies and pre-

installed packages Google ColabPro with GPU Memory 

utilization of 18.26 GB and disk Space of 28 GB. The model 

is trained using with and without augmentation of the 

chosen dataset for multi-class classification with nine 

disease classes and one healthy. The hyperparameters used 

in training the model are fine-tuned and the details are 

discussed in the next section. We used the same dataset for 

training on the Deep-CNN model both with and without 

augmentation, also on the EfficientNetB0. The model’s 

performance is compared with EfficientNetB0, and the 

impact of transfer learning will be addressed during the 

results and discussion. 

3.5 Parameter tuning during training 

The SoftMax activation, Adam Optimizer, and Sparse 

Categorical cross-entropy loss were used for training the 

Deep-CNN model. The learning rate was chosen only after 

checking the range of learning rates[20] from 

0.01,0.001,0.0001 the model was trained using the learning 

rate of 0.0001 * decay of 0.95 after every 10epochs. It is 

noted that the learning rate of 0.001 was converging 

smoothly for the specified loss function. We also employed 

a model checkpoint with early stopping for the validation 

loss, with a predefined patience value. If the model doesn’t 

show improvement for patience number of epochs, training 

is stopped. Doing this prevents the model from overfitting 
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to the training data and saves time by not continuing 

unnecessary training. 

3.6 Evaluation Metrics 

The performance of the Deep-CNN and Stress Severity 

Assessment method was evaluated using confusion matrix, 

precision, recall, F1-Score, accuracy eq.(4), and stress 

severity rating. A detailed description is provided below 

with the necessary formulae. Confusion Matrix is a table 

that summarizes the performance of a classification model. 

We have 10 paddy classes; it will be a 10x10 matrix. Each 

row represents the actual class, and each column represents 

the predicted class. The elements within the matrix are True 

Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN). The confusion matrix for 

misclassification per each class is shown in Fig-5 below. 

Once the confusion matrix is obtained these metrics 

Precision, Recall, and F1 Score can be derived for 

evaluating the model’s performance using the eq.(1) to 

eq.(3). The formulae are chosen in context with only one 

single class called blast, the same procedure is considered 

for all the other classes in the dataset. 

Precision (for class BL): The ability of the model to 

correctly identify samples belonging to class BL (i.e., 

Blast.) 

Recall (for class BL): The ability of the model to find all 

samples belonging to class BL(i.e., Blast). 

F1 Score (for class BL): The harmonic mean of precision 

and recall, providing a single metric to balance both. 

 Accuracy is the ratio of correct samples to all the predicted 

samples. 

3.7 Degree of Stress Intensity Spread 

The percentage of infected areas is calculated by 

segmentation with a proposed method on the chosen 

dataset. Based on the predicted class name it identifies the 

stress type and its characteristic.  Every biotic stress class 

image in the dataset consists of three RGB (Red, Green, 

Blue) color space that represents color information by 

combining the intensity of red, green, and blue channels, 

which is useful for displaying images but not for biotic 

stress analysis. A few diseases might cause subtle color 

changes that might not be easily distinguished in RGB due 

to the overlap of color information across channels.  Thus, 

we converted the image to HSV color spaces where HSV 

color space separates color information (hue) from intensity 

(value) and saturation. Hue represents the actual color itself 

(e.g., red, green, yellow). Saturation represents the purity or 

intensity of the color i.e., 0 for grayscale and 1 for fully 

saturated color. The value represents the overall brightness 

of the pixel. This conversion is very crucial for biotic stress 

analysis. The method retrieves the target-specific color 

ranges associated with different stress classes, even if the 

overall intensity (value) changes. Different diseases might 

cause subtle changes in hue or saturation that are easier to 

isolate in HSV compared to RGB. Further taking advantage 

of this, it creates a mask by filtering the HSV image within 

the defined color range and isolates pixels likely belonging 

to the diseased area. Morphological operations (opening) 

are applied to refine the mask and remove noise. Images can 

often contain noise due to camera sensor imperfections, 

lighting variations, or compression artifacts. This noise can 

manifest as isolated pixels or small regions that don't truly 

represent the diseased area. Morphological opening helps 

remove such noise and refines the mask on the image. If a 

pixel's color matches a disease color, the code specially 

marks that pixel (like highlighting it with a marker). This 

creates a "mask" that shows the areas in the picture that 

might have the disease. The diseased area is obtained by 

applying the mask to the original image. The severity 

assessment involves converting the stressed area to 

grayscale. eq-(5) determines the calculation of severity. It 

helps in Counting non-zero pixels in the grayscale image 

representing the stressed area, counting the zero pixels in 

the grayscale image representing the non-stressed area, or 

simply calculating the total area as counting the number of 

pixels of a 2D image. Calculating the percentage of stressed 

area relative to the total image area to get the severity of the 

disease spread to the corresponding stress class. 

Non-Stressed Area  =Stressed Area - Total Image Area

  

     

(5) 

Severity = (Stressed Area / Total Image Area) * 100 

4. Results 

The experimental results obtained on implementing the 

Deep-CNN, EfficientNetB0 on the chosen dataset. We 

trained these models on the images performing with and 

without augmentation techniques. The models were trained 

 

Precision(BL)= 

TP (BL)  

            (1) 

 

TP( BL )+FP(BL) 

Recall(BL)= 
TP (BL)  

                          

(2) TP( BL)+FN(BL) 

 

 

   F1-Score (BL) 

= 

2 * Precision(BL) * 

Recall(BL) 

         

(3) 

(Precision(BL) + 

Recall(BL) 

     Accuracy 

=    

TP+TN           (4) 

TP+FP+TN+FN 
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on both the set of images with a batch size of 32 for about 

50 and 100 epochs with a preset learning rate of 0.01. The 

loss function sparse_categorical_crossentropy deals with 

many classes. It also uses less memory usage and is faster 

in computation compared to categorical_crossentropy, 

which uses an additional memory for one-hot encoded 

vectors. The proposed Deep-CNN, EfficientNETB0 has 

attained the highest training and validation accuracies of 

94.4% and 93.5% respectively with early stopping enabled 

for 100 epochs. The training and validation accuracy and 

loss graphs of the proposed Deep-CNN are shown in Fig 5 

& 6.  

Fig 5&6: Training and Validation Accuracy and Loss 

       

The proposed model predicts the true classes of multi-class 

classification, which was observed from the confusion 

matrix generated for the test images. Using this matrix, we 

calculated the Precision, Recall, and F1-Score for further 

performance analysis of the model with nine biotic stressed 

classes and one healthy class. The results in Table 3 clearly 

state that the target augmented Deep-CNN model 

outperformed better with precision ranging from 0.89-0.97, 

recall ranging from 0.88-0.94, and F1-Score ranging from 

0.90-0.97 among all the stress classes including healthy. 

Among all the stressed classes BLS, BPB, DH, DM, and 

NM classes performance was extraordinary whereas BLB, 

BL, DM, HS, and TG classes performance was quite good. 

Table 3: Performance Analysis of Proposed Deep-CNN Model 

Biotic 

Stress 

Class 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

Without Augmentation With Augmentation 

BLB 0.78 0.82 0.8 0.89 0.92 0.9 

BLS 0.84 0.9 0.87 0.97 0.91 0.94 

BPB 0.8 0.85 0.82 0.97 0.94 0.96 

BL 0.91 0.84 0.87 0.94 0.93 0.93 

BS 0.85 0.83 0.84 0.94 0.88 0.91 

DH 0.94 0.86 0.9 0.97 0.98 0.97 

DM 0.85 0.82 0.83 0.92 0.88 0.9 

HS 0.84 0.9 0.87 0.89 0.93 0.91 

NM 0.91 0.89 0.9 0.92 0.96 0.94 

TG 0.78 0.94 0.85 0.92 0.93 0.93 

4.1 Class Labels Prediction 

The proposed Deep-CNN model has been saved as the 

best_model 

based on the experimental results with its outstanding 

performance. The best_model is used as a classifier for 

which samples of the test dataset are fed with one sample 

for prediction.  

    

 

Fig 7: Sample Class Predictions of Biotic Stress of Test 

Images. 

 

The model prediction method performs prediction and 

generates an output by mapping the prediction label to the 

given input image.      
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The sample predicted images for the classes: BLB, BS, DH, 

BL, and DM are shown below in Fig 7. 

4.2 Comparison with other CNN Models 

The overall performance of the proposed Deep-CNN has 

outperformed with equal to EfficientNetB0 when measured 

with different performance evaluation metrics including 

accuracy. The observations led to the understanding that 

Deep-CNN performed better when compared with the state-

of-the-art works described in terms of accuracy in Table 4. 

Table 4: Comparison of Deep-CNN with other CNN 

Models.  

Model No of 

Samples 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

Test 

Accuracy 

(%) 

VGG16[13] 16,225 93.49 93.19 93.2 93.19 

MobileNet 16,225 92.63 92.42 92.39 92.42 

CNN[13] 16,225 89.22 88.84 88.81 88.84 

EfficientNetB0 12,594 92.5 93 93 93.50 

Proposed Deep-

CNN 

12,594 94 93 93 94.4 

4.3 Automatic Stress Severity Assessment: 

The proposed Automatic stress severity assessment method 

performs a crucial part of biotic stress analysis, which helps 

the end user i.e., the farmers to address the stress 

mitigations before the symptoms evolve to rise. This 

method deals with the handling of the intensity of infection 

and generates an annotation for the predicted set of samples. 

There are a series of steps involved to perform stress 

analysis and assess the severity of the stress with a rating 

and the percentage of spread as shown in Fig 8. 

The method accepts input as an image which is the 

predicted stress class by Deep-CNN and converts the image 

to HSV color spaces.  

Thresholds are defined using specific stress characteristics, 

to identify potential stress of the corresponding biotic stress 

class i.e., for all the classes of the dataset, followed by mask 

creation and noise removal. The masks are applied to the 

original image to extract regions corresponding to stressed 

areas. 

The extracted stressed area regions are converted to 

grayscale to simplify severity calculations. The total 

number of pixels in the original image is the total area which 

is calculated by multiplying the width and height of the 

image (in pixels). The stressed area represents the number 

of pixels in the image that have been identified as belonging 

to the diseased region which is calculated by counting the 

white (255) pixels in the mask we create during image 

processing. Now we can subtract the total area from the 

stressed area to calculate the non-stressed area. Severity is 

calculated using the proportion of the entire leaf area of the 

image that is affected area by the stress which returns the 

percentage. The severity value will typically range from 0% 

(no disease detected) to 100% (the entire image is covered 

by the disease). The severity rating is determined by a rating 

that is assigned with an ordinal scale[17] of (0-9) based on 

the severity percentage. Ordinal scales provide more 

information than nominal scales, allowing for a general 

assessment of disease progression. The Standard Evaluation 

System for Rice (SES) uses a 0-9 scale for various diseases, 

where ‘0’ indicates No disease, a scale of '1-3’ indicates 

Low, ‘4-6’ as Moderate and 7-9 as High severity.  

 
Fig-8: Pipeline of Automatic Stress Severity Assessment. 

The proposed method returns the severity percentage and 

scale/rating as a severity assessment report shown in Fig 9. 

Different scales that can be used based on the type of 

disease are described in Table 5. and as well as the type of 

classification chosen. Assessing accurately and evaluating 

the severity of disease/stress spread is a crucial step for 

identifying the correlation between stress severity and 

yield loss prevention. During the early symptoms due to 

ambiguity, if it is ignored and not monitored properly, it 

might lead to a huge loss to the farming community. The 

assessment of severity can be done using different rating 

scales provided by the agronomist or experts in the domain.  

An overview of the rating scales is discussed below: 

Qualitative scale: Both nominal and ordinal come under 

this scale. However, it is a descriptive disease scale with a 

variety of severity levels. 

 

 

 

Table 5: Different rating scales. 

Paddy 

Variety 

Stress/ 

Rating Scale Rating Method Scaling Method Tasks 

 

Disease 

Type 

All Varieties Healthy 
0 (No 

Disease) 
Nominal - 

Image 

Classification  

https://github.com/paddydoc/paddy-doctor-dataset/blob/main/vgg16.ipynb
https://github.com/paddydoc/paddy-doctor-dataset/blob/main/mobilenet-2.ipynb
https://github.com/paddydoc/paddy-doctor-dataset/blob/main/cnn.ipynb
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(Healthy vs. 

Diseased) 

All Varieties 
Multiple 

Diseases 

0-9 (SES) Ordinal 

Standard 

Evaluation 

System for 

Rice (SES) 

Multi-Class 

Classification  

(Identify disease 

type) 

0-100% (H-

B) 
Quantitative 

Horsfall-Barratt 

Scale 

Severity 

Assessment 

(Ordinal/   

(H-B) 
Quantitative 

Regression)  
Yield Loss 

Estimation 

(Regression) 

 

Blast 0-9 (SES) Ordinal 

Standard 

Evaluation 

System for 

Rice (SES) 

Multi-Class 

Classification   

 (Blast severity 

levels)  

Brown Spot 0-5 (SES) Ordinal 

Standard 

Evaluation 

System for 

Rice (SES) 

Multi-Class 

Classification 

Specific 

Varieties 

 

 
(Brown Spot 

severity levels)  

Bacterial 

Blight 
0-5 (SES) Ordinal 

Standard 

Evaluation 

System for 

Rice (SES) 

Multi-Class 

Classification 
  
 

(Bacterial Blight 

severity levels) 

Nominal scales:  This type of scaling is suitable for the 

classification of class labels to identify stress and 

categories to classify presence or absence. There's no 

inherent order or ranking among the categories. It can be 

applied for basic screening or initial detection decision-

making. 

Ordinal Scales: It categorizes disease severity into ordered 

classes. The classes have a relative ranking, but the 

intervals between them may not be equal. It allows a 

general assessment of stress progression[19]. 

Quantitative Scales: This method measures disease 

severity using numerical values using the Horsfall-Barratt 

Scale[18] which supports unequal intervals. These values 

can represent a percentage of the affected area, the number 

of lesions, or other continuous measures. Quantitative 

scales offer the most precise  

measurement of disease severity, making them valuable 

for research and detailed analysis. We can also have a 

quantitative  

ordinal scale where we use equal intervals to identify the 

symptomatic area. 
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Fig 9 Severity Assessment Report 

5. Conclusion & Future Scope 

Rice, a cornerstone of global diets, faces escalating demand 

as population grows. However, biotic stresses pose a 

significant threat, causing substantial yield losses. Early and 

accurate identification of these stressors is paramount to 

prevent widespread damage and ensure food security. To 

address this critical challenge, we've developed a cutting-

edge deep CNN model capable of classifying nine distinct 

stress classes and healthy rice. Our approach surpasses the 

performance of other  CNN models, even on imbalanced 

datasets, thanks to targeted augmentation techniques 

prioritizing crucial stress categories. Our innovation lies in 

a novel severity assessment method. By applying various 

masks to extract the stressed areas within predicted images, 

we generate a comprehensive stress severity report, 

detailing both the severity level and the specific scale of the 

identified stress. This method excels in detecting and 

assessing critical stresses like BL, BS, HS, TG, BLB, BLS, 

and DH. Looking ahead, we envision extending this work 

to tackle the complex issue of multiple co-occurring stresses 

and exploring hybrid models that seamlessly integrate 

severity assessment and classification. Ultimately, 

deploying this technology on mobile applications will  

empower farmers with real-time, actionable insights, 

revolutionizing rice disease management. 
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