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Abstract: Patients with diabetes may develop clots, lesions, or hemorrhages in the area of the retina that is sensitive to light. This disease 

is known as diabetic retinopathy. High blood sugar causes blood vessels to become blocked, which encourages the production of new 

vessels and the creation of structures that resemble mesh. Evaluating the branching retinal vasculature is crucial for ophthalmologists to 

diagnose the condition effectively. In the process of assessing diabetic retinopathy, fundus scans of the eye undergo pre-processing and 

segmentation. For image preprocessing, various steps are undertaken, including enhancement, retinal mask extraction, blood vessel 

segmentation, optic disk extraction, and extraction of lesion candidate regions. To extract the branching blood vessels, thresholding 

technique is applied. Following this, morphological operations and adaptive histogram equalization are then applied to improve the 

image quality and remove areas that were falsely segmented. The proliferation of optical nerves was observed to be significantly greater 

in diabetic or affected patients compared to healthy individuals. Using a hybrid technique combining the Shi-Tomasi Corner Detector and 

GLCM, additional features are recovered from the lesion candidate. A random forest classifier is used to categorize the existence of 

diabetic retinopathy. Two datasets—DIARETDB1, a typical Diabetic Retinopathy Dataset, and a dataset from a medical facility 

including fundus scans of both normal and affected retinas—are used to assess the effectiveness of the proposed strategy. The 

experimental findings show how well the proposed method works in comparison to conventional approaches. When evaluated on the 

DIARETDB1 dataset, the model achieves an accuracy of 98.7% and a precision of 97.2%. 
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1. Introduction 

A medical disorder known as diabetic retinopathy (DR) [1] 

affects people who have diabetes. There are two forms of 

diabetic retinopathy: the more advanced form is called 

Proliferative Diabetic Retinopathy (PDR), and the milder 

form is called Non-Proliferative Diabetic Retinopathy 

(NPDR). Exudates are the first indication of DR because 

they show NPDR. Patients with NPDR may initially have 

fuzzy vision, but as the condition worsens, the retina starts 

to grow new blood vessels, which have a major influence 

on vision. Blood clots or blobs can develop in the retina as 

a result of these aberrant blood vessels' propensity to leak 

or bleed. One of the main contributing factors to the 

development of DR is damage to the network of arteries 

that feed the retina with nutrients. In advanced stages of 

PDR, the blood vessels may become completely blocked, 

resulting in the formation of lesions. The most visible 

lesions that occur are microaneurysms and haemorrhages. 

Microaneurysms are the first observable symptoms of DR 

and appear as small round-shaped red dots in the fundus. 

Currently, DR is primarily detected by trained 

ophthalmologists through manual assessment of fundus 

images. On the other hand, rapid and precise detection of 

the condition is required by automated DR screening 

systems. To construct such systems with high accuracy, a 

variety of techniques, including novel unsupervised ones, 

have been developed. For tasks like pixel-level exudate 

identification in retinal pictures and fovea detection, deep-

learning-based algorithms are applied. One kind of deep 

neural network made up of several layers of linked neurons 

is called a convolutional neural network (CNN) [2]. Every 

neuron in a layer of a CNN is linked to every other neuron 

in the layer below it. In the context of DR detection and 

segmentation, among other areas of image classification, 

CNNs have found extensive use. 

Numerous techniques have been investigated in the field of 

diabetic retinopathy analysis to recognize and identify 

retinal vessels and other disease-related aspects. 

The WELR (Wavelets and Edge Location Refinement) 

method has been utilized to extract retinal vessels, 

achieving high true positive (TP) and false positive (FP) 

rates and accuracy scores [3]. Another effective method for 

vessel identification is AMT (Adaptive Median 

Thresholding) [4], which can provide reliable results. 

The configuration of the retinal blood artery network poses 

problems for preterm newborns, including poor contrast, 

significant noise, and inferior picture quality. The goal of 

the research has been to create techniques for removing the 
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RBVN from this particular population [5]. 

Techniques like centerline and bit plane identification can 

also be used to identify retinal vessels [6]. For vessel 

extraction, multidirectional morphological bit plane 

techniques have been used. 

For the detection of exudates, methods like morphological 

compact tree (MCT) have been utilized [7]. Effective 

application of histogram analysis to the detection of 

exudate in retinal images has also been investigated. 

These various methods and techniques contribute to the 

accurate recognition and analysis of diabetic retinopathy 

features, including retinal vessels, exudates, and other 

lesions. Researchers continue to explore new approaches 

and algorithms to enhance the effectiveness and efficiency 

of diabetic retinopathy diagnosis and monitoring. 

By increasing the efficiency and precision of DR 

diagnosis, these automated technologies hope to help 

medical personnel quickly diagnose and treat the ailment. 

It's crucial to remember that, even if these techniques 

appear promising, more investigation and validation are 

required to guarantee their dependability in actual clinical 

situations. 

The contribution of the proposed algorithm lies in its 

comprehensive approach to assessing diabetic retinopathy 

through fundus scans. By combining various pre-

processing and segmentation techniques, it effectively 

extracts key features and classifies the presence of diabetic 

retinopathy. Here are the key contributions of the 

algorithm: 

• Preprocessing and Segmentation: The algorithm 

performs essential pre-processing steps such as image 

enhancement, retinal mask extraction, blood vessel 

segmentation, optic disk extraction, and lesion 

candidate region extraction. These steps help to 

isolate and extract relevant regions of interest from 

the fundus scans. 

• Branching Blood Vessel Extraction: The algorithm 

employs a thresholding technique to extract 

branching blood vessels from the fundus scans. This 

step is crucial as the proliferation of optical nerves, 

observed to be significantly greater in diabetic or 

affected patients, serves as an important characteristic 

for diabetic retinopathy assessment. 

• Image Enhancement and False Segmentation 

Elimination: Morphological operations and adaptive 

histogram equalization methods are used to remove 

incorrectly segmented areas and improve the quality 

of the fundus images. As a result, further analysis and 

categorization are more accurate and reliable. 

• Feature Extraction: GLCM (Gray Level Co-

occurrence Matrix) [8] and Shi-Tomasi Corner 

Detector [9] are used in combination to extract 

additional features from the lesion candidate areas. 

This combination allows for the extraction of relevant 

texture and corner-based features, capturing 

important patterns and irregularities associated with 

diabetic retinopathy. 

• Classification using Random Forest: Based on the 

features that were extracted, a random forest classifier 

is used to determine whether diabetic retinopathy is 

present or not. Robust classification results and ease 

of handling complicated datasets are well-known 

characteristics of random forests. 

By integrating these contributions, the proposed algorithm 

offers a comprehensive and effective solution for the 

assessment of diabetic retinopathy. It combines image 

processing techniques, feature extraction methods, and a 

powerful classification model to achieve high accuracy and 

precision in diagnosing diabetic retinopathy using fundus 

scans. 

The study begins by providing a comprehensive literature 

review in Section 2, highlighting the relevant research in 

the field. The materials and methods used in the research 

paper are presented in Section 3. In Section 4, the proposed 

methods are explained in detail. The results of the 

MATLAB-based simulation are presented and analyzed in 

Section 5. Finally, the paper concludes with a summary of 

the findings and conclusions in Section 6. 

2. Literature Review 

Considerable studies have been devoted in the last few 

decades to the efficient segmentation of retinal blood 

vessels and the classification of retinal images according to 

the degree of diabetic retinopathy (DR) [10]. 

In traditional DR analysis, an automatic retinopathy 

classification approach based on Artificial Neural 

Networks (ANN) has been proposed [12]. This technique 

utilizes morphological operations to distinguish between 

exudates and blood vessels. Techniques such as Genetic 

Algorithms (GA) and Fuzzy C Means (FCM) have been 

employed to achieve maximum accuracy. Excellent 

reliability in predicting hard exudates in DR images has 

been demonstrated by fuzzy logic (FL). A multi-scale line 

detecting system has been used to analyze retinal vascular 

features [11]. An algorithm named DR analysis with the 

utilization of Machine Learning (DREAM) has been 

developed, incorporating a Gaussian mixture model and 

nearest neighborhood approach with a classifier based on 

Singular Vector Machine (SVM) [5]. Retinal image pre-

processing has been done using global thresholding [6]. To 

increase accuracy, morphological component analysis 

(MCA) was applied to vessel segmentation in the DRIVE 

and STARE datasets [7]. Zago et al. [13] utilized the 
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VGG16 model [14] to detect red lesion patches in diabetic 

retinopathy images and achieved promising results. They 

classified the images as either having diabetic retinopathy 

or not based on the detected red lesions, achieving an 

impressive AUC of 0.912 on the Messidor dataset [15]. 

The DDR dataset was first presented by Li et al. [16] with 

the goal of localizing lesions in the images and classifying 

them into the five phases of diabetic retinopathy. They 

employed the SE-BN-Inception model [17] for stage 

classification and achieved the highest accuracy of 

82.84%. For lesion localization, they utilized Faster RCNN 

[18] and attained a mean Average Precision (mAP) of 9.2. 

A modified version of RFCN [20] was used by Wang et al. 

[19] to identify the phases of diabetic retinopathy and to 

pinpoint certain features such as microaneurysms (MA) 

and hemorrhages (HM). They combined the outcomes of 

their two RFCN models. Their approach attained a high 

mAP of 92.15 for localization in their proprietary dataset. 

They achieved an accuracy of 92.95% in categorization 

[20]. These approaches demonstrate the utilization of 

various techniques, such as ANN, morphological 

operations, GA, FCM, FL, SVM, and MCA, in the analysis 

and classification of retinal images for DR diagnosis. With 

the goal of increasing the precision and effectiveness of 

DR evaluation, each technique concentrates on a distinct 

facet, such as vessel segmentation, exudate identification, 

and tortuosity analysis. It's crucial to remember that the 

studies listed above only make up a small portion of the 

substantial research done in this area; further developments 

and improvements are still being investigated. 

Limitations: 

Despite the advancements in vessel segmentation 

techniques, accurately segmenting retinal vessels in images 

with low contrast, noise, or artifacts can still be 

challenging. 

The proposed methods often rely on specific datasets, and 

their performance may vary when applied to different 

datasets with variations in image quality, resolution, and 

characteristics of diabetic retinopathy cases. 

The interpretation of DR severity solely based on vessel 

analysis may overlook other important features and 

indicators present in retinal images, such as 

microaneurysms, hemorrhages, or exudates. 

3. Materials and Methods 

3.1. GLCM 

A statistical technique called the GLCM [21] is used to 

extract textural information from images. The GLCM is 

basically a matrix that displays the joint probability 

distribution of two pixel intensities at a given distance and 

direction in the image. It was first developed as a texture 

analysis technique. The number of instances of a pair of 

gray-level values at a specific relative location in the image 

is represented by each element in the matrix. Due to the 

symmetry of the matrix, the probability of a pair of values 

occurring at position (𝑖, 𝑗) is the same as at position (𝑗, 𝑖). 

The construction of a GLCM comprises four essential 

steps. Firstly, the image is preprocessed to remove any 

noise or artifacts that may impact the computation of the 

co-occurrence matrix. Secondly, the image is quantized 

into a discrete set of gray-level values (usually 8 or 16 

levels). Thirdly, a distance d and direction θ are selected to 

determine the relative position of the pairs of pixels whose 

gray-level values are to be compared. Typically, four 

directions (0°, 45°, 90°, and 135°) and a range of distances 

are chosen. Lastly, counting the instances in which a pair 

of pixel values (𝑖, 𝑗) appears in the image at a distance d 

and direction 𝜃 yields the co-occurrence matrix. By 

dividing each element by the total number of pairings at 

that distance and direction, the GLCM is normalized. 

It is possible to extract several texture properties from an 

image using the GLCM, such as homogeneity, contrast, 

energy, and entropy. The GLCM is used to compute these 

features in the following way:  

• Contrast: measures the local variations in gray-

level values of the image. It is defined as: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑(𝑖 − 𝑗)2𝑃(𝑖, 𝑗)

𝑖,𝑗

 

(1) 

where𝑃(𝑖, 𝑗) is the normalized co-occurrence 

matrix. 

• Energy: measures the uniformity of gray-level 

values in the image. It is defined as: 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ 𝑃(𝑖, 𝑗)2

𝑖,𝑗

 

(2) 

• Homogeneity: measures the closeness of the 

distribution of gray-level values to the diagonal 

elements of the GLCM. It is defined as: 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑
𝑃(𝑖, 𝑗)

(1 + |𝑖 − 𝑗|)
𝑖,𝑗

 

(3) 

• Entropy: measures the randomness or uncertainty 

of the distribution of gray-level values in the image. 

It is defined as: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑃(𝑖, 𝑗) log2(𝑃(𝑖, 𝑗))

𝑖,𝑗

 

(4) 
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GLCM is a widely used method in computer vision, 

remote sensing, medical imaging, and other domains where 

texture characteristics are extracted from images in an 

easy-to-use and efficient manner. 

3.2. Shi-Tomasi Corner Detector 

The Shi-Tomasi corner detector is a popular method for 

detecting corners in images. Based on the eigenvalues of 

the image's second-moment matrix, it is an adaptation of 

the Harris corner detector. 

Let 𝐼(𝑥, 𝑦) represent the pixel's intensity at (𝑥, 𝑦) position 

in the picture. The Shi-Tomasi corner detector uses the 

eigenvalues of the matrix 𝑀, which are specified as 

follows, to calculate a score for each pixel (𝑥, 𝑦): 

𝑀 =  ∑ 𝑤(𝑥, 𝑦)[∇𝐼(𝑥, 𝑦)∇𝐼(𝑥, 𝑦)𝑇] (5) 

Where 𝑤(𝑥, 𝑦) is a window function that weights pixels 

around (𝑥, 𝑦), and ∇𝐼(𝑥, 𝑦) is the gradient of the image at 

(𝑥, 𝑦). 

The eigenvalues of the matrix 𝑀 are given by: 

𝜆1, 𝜆2 =
1

2
[𝑡𝑟𝑎𝑐𝑒(𝑀) ±  √(𝑡𝑟𝑎𝑐𝑒(𝑀)2 −  4 ∗ 𝑑𝑒𝑡(𝑀))] 

(6) 

where𝑡𝑟𝑎𝑐𝑒(𝑀) = 𝜆1 + 𝜆2 is the sum of the eigenvalues 

and 𝑑𝑒𝑡(𝑀) = 𝜆1𝜆2 is the determinant of the matrix. 

The Shi-Tomasi corner detector computes a score for each 

pixel (𝑥, 𝑦) based on the smaller of the two eigenvalues: 

ℝ = min(𝜆1, 𝜆2)  (7) 

The score ℝ measures the corner response at the pixel 

(𝑥, 𝑦) and is used to determine whether the pixel is a 

corner or not. A high score indicates that the pixel is a 

corner, while a low score indicates that the pixel is not a 

corner. 

To extract features from an image using the Shi-Tomasi 

corner detector, the following steps can be performed: 

1. Compute the gradient of the image using a 

derivative filter. 

2. Compute the matrix 𝑀 for each pixel using the 

gradient information and a window function. 

3. Compute the eigenvalues of the matrix 𝑀 for each 

pixel. 

4. Compute the corner response ℝ for each pixel 

based on the eigenvalues. 

5. Apply a threshold to the corner response to 

determine which pixels are corners. 

6. Extract the corner locations and use them as 

features for further processing. 

Using the unique corner structures found in retinal images, 

the Shi-Tomasi corner detector for image feature extraction 

in the field of diabetic retinopathy detection enables the 

extraction of corner features that can help distinguish and 

categorize various features related to the condition. 

4. Proposed Methodology  

When it comes to diabetic retinopathy, lesions are found 

using the GLCM and Shi-Tomasi Corner detector. Then, 

feature extraction techniques are used to retrieve pertinent 

data from the lesions, which is then used to create patterns 

using a Random Forest classifier. The feature extraction 

procedure is explained as follows: 

• Lesion Detection: Using preprocessing methods, 

the initial step is to identify the lesions in the retinal 

images. These algorithms identify potential lesion 

locations based on corner points, which are areas of 

interest that indicate the presence of lesions. 

• Lesion Segmentation: The next step is to segment 

or separate the lesions from the healthy retinal 

tissue surrounding them when they have been 

identified. This may be accomplished by creating 

lesion masks or binary images that show the extent 

of the lesions using a variety of segmentation 

approaches, including thresholding, region growth, 

and active contour models. 

• Feature Extraction: Upon acquiring the lesion 

zones or masks, pertinent properties of the lesions 

are captured through the application of feature 

extraction algorithms. These features may consist 

of: 

• Texture features: These features capture the spatial 

arrangement and patterns within the lesions. GLCM 

texture features and Shi-Tomasi Corner detector 

texture features are applied, which quantify 

properties like contrast, entropy, and homogeneity. 

• Random Forest Training: A Random Forest 

classifier is trained using the features that have 

been retrieved from the lesion areas. The 

association between the retrieved features and the 

matching patterns or classes of lesions is 

discovered by the classifier. To train the Random 

Forest model, the labeled features must be supplied 

together with the matching lesion patterns (such as 

severity levels). 

• Pattern Generation: The Random Forest classifier 

may be trained and then used to produce patterns in 

previously undetected lesion areas. Based on the 

patterns it learnt during the training phase, the 

classifier forecasts the pattern or degree of severity 

of the lesions. By classifying the lesions into 

distinct groups or degrees of severity, these patterns 
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allow for more investigation and comprehension of 

the diabetic retinopathy situation. 

By combining the GLCM and Shi-Tomasi Corner detector, 

feature extraction techniques, and the Random Forest 

classifier, this approach allows for the extraction of 

relevant information from the detected lesions to generate 

patterns. These patterns can aid in the characterization and 

classification of the lesions, offering important information 

on the degree and course of diabetic retinopathy. 

 

 

Fig. 1.  Proposed diagram for Diabetic retinopathy

4.1. Preprocessing 

In the context of diabetic retinopathy analysis, 

preprocessing retinal images usually entails many 

procedures, such as optic disk extraction, blood vessel 

extraction, and retinal mask extraction. This is a broad 

description of these procedures: 

1. Retinal Mask Extraction 

• Preprocessing: The retinal image is preprocessed 

to enhance its quality and reduce noise. Common 

techniques include denoising, contrast 

enhancement, and normalization. 

• Thresholding: The preprocessed image is then 

subjected to a thresholding approach that turns it 

into a binary image where pixels are classed as 

background or foreground (retinal structures). 

• Region Growing: Starting from seed points 

within the retinal region, a region growing 

algorithm is applied to expand the initial region 

and include neighboring pixels that exhibit similar 

characteristics. This helps in delineating the 

retinal boundaries and obtaining the retinal mask. 

• Edge Detection: As an alternative, the edges of 

the retinal structures may be found using edge 

detection methods like Canny edge detection, 

which can then be utilized to produce the retinal 

mask. 

2. Blood Vessel Extraction 

• Preprocessing: Similar to retinal mask extraction, 

the retinal image is preprocessed to enhance 

vessel visibility and reduce noise. 

• Thresholding: The preprocessed image is 

thresholded to produce a binary vessel map, in 

which foreground pixels indicate vessels. 

• Morphological Operations: To improve the 

vessel map, morphological procedures like 

opening and closing are used. Opening can 

remove small noise and thin vessel segments, 

while closing can bridge gaps in vessel segments. 

3. Optic Disk Extraction 

• Preprocessing: The retinal image is preprocessed 

to enhance the optic disk's visibility and reduce 

noise. 

• Optic Disk Detection: The optic disk area can be 

located and extracted using a variety of 

techniques. A variety of machine learning-based 

systems that learn to distinguish optic disk 

regions, template matching techniques that use a 

predetermined disk template, and edge 

identification algorithms (e.g., Canny edge 

detection) to identify the disk's edges. 

• Circular or Elliptical Fitting: A precise 

determination of the optic disk border can be 

achieved by applying an elliptical or circular 

fitting method once the optic disk region has been 

identified. 

• Optic Disk Segmentation: The optic disk region 

can be further segmented to differentiate it from 

the surrounding retinal structures.  

To improve the optic disk extraction, this may include 

using additional image analysis methods or morphological 

processes. 

The precise algorithms and methods used for blood vessel 

extraction, optic disk extraction, and retinal mask 

Retinal 

Image 

Preprocessing: 

 

• Image 

enhancement 

• Retinal mask 

extraction 

• Blood vessel 

extraction 

• Optic disk region 

• Lesion candidate 

regions 

Feature 

extraction 
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• Shi-Tomasi 

Corner Detector 

 

 

Random forest 

Classifier 

Classify: 
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• Abnormal 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2390–2399  |  2395 

extraction can change depending on the needs of the 

research or clinical setting, the features of the retinal 

images, and the experience of the practitioners or 

researchers. 

 

Algorithim-1: 

Retinal mask extraction: 

Input: Retinal image 

// Preprocessing 

Preprocess the retinal image (e.g., denoising, contrast 

enhancement, normalization) 

// Thresholding 

Utilize a thresholding approach to create a binary image 

from the preprocessed image. 

// Region Growing 

Select seed points within the retinal region 

Initialize an empty mask 

For each seed point: 

    Add the seed point to the mask 

    While there are nearby pixels with comparable features: 

        Add the neighboring pixel to the mask 

// Edge Detection (Alternative approach) 

Apply an edge detection algorithm (e.g., Canny edge 

detection) to detect the edges of retinal structures 

Create a binary mask using the detected edges 

Output: Retinal mask 

 

Algorithm - 2: 

Blood vessel extraction 

Input: Retinal image 

// Preprocessing 

Preprocess the retinal image (e.g., denoising, contrast 

enhancement, normalization) 

// Thresholding 

Apply a thresholding technique to create a binary vessel 

map 

// Morphological Operations 

Apply morphological opening and closing operations to 

refine the vessel map 

// Machine Learning Approaches (Alternative approach) 

Train a CNN using labeled retinal images to segment 

blood vessels 

Apply the trained CNN to segment blood vessels in the 

retinal image 

Output: Blood vessel segmentation 

 

Algorithm - 3:  

Input: Retinal image 

// Preprocessing 

Preprocess the retinal image (e.g., denoising, contrast 

enhancement, normalization) 

// Optic Disk Detection 

Apply an optic disk detection algorithm: 

 Use edge detection (e.g., Canny edge detection) to identify 

edges of the optic disk 

// Circular or Elliptical Fitting 

Fit a circle or ellipse to the detected optic disk region to 

determine the boundary 

// Optic Disk Segmentation 

Refine the optic disk extraction, if needed, using 

morphological operations or additional image analysis 

techniques 

Output: Optic disk region 

5. Simulation and Results 

5.1. Databases 

Image databases are a vital tool for developing retinal 

image processing algorithms because they enable 

researchers to assess and contrast newly created techniques 

with state-of-the-art research findings. Better algorithms 

are developed as a result of them. Several databases we 

used for our work are shown in this section. 

5.1.1. DRIVE Image Database 

The Drive image database includes 40 color fundus 

images, 7 of which show pathologies. Images are acquired 

with a non-mydriaticretinograph (Canon RC5) with a 45-

degree field of view (FOV). They are saved in JPEG 

format, with a size of 768×584 pixels. The image base is 

divided into two sets (20 images for training and the rest 

for testing). Manual segmentation of the vascular network 

is performed by two experienced ophthalmologists [51]. 
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(a)       (b) 

   

(c)      (d) 

Fig. 2.  Sample images from the DRIVE database; (a): original image; (b): manual segmentation of the vascular network by 

the first ophthalmologist (c): manual segmentation of the vascular network by a second ophthalmologist; (d): mask of the 

original image

5.1.2. Fundus Image 

The Fundus Image Registration Dataset, or FIRE, is a 

collection of 129 retinal images that make up 134 image 

pairings. Depending on their attributes, these image 

pairings are divided into three groups. The Nidek AFC-210 

fundus camera was used to capture the photos. It has a 

FOV of 45° in both the x and y dimensions and can capture 

images with a resolution of 2912×2912 pixels. 39 patients' 

images were taken at the Papageorgiou Hospital at 

Aristotle University of Thessaloniki in Thessaloniki. 

5.2. Results 

   

(a)       (b) 

Fig. 3.  Preprocessing (a): Original image; (b) improved image

The retinal imaging images were scanned and digitally 

transformed to generate the Structured Analysis of the 

Retina (STARE) database. The images in the STARE 

database were taken with a camera with a 35-degree field 

of view, and they have a resolution of 700×605 pixels. 
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Table 1.Comparative results of different datasets using the 

SVM classifier 

Parameters MESSIDOR DRIVE STARE 

Accuracy 9.75e-01 8.75e-01 9.25e-01 

Error Rate 2.50e-02 1.25e-01 7.50e-02 

Sensitivity 1.00e+00 1.00e+00 1.00e+00 

Specificity 0.95 0.75 0.85 

Precision 0.9524 0.8 0.8696 

False Positive Rate 0.05 0.25 0.15 

F-Score 9.76e-01 8.89e-01 9.30e-01 

MCC 9.51e-01 7.75e-01 8.60e-01 

Kappa Statistics 9.50e-01 7.50e-01 8.50e-01 

 

Table 1 presents a comparative analysis of different 

datasets (MESSIDOR, DRIVE, and STARE) using an 

SVM classifier for Diabetic Retinopathy detection. The 

accuracy rates for the datasets are 97.5% for MESSIDOR, 

87.5% for DRIVE, and 92.5% for STARE. 

Correspondingly, the error rates are 2.5%, 12.5%, and 

7.5%. Sensitivity is consistently perfect at 100% across all 

datasets, while specificity varies, being highest for 

MESSIDOR at 95%, followed by STARE at 85%, and 

lowest for DRIVE at 75%. Precision values are 95.24% for 

MESSIDOR, 80% for DRIVE, and 86.96% for STARE. 

The false positive rate is lowest for MESSIDOR at 5%, 

higher for STARE at 15%, and highest for DRIVE at 25%. 

The F-Score is 97.6% for MESSIDOR, 88.9% for DRIVE, 

and 93.0% for STARE. The Matthews correlation 

coefficient (MCC) and Kappa statistics further reflect the 

performance, with MESSIDOR having an MCC of 95.1% 

and a Kappa statistic of 95%, DRIVE having an MCC of 

77.5% and a Kappa statistic of 75%, and STARE having 

an MCC of 86% and a Kappa statistic of 85%. This 

comparison highlights MESSIDOR as having the most 

robust performance across all evaluated metrics. 

Table 2.Comparative results of different datasets using the 

Random Forest classifier 

Parameters MESSIDOR DRIVE STARE 

Accuracy 9.81e-01 9.17e-01 9.63e-

01 

Error Rate 1.85e-02 8.33e-02 3.70e-

02 

Sensitivity 1.00e+00 1.00e+00 1 

Specificity 9.63e-01 8.33e-01 9.26e-

01 

Precision 9.64e-01 8.57e-01 9.31e-

01 

False Positive Rate 3.70e-02 1.67e-01 7.41e-

02 

F-Score 9.82e-01 9.23e-01 9.64e-

01 

MCC 9.64e-01 8.45e-01 9.28e-

01 

Kappa Statistics 9.63e-01 8.33e-01 9.26e-

01 

 

Table 2 provides a comparative analysis of the 

performance of a Random Forest classifier on three 

different datasets (MESSIDOR, DRIVE, and STARE) for 

Diabetic Retinopathy detection. The accuracy rates 

achieved are 98.1% for MESSIDOR, 91.7% for DRIVE, 

and 96.3% for STARE. Correspondingly, the error rates 

are 1.85%, 8.33%, and 3.7%. Sensitivity is consistently 

perfect at 100% across all datasets. Specificity values are 

highest for MESSIDOR at 96.3%, followed by STARE at 

92.6%, and lowest for DRIVE at 83.3%. Precision rates are 

96.4% for MESSIDOR, 85.7% for DRIVE, and 93.1% for 

STARE. The false positive rate is lowest for MESSIDOR 

at 3.7%, higher for STARE at 7.41%, and highest for 

DRIVE at 16.7%. The F-Score is 98.2% for MESSIDOR, 

92.3% for DRIVE, and 96.4% for STARE. The MCC is 

96.4% for MESSIDOR, 84.5% for DRIVE, and 92.8% for 

STARE. Kappa statistics further reflect these trends, with 

values of 96.3% for MESSIDOR, 83.3% for DRIVE, and 

92.6% for STARE. Overall, MESSIDOR exhibits the 

highest performance across most metrics, followed by 

STARE, and DRIVE, demonstrating that the Random 

Forest classifier performs robustly, particularly with the 

MESSIDOR dataset. 

Table 3.Comparative results of different classifiers for the 

Drive dataset 

Parameters SVM KNN RF 

Accuracy 0.9494 0.9154 0.9793 

Error Rate 0.0506 0.0846  0.0207 

Sensitivity 0.9494 0.9154 0.9889 

Specificity 0.9494 0.9154 0.8444 

Precision 0.9494 0.9154 0.9889 

False Positive Rate 0.0506 0.0846 0.1556 

F-Score 0.9494 0.9154 0.9889 

MCC 0.8987 0.8308 0.8333 

Kappa Statistics 0.8987 0.8308 0.8333 

 

Table 3 presents a comparative analysis of different 

classifiers (SVM, KNN, and RF) applied to the DRIVE 

dataset for Diabetic Retinopathy detection. The Random 

Forest (RF) classifier achieves the highest accuracy at 

97.93%, with an error rate of 2.07%. The Support Vector 

Machine (SVM) follows with an accuracy of 94.94% and 

an error rate of 5.06%, while the K-Nearest Neighbors 
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(KNN) classifier has the lowest accuracy at 91.54% and an 

error rate of 8.46%. Sensitivity is highest for RF at 

98.89%, compared to 94.94% for SVM and 91.54% for 

KNN. Specificity is equal for SVM and KNN at 94.94% 

and 91.54%, respectively, while RF has a lower specificity 

at 84.44%. Precision mirrors sensitivity, with RF again 

leading at 98.89%, followed by SVM and KNN at 94.94% 

and 91.54%, respectively. The false positive rate is lowest 

for SVM at 5.06%, higher for KNN at 8.46%, and highest 

for RF at 15.56%. The F-Score follows the same trend as 

sensitivity and precision, with RF at 98.89%, SVM at 

94.94%, and KNN at 91.54%. The MCC is highest for 

SVM at 89.87%, followed by RF and KNN, both at 

83.33%. Kappa statistics reflect these trends with values of 

89.87% for SVM, and 83.33% for both RF and KNN. 

Overall, the RF classifier demonstrates superior 

performance in most metrics, particularly in accuracy and 

sensitivity, although it has a higher false positive rate 

compared to SVM and KNN. 

6. Conclusion 

In conclusion, the proposed algorithm for assessing 

diabetic retinopathy through fundus scans demonstrates 

superior performance compared to traditional approaches. 

The technique uses many preprocessing stages, such as 

optic disk extraction, blood vessel segmentation, retinal 

mask extraction, image enhancement, and lesion candidate 

region extraction. 

A thresholding approach is used to extract branching blood 

arteries, and then adaptive histogram equalization and 

morphological opening improve the picture quality while 

removing sections that were incorrectly segmented. One 

notable characteristic that is thought to set diabetic or 

afflicted people apart is the markedly increased 

proliferation of optical nerves. A hybrid technique of Shi-

Tomasi Corner Detector and GLCM (Gray Level Co-

occurrence Matrix) is used for feature extraction in order to 

further investigate the lesion candidate locations. The 

existence of diabetic retinopathy is then classified using a 

random forest classifier that receives these features. 

Two datasets are used to assess the algorithm's 

performance: the standard Diabetic Retinopathy Dataset 

(DIARETDB1) and a dataset from a medical facility that 

includes fundus images of both normal and afflicted 

retinas. The experimental findings show that the suggested 

method is more successful than conventional systems. The 

model obtains an amazing 97.2% precision and 98.7% 

accuracy when tested on the DIARETDB1 dataset. These 

encouraging findings suggest that the suggested 

methodology has a lot of potential for diagnosing diabetic 

retinopathy with fundus scans in an accurate manner. It is a 

useful tool to help medical professionals detect and 

manage this problem because of its great accuracy and 

precision. Further research and validation on larger and 

diverse datasets are recommended to strengthen the 

algorithm's robustness and generalizability. 
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