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Abstract: Finger vein authentication offers enhanced security due to the unique and internal nature of vein patterns. However, real-world 

applications encounter significant issues from motion artifacts and varying image capture conditions, impacting performance and 

reliability. This study addresses these challenges by utilizing image labelling, dataset augmentation, and a motion-tolerant deep learning 

architecture. Pixel-wise labelling of finger vein images enhances the model's sensitivity to vein patterns, facilitating data augmentation at 

the pixel level and improving robustness to environmental variations. The data is enhanced using extensive data augmentation 

techniques. The proposed methodology combines “Convolutional Neural Networks (CNN)” and “Long Short-Term Memory (LSTM)” 

for feature extraction and handling motion artifacts. CNN effectively captures spatial features while the LSTM processes temporal 

information, making the model more resilient to motion artifacts. The model is designed to adapt to different lighting conditions and 

handle variations in finger positioning, ensuring accurate recognition. This comprehensive approach significantly improves the reliability 

and performance of finger vein authentication systems in diverse real-world environments. 
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1. Introduction 

Biometric authentication is a critical field focused on ensuring 

robust security and precise identity verification systems. 

Traditional methods like fingerprint, facial recognition, and iris 

scanning are widely adopted but encounter issues such as 

susceptibility to spoofing, sensitivity to environmental conditions, 

and variability in user cooperation. In contrast, finger vein 

authentication has emerged as a promising alternative within 

biometrics due to the unique and internal nature of vein patterns, 

which are inherently resistant to forgery and alteration. However, 

implementing finger vein authentication in real-world scenarios 

presents challenges, particularly concerning motion artifacts and 

variations in image capture conditions, which can compromise 

system performance and reliability. To mitigate these challenges, 

this study investigates the application of image labelling, dataset 

augmentation techniques, and the development of a motion-

tolerant deep learning architecture. Using these approaches, 

finger vein authentication can be made more robust and accurate, 

thereby improving their effectiveness in diverse and dynamic 

operational environments. [1-3]. 

The proposed methodology uses the VGG16 architecture, a well-

established CNN model, for feature extraction [4]. LSTM 

networks, known for their capability in handling sequential data 

and learning temporal dependencies, are incorporated to mitigate 

the impact of motion artifacts [5-7]. 

Finger vein image labelling involves identifying and marking 

specific patterns within the images that correspond to the vein 

structure. During the labelling process, each pixel is categorized  

 

 

as either vein or background. This detailed labelling allows the 

deep learning model to capture the intricate complexities of 

finger vein patterns. It enhances the model's sensitivity to subtle 

changes in vein patterns, which is critical for applications 

requiring high accuracy, such as biometric authentication. In 

pixelwise labelling, the model learns features that are unique to 

the vein and background regions, improving robustness to 

variations in lighting, pose, and other environmental factors. It 

facilitates the application of data augmentation techniques at the 

pixel level. Augmenting labelled images with variations in pixel 

values (e.g., brightness, contrast, or rotation) helps models 

generalize better to data that is unknown. Labelled images reduce 

ambiguity during training, leading to faster convergence and 

enhanced model performance [8-9]. 

To address the limited availability of finger vein images per 

individual, extensive data augmentation techniques are applied. 

We have used conventional transformations and deep learning-

based augmentation techniques to enhance the existing dataset 

[10-14]. 

The proposed model is designed to adapt to different lighting 

conditions and other environmental factors that affect the quality 

of the vein images. It also handles variations in the movement or 

positioning of the user's finger during the scanning process, 

ensuring accurate recognition even if the finger is not perfectly 

still [15]. VGG16 is used to extract features, followed by Time 

Distributed, LSTM, and a dense layer. 

The paper is further structured as follows. The research 

emphasizing the need for image labelling, augmentation, and 

motion-tolerant deep learning models for precise recognition is 

reviewed in section 2.  The proposed model is discussed in 

Section 3 followed by the results obtained from various 

configurations in section 4. Section 5 gives the conclusion.  
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2. Related Work 

The authors of [16] investigated the use of CNNs for feature 

learning in finger vein authentication, highlighting that while 

CNNs are effective, they require substantial computational 

resources and sufficient training data, posing challenges in their 

practical application. 

The research conducted in [17] using CNN with a stochastic 

diagonal Levenberg- Marquardt   algorithm found that CNNs 

robustness to noise and misalignments in the acquired images, 

which enhances their effectiveness for biometric identification. 

In [18] CNNs are used for labelling and training while the 

missing vein patterns are recovered using a Fully Convolutional 

Network (FCN). However, their approach struggled with 

imbalanced local illumination, presenting a significant challenge 

for accurate finger-vein verification. 

The finger-vein recognition using CNNs with data augmentation 

was explored in [19], specifically using translation techniques for 

augmentation. They found that relying solely on translation for 

augmentation was insufficient, indicating the need for more 

diverse augmentation strategies to improve recognition 

performance. 

In a study involving deep fully convolutional neural semantic 

segmentation networks for finger vein recognition, automatic 

labels significantly increased the network's recognition accuracy, 

demonstrating the importance of quality training data for model 

performance [20]. 

A two-stream convolutional network learning proposed in [21] 

identified that the limited number of training samples hindered 

effective training for learning invariant features. Additionally, 

they noted that preprocessing steps failed to adequately address 

the change in angles and positioning of fingers, further 

complicating the training process.  

Multimodal biometric recognition by fusing finger-vein and 

finger-shape data, based on a deep CNN was examined in [22]. 

They found that most false rejection cases were due to improper 

alignment of finger-vein images, caused by position changes of 

fingers during enrollment and recognition phases, highlighting a 

critical issue in practical biometric systems. 

The research in [23] demonstrated that GAN-generated synthetic 

images can significantly improve the classification accuracy of 

CNNs by providing additional training examples that capture the 

variability of real medical images. The authors found that the 

augmented dataset improved the network's generalization ability, 

leading to better performance on unseen data than traditional 

augmentation techniques. The study findings in [24] underscore 

the potential of GANs to address data scarcity issues which 

contribute towards improving the robustness and performance of 

deep models in diverse applications. 

The researchers in [25] introduced a method for real time 

verification of finger-vein biometrics using CNNs and LSTM 

networks. Their study demonstrated that this approach effectively 

handles variations in finger movement or positioning during 

scanning, thereby developing an accurate and robust system.  

3. Proposed Method 

After extracting the region of interest from the raw dataset, a 

hybrid algorithm is used to label the dataset. The labelled images 

are then used to augment the dataset. Conventional 

transformations and GAN based augmentation are used to 

expand the database. Deep learning models become more robust 

and generalizable with augmentation by providing it with a more 

diverse set of training examples. Using the augmented dataset, a 

motion-tolerant deep learning model is trained. This model is 

designed to handle variations and inconsistencies in the input 

images that might arise from motion, ensuring reliable 

performance even when the fingers are not perfectly still. A new 

image, which is not used for training or augmentation, is 

provided to the trained model for evaluation. The model then can 

be used to authenticate or reject a person. classifies it as genuine, 

authentic person or imposter. 

3.1 Dataset 

The experimentation is conducted with two datasets and the 

details are given in Table 1. The first dataset is sourced from the 

“SDUMLA-HMT” database, compiled by Shandong University. 

A total of 3816 images were scanned from 106 persons. Images 

of three fingers from both the hands, excluding thump and small 

finger were captured six times. These images are sized at 

320x240 pixels [26]. The second dataset is from “THU-

FVFDT1” [27] comprising images from 220 individuals. Each 

individual has two images, with a resolution of 720x576 pixels 

for the raw images.  
 

Table 1. Details of dataset 

 

Dataset 

No. of 

classes or 

Individu

al 

No. of 

fingers 

per 

individu

al 

No. of 

image

s per 

finger 

Total images 

SDUML

A- HMT 
106 6 6 

381
6 

THU FV 220 1 2 440 

 

 

 

 

 

 

 

 

 

Fig 1. Overview of the motion tolerant finger vein recognition model 
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3.2 Finger Vein Image Labelling 

Labelling finger vein images involves identifying and marking 

distinct patterns within the images that correspond to the vein 

structure. Each pixel in the image is labelled as either vein or 

background. This allows the deep learning (DL) model to learn 

the intricate characteristics of the finger vein patterns and 

enhances the model's sensitivity to subtle changes in vein 

patterns, which is crucial in applications where high accuracy is 

required, such as biometric authentication. Pixel-wise labelling 

ensures that the model learns features specifically related to the 

vein and background regions, making it more robust to variations 

in lighting, pose, and other environmental factors. It also 

facilitates the application of data augmentation techniques at the 

pixel level; augmenting labelled images by introducing variations 

in pixel values (e.g., brightness, contrast, or rotation) which helps 

the model to predict images with variations in enrolled images. 

Labelled images help reduce ambiguity during training, leading 

to faster convergence and improved model performance. 

We have used automated labelling, which assigns labels or 

annotations to data automatically without manual intervention. 

This approach reduces the time and effort required for manual 

labelling, which is crucial when dealing with vast amounts of 

data. It is also cost-effective and ensures consistency across the 

dataset, as the algorithms or rules used to assign labels are 

applied uniformly. 

After extracting the vein region from the original image, a hybrid 

algorithm that integrates the “Local Maximum Curvature” 

algorithm, the “Wide Line Detector” algorithm, and the 

“Repeated Line Tracking” algorithm is used to label the images 

in the pixel level [6].  

The resultant images contain more features compared to those 

produced by each individual algorithm alone. Sample ROI image  

and the final labelled image are displayed in Fig. 2. 

 

 

  

(a)                                                  (b) 
Fig 2.  (i) ROI extracted FV image (ii) Labelled FV image 

3.3 Finger Vein Dataset Augmentation 

Most finger vein image databases consist of images from 

different subjects with few images per person. The number of 

images used for training per person significantly impacts the 

verification performance of the model. To capture the variability 

in vein patterns among individuals, a larger dataset is required. A 

diverse dataset can improve generalization by making the model 

more robust to different conditions such as rotation, 

displacement, and lighting variations. 

The dataset has been augmented using two strategies. First, using 

conventional transformations like rotation, shifting, brightness 

variations, and zooming. Secondly using Generative Adversarial 

Networks (GAN). Conventional transformations rely on 

predefined rules and geometric operations, while GANs are deep 

learning-based methods that require more computational power 

and complex implementation but can create highly realistic and 

diverse images. Combining both methods can enhance the dataset 

for the effective training of deep learning models. Among the 

transformation methods, systematic rotation helped in creating 

images at various angles and aids in recognizing images at 

different angles due to slight variations in finger positioning. 

 

 

 

 

 

Fig 3.  Architecture of cGAN for finger vein dataset 

augmentation 
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Shifting helps in making the system less sensitive to small 

positional shifts of the finger within the capture device. 

Brightness variations reflect adaptability to different lightning 

conditions. Zooming helps when the finger may appear at 

varying distances from the camera. For augmenting using GANs, 

we employed conditional GANs (cGANs) [28-30]. In cGANs, 

additional information is provided to the generator and 

discriminator during training. Manually labelled vein images are 

given as additional information to the discriminator, helping to 

maintain the semantic meaning. This approach creates new 

samples based on the learned features of the dataset, capturing 

more intricate and complex features of the data distribution, 

resulting in more realistic and diverse augmented samples. Figure 

3 illustrates the architecture of cGAN implemented for finger 

vein dataset augmentation. The labelled image is inputted as 

latent vector to the generator. The generator then generates fake 

images initially and gradually real images after upon training 

with the feedback from discriminator. The discriminator is also 

provided with manually labelled images as additional 

information. If the discriminator output is ‘fake image’, the 

feedback is fed to generator and discriminator for training, 

otherwise the image is added to the dataset. 

 

Algorithm1: Finger Vein Image Dataset Augmentation 

Start Algorithm 

1. Load Original Dataset: 

   1.1 Load the original dataset 

2. Apply Conventional Augmentation: 

   2.1 For each image I in the dataset: 

       2.1.1 Apply rotation transformations to generate images at 

various angles: I_rot = rotate (I, θ) for θ in A 

                A: Set of angles used for rotating the images 

       2.1.2 Apply shifting transformations to generate images with 

positional shifts: 

                I_shift = shift (I, δx, δy) for (δx, δy) in S 

                S: Set of shift values for x and y directions. 

       2.1.3 Apply brightness variations to simulate different 

lighting conditions: 

               I_bright = adjust_brightness (I, β) for β in B 

               B: Set of brightness adjustment factors 

       2.1.4 Apply zooming transformations to simulate varying 

distances: 

                I_zoom = zoom (I, z) for z in Z 

               Z: Set of zoom factors. 

   Combine the augmented images to form D_conv 

3. Apply Augmentation using cGANs: 

   3.1 Initialize cGAN model components:Generator G, 

Discriminator D 

   3.2 For each image I labelled as L in the dataset: 

       3.2.1 Input labelled image L as latent vector to generator G 

       3.2.2 Generator G generates initial fake image I_fake 

       3.2.3 Provide labelled image L to discriminator D 

       3.2.4 Discriminator D evaluates generated image: 

                output = D (I_fake, L) 

       3.2.5 If output is ‘fake image’: 

           3.2.5.1 Provide feedback to G and D for further training 

       3.2.6 Otherwise if output is ‘real image’: 

           3.2.6.1 Add I_fake to D_cGAN 

4. Combine Augmented Datasets: 

   Combine D_conv and D_cGAN to form the final augmented    

dataset D_aug 

End Algorithm 

 

3.4 Proposed Deep Learning Model 

The proposed model uses finger vein image sequences for 

classification. The dataset is pre-processed with image labelling 

and augmentation techniques. Each sequence groups finger vein 

images of a single individual. The features are extracted using a 

VGG16 model, retaining only the convolutional layers of the 

model. As the fully connected layers are removed, the model 

becomes lighter and more computationally efficient and focuses 

solely on feature extraction, without being constrained by the 

specific task of classification. These layers generate fixed-size 

feature vectors for each input image. A Time Distributed layer 

with flattening incorporates temporal information. It processes 

each image in the sequence independently, reshaping the data for 

a successive LSTM layer. LSTM layer, with 32 hidden units, 

learns the relationships between these feature vectors across the 

sequence. Finally, the sequence is classified by a dense layer 

with neurons matching the count of classes and a softmax 

activation function. Fig. 4 shows the architecture of the motion 

tolerant model. 

 

 

 

 

 

Fig 4.  Architecture of motion tolerant deep learning model for finger vein authentication 
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Algorithm 2: Proposed Deep Learning model 

Start Algorithm 

1. Data Pre-processing: 

1.1. Group the labelled and augmented images into sequences     

Sj for each individual j: Sj= {Ij,1, Ij, 2…,Ij,T} ,  

T : count of images in the sequence 

Ij,t : tth image in the sequence of the jth individual 

2. Feature Extraction using pre-trained VGG16: 

2.1. Initialize the pre-trained VGG16 model.  

2.2. Remove the fully connected layers from the VGG16 

model.  

2.3. For each image Ij,t in sequence Sj: 

   Fj,t=VGG16_Conv(Ij,t) 

3. Incorporate Temporal Information: 

3.1. Apply a Time Distributed layer with flattening to each 

feature vector  

  Fj,t′=Flatten(Fj,t)  

4. Learn Temporal Relationships using LSTM:  

4.1. Initialize an LSTM layer with U=32 hidden units.  

4.2. For each sequence Sj with flattened feature vectors {Fj,1', 

Fj,2′…,Fj,T:  

  Hj=LSTM ([Fj,1′, Fj,2′…,Fj,T′])  

5. Classification:  

5.1. Initialize a dense layer with c neurons and a SoftMax 

activation function. (c:number of classes) 

 5.2. For each hidden state sequence Hj, classify the sequence: 

yj=Softmax (WHj+b) 

6. Model Training and Evaluation: 

6.1. Compile the model with the loss function categorical 

cross-entropy and Adam Optimizer.  

6.2. Train the model on the pre-processed and augmented 

dataset:  

       model.fit(sequences, labels, validation_split =0.2, epochs 

= num_epochs)  

6.3. Evaluate the performance on a validation set: 

model.evaluate (validationset) 

End Algorithm 

 

4. Results and Discussion 

Different approaches are adopted to assess the model 

performance on the SDUMLA and THUFV databases. The first 

approach utilized the VGG16 model with the original dataset. 

The second approach involved the VGG16 trained on a labelled 

dataset. The third approach uses the labelled and augmented 

dataset, to improve model robustness and accuracy. Lastly, the 

proposed model was evaluated using the labelled and augmented 

dataset to compare its performance against the VGG16 

configurations. These approaches assess the impact of labelling, 

data augmentation, and model architecture on training time and 

accuracy.  

Table 2 compares performance metrics across different 

configurations of models trained on two datasets, SDUMLA and 

THUFV. The results highlight that while augmentation increases 

training time, the proposed model effectively utilizes labelled and 

augmented datasets to achieve significantly higher accuracy with 

reduced training times compared to VGG16, showcasing its 

robustness and efficiency in finger vein authentication 

applications. 

 

 

 

Table 2.  Comparison of performance for various approaches 

Data

base 

Comparison 

Factor 

VGG16 

+ 

Original 

Dataset 

VGG16 

+ 

Labelled 

Dataset 

VGG16 

+ 

Labelled 

and 

Augmen

-ted 

Dataset 

Proposed 

Model 

+ 

Labelled 

and 

Augment- 

ed 

Dataset 

S
D

U
M

L
A

 Training 

Time (min) 
54 36 110 72 

No. of 

images 
424 424 16960 16960 

Accuracy 94.30% 95.45% 97.11% 99.76% 

T
H

U
F

V
 

Training 

Time (min) 
35 25 85 56 

No. of 

images 
220 220 8800 8800 

Accuracy 92.50% 96.34% 98.60% 99.89% 

 

Comparison of accuracy for various approaches is shown in 

Table 3. For the “SDUMLA” dataset the accuracy of VGG16 on 

the initial dataset was 94.30%, which improved to 95.45% with 

the labelled dataset. With the labelled and augmented dataset, the 

accuracy further increased to 97.11%. The proposed model 

achieved 99.76% accuracy with the labelled and augmented 

dataset, indicating superior performance. For the THUFV dataset 

the accuracy of VGG16 on the original dataset was 92.50%, 

improving to 96.34% with the labelled dataset. Using the labelled 

and augmented dataset, the accuracy increased to 98.60%. The 

proposed motion tolerant model achieved an accuracy of 99.89% 

on the labelled and augmented dataset, demonstrating the best 

performance among all configurations.  

 

Table 3. Accuracy obtained on SDUMLA and THUFV Database 

 

Database 

VGG16  

+ 

 Original 

Dataset  

VGG16 

+  

Labelled 

Dataset 

VGG16 

+  

Labelled 

and 

Augment

ed 

Dataset 

Proposed 

Model 

 + 

 Labelled 

and 

Augmented 

Dataset 

SDUMLA 94.3% 95.45% 97.11% 99.76% 

THUFV 92.5% 96.34% 98.6% 99.89% 

 

Figure 5 shows the accuracy graphs for the proposed model 

trained on the THUFV dataset over 40 epochs and the SDUMLA 

dataset over 25 epochs. For the THUFV dataset, the model's 

accuracy began to stabilize around the 20th epoch, showing a 

clear trend towards convergence. By the end of training, the 

model achieved a remarkable accuracy of 99.89%. Similarly, on 

the SDUMLA dataset, the model's convergence was observed 

slightly earlier, starting to stabilize around the 10th epoch. 

Despite a shorter training duration of 25 epochs, the model 

attained a high accuracy of 99.76%. This underscores the 

robustness of the proposed motion tolerant model architecture 

and its capability to handle variations in finger vein patterns 

across different datasets. This indicates that the model effectively 

learned the intricate patterns within the finger vein images from 

both the dataset, showing its ability to generalize and make 

accurate predictions. 
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                                                (b) 
Fig. 5.  The accuracy graph for the proposed motion tolerant model using 

labelled and augmented dataset (a) THUFV Dataset (b) SDUMLA 

Dataset 

 

Figure 6 shows the plot of Receiver Operating Characteristic 

(ROC) plotted at varying threshold settings to evaluate the 

model's performance. “Equal Error Rate (EER)” represents the 

point where false rejection and acceptance rates are equal, 

indicating when positives and negatives are equally likely. “Area 

Under the Curve (AUC)” is a measure of how well the model 

differentiates between positive and negative classes. The ROC 

for the proposed model using labelled and augmented dataset is 

depicted in Fig. 6. The EER for SDUMLA and THUFV dataset 

are 1.73% and 1.42% respectively. The area under the curve for 

SDUMLA and THUFV are 0.993 and 0.991 respectively, which 

are close to 1. Both the EER and AUC metrics indicate a highly 

effective classification system for both databases. 

 

   Table 5. EER and AUC vales for SDUMLA and THUFV Database  

Database EER AUC 

SDUMLA 1.73% 0.993 

THUFV 1.42% 0.991 

 

 

The proposed model also demonstrates better efficiency in 

training time compared to VGG16 under similar conditions 

which is detailed in table 4.  For the SDUMLA database, training 

the VGG16 model on the original dataset took 54 minutes, while 

using the labelled dataset reduced this time to 36 minutes. 

Training on the labelled and augmented dataset increased the 

time to 110 minutes. The proposed model with the labelled and 

augmented dataset required 72 minutes. Similarly, for training 

original THUFV database on VGG16 took 35 minutes, and on 

the labelled dataset, it reduced to 25 minutes. Training on the 

labelled and augmented dataset took 85 minutes, while the 

proposed model with the labelled and augmented dataset needed 

56 minutes. Overall, while augmentation increases training time, 

the proposed model offers a balance with improved performance 

over the VGG16 with labelled and augmented datasets. 

 

 

 

 

 

 

 

 

 

Fig 6. ROC for the proposed motion tolerant model using labelled and 

augmented dataset for SDUMLA Dataset and THUFV Dataset 

 

Table 4. Training time (in minutes) on SDUMLA and THUFV Database 

Database 

VGG16  

+ 

 Original 

Dataset 

VGG16 

+ 

 

Labelled 

Dataset 

VGG16 

+ 

Labelled 

and 

Augmented 

Dataset 

Proposed 

Model + 

Labelled 

and 

Augmented 

Dataset 

SDUMLA 54 36 110 72 

THUFV 35 25 85 56 

5. Conclusion 

The study demonstrates that finger vein authentication systems 

can significantly benefit from image labelling, data 

augmentation, and advanced model architectures to improve 

performance and robustness. Evaluations on the SDUMLA and 

THUFV databases reveal that while the VGG16 model performs 

well on original datasets, its accuracy substantially improves with 

labelled datasets and further with labelled and augmented 

datasets. The proposed model, incorporating a combination of 

VGG16 and LSTM networks, achieves the highest accuracy and 

demonstrates superior performance over VGG16 configurations, 

achieving 99.76% accuracy on SDUMLA dataset and 99.89% 

accuracy on THUFV dataset. Moreover, the proposed model 

exhibits better training efficiency, balancing increased training 

time due to augmentation with enhanced accuracy and 

robustness. The ROC and AUC metrics confirm the high 

effectiveness of the proposed system, underscoring its potential 

for reliable biometric authentication in real-world applications. 
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Overall, the integration of labelling, augmentation, and a motion-

tolerant deep learning architecture represents a significant step in 

the development of secure and accurate finger vein 

authentication systems.  
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