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Abstract: Finger vein authentication offers enhanced security due to the unique and internal nature of vein patterns. However, real-world
applications encounter significant issues from motion artifacts and varying image capture conditions, impacting performance and
reliability. This study addresses these challenges by utilizing image labelling, dataset augmentation, and a motion-tolerant deep learning
architecture. Pixel-wise labelling of finger vein images enhances the model's sensitivity to vein patterns, facilitating data augmentation at
the pixel level and improving robustness to environmental variations. The data is enhanced using extensive data augmentation
techniques. The proposed methodology combines “Convolutional Neural Networks (CNN)” and “Long Short-Term Memory (LSTM)”
for feature extraction and handling motion artifacts. CNN effectively captures spatial features while the LSTM processes temporal
information, making the model more resilient to motion artifacts. The model is designed to adapt to different lighting conditions and
handle variations in finger positioning, ensuring accurate recognition. This comprehensive approach significantly improves the reliability

and performance of finger vein authentication systems in diverse real-world environments.
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1. Introduction

Biometric authentication is a critical field focused on ensuring
robust security and precise identity verification systems.
Traditional methods like fingerprint, facial recognition, and iris
scanning are widely adopted but encounter issues such as
susceptibility to spoofing, sensitivity to environmental conditions,
and variability in user cooperation. In contrast, finger vein
authentication has emerged as a promising alternative within
biometrics due to the unique and internal nature of vein patterns,
which are inherently resistant to forgery and alteration. However,
implementing finger vein authentication in real-world scenarios
presents challenges, particularly concerning motion artifacts and
variations in image capture conditions, which can compromise
system performance and reliability. To mitigate these challenges,
this study investigates the application of image labelling, dataset
augmentation techniques, and the development of a motion-
tolerant deep learning architecture. Using these approaches,
finger vein authentication can be made more robust and accurate,
thereby improving their effectiveness in diverse and dynamic
operational environments. [1-3].

The proposed methodology uses the VGG16 architecture, a well-
established CNN model, for feature extraction [4]. LSTM
networks, known for their capability in handling sequential data
and learning temporal dependencies, are incorporated to mitigate
the impact of motion artifacts [5-7].

Finger vein image labelling involves identifying and marking
specific patterns within the images that correspond to the vein
structure. During the labelling process, each pixel is categorized
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as either vein or background. This detailed labelling allows the
deep learning model to capture the intricate complexities of
finger vein patterns. It enhances the model's sensitivity to subtle
changes in vein patterns, which is critical for applications
requiring high accuracy, such as biometric authentication. In
pixelwise labelling, the model learns features that are unique to
the vein and background regions, improving robustness to
variations in lighting, pose, and other environmental factors. It
facilitates the application of data augmentation techniques at the
pixel level. Augmenting labelled images with variations in pixel
values (e.g., brightness, contrast, or rotation) helps models
generalize better to data that is unknown. Labelled images reduce
ambiguity during training, leading to faster convergence and
enhanced model performance [8-9].

To address the limited availability of finger vein images per
individual, extensive data augmentation techniques are applied.
We have used conventional transformations and deep learning-
based augmentation techniques to enhance the existing dataset
[10-14].

The proposed model is designed to adapt to different lighting
conditions and other environmental factors that affect the quality
of the vein images. It also handles variations in the movement or
positioning of the user's finger during the scanning process,
ensuring accurate recognition even if the finger is not perfectly
still [15]. VGG16 is used to extract features, followed by Time
Distributed, LSTM, and a dense layer.

The paper is further structured as follows. The research
emphasizing the need for image labelling, augmentation, and
motion-tolerant deep learning models for precise recognition is
reviewed in section 2. The proposed model is discussed in
Section 3 followed by the results obtained from various
configurations in section 4. Section 5 gives the conclusion.
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Fig 1. Overview of the motion tolerant finger vein recognition model

2. Related Work

The authors of [16] investigated the use of CNNs for feature
learning in finger vein authentication, highlighting that while
CNNs are effective, they require substantial computational
resources and sufficient training data, posing challenges in their
practical application.

The research conducted in [17] using CNN with a stochastic
diagonal Levenberg- Marquardt algorithm found that CNNs
robustness to noise and misalignments in the acquired images,
which enhances their effectiveness for biometric identification.
In [18] CNNs are used for labelling and training while the
missing vein patterns are recovered using a Fully Convolutional
Network (FCN). However, their approach struggled with
imbalanced local illumination, presenting a significant challenge
for accurate finger-vein verification.

The finger-vein recognition using CNNs with data augmentation
was explored in [19], specifically using translation techniques for
augmentation. They found that relying solely on translation for
augmentation was insufficient, indicating the need for more
diverse augmentation strategies to improve recognition
performance.

In a study involving deep fully convolutional neural semantic
segmentation networks for finger vein recognition, automatic
labels significantly increased the network's recognition accuracy,
demonstrating the importance of quality training data for model
performance [20].

A two-stream convolutional network learning proposed in [21]
identified that the limited number of training samples hindered
effective training for learning invariant features. Additionally,
they noted that preprocessing steps failed to adequately address
the change in angles and positioning of fingers, further
complicating the training process.

Multimodal biometric recognition by fusing finger-vein and
finger-shape data, based on a deep CNN was examined in [22].
They found that most false rejection cases were due to improper
alignment of finger-vein images, caused by position changes of
fingers during enrollment and recognition phases, highlighting a
critical issue in practical biometric systems.

The research in [23] demonstrated that GAN-generated synthetic
images can significantly improve the classification accuracy of
CNNs by providing additional training examples that capture the
variability of real medical images. The authors found that the
augmented dataset improved the network's generalization ability,
leading to better performance on unseen data than traditional
augmentation techniques. The study findings in [24] underscore
the potential of GANs to address data scarcity issues which
contribute towards improving the robustness and performance of

deep models in diverse applications.

The researchers in [25] introduced a method for real time
verification of finger-vein biometrics using CNNs and LSTM
networks. Their study demonstrated that this approach effectively
handles variations in finger movement or positioning during
scanning, thereby developing an accurate and robust system.

3. Proposed Method

After extracting the region of interest from the raw dataset, a
hybrid algorithm is used to label the dataset. The labelled images
are then wused to augment the dataset. Conventional
transformations and GAN based augmentation are used to
expand the database. Deep learning models become more robust
and generalizable with augmentation by providing it with a more
diverse set of training examples. Using the augmented dataset, a
motion-tolerant deep learning model is trained. This model is
designed to handle variations and inconsistencies in the input
images that might arise from motion, ensuring reliable
performance even when the fingers are not perfectly still. A new
image, which is not used for training or augmentation, is
provided to the trained model for evaluation. The model then can
be used to authenticate or reject a person. classifies it as genuine,
authentic person or imposter.

3.1 Dataset

The experimentation is conducted with two datasets and the
details are given in Table 1. The first dataset is sourced from the
“SDUMLA-HMT” database, compiled by Shandong University.
A total of 3816 images were scanned from 106 persons. Images
of three fingers from both the hands, excluding thump and small
finger were captured six times. These images are sized at
320x240 pixels [26]. The second dataset is from “THU-
FVFDT1” [27] comprising images from 220 individuals. Each
individual has two images, with a resolution of 720x576 pixels
for the raw images.

Table 1. Details of dataset

No. of NO‘ of No. of
classes or fingers image
Dataset S per Total images
Individu Lo S per
individu -
al al finger
SDUML 381
A- HMT 106 6 6 6
THU FV 220 1 2 440
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3.2 Finger Vein Image Labelling

Labelling finger vein images involves identifying and marking
distinct patterns within the images that correspond to the vein
structure. Each pixel in the image is labelled as either vein or
background. This allows the deep learning (DL) model to learn
the intricate characteristics of the finger vein patterns and
enhances the model's sensitivity to subtle changes in vein
patterns, which is crucial in applications where high accuracy is
required, such as biometric authentication. Pixel-wise labelling
ensures that the model learns features specifically related to the
vein and background regions, making it more robust to variations
in lighting, pose, and other environmental factors. It also
facilitates the application of data augmentation techniques at the
pixel level; augmenting labelled images by introducing variations
in pixel values (e.g., brightness, contrast, or rotation) which helps
the model to predict images with variations in enrolled images.
Labelled images help reduce ambiguity during training, leading
to faster convergence and improved model performance.

We have used automated labelling, which assigns labels or
annotations to data automatically without manual intervention.
This approach reduces the time and effort required for manual
labelling, which is crucial when dealing with vast amounts of
data. It is also cost-effective and ensures consistency across the
dataset, as the algorithms or rules used to assign labels are
applied uniformly.

After extracting the vein region from the original image, a hybrid
algorithm that integrates the “Local Maximum Curvature”
algorithm, the “Wide Line Detector” algorithm, and the
“Repeated Line Tracking” algorithm is used to label the images
in the pixel level [6].

The resultant images contain more features compared to those
produced by each individual algorithm alone. Sample ROl image
and the final labelled image are displayed in Fig. 2.

(@) (b)
Fig 2. (i) ROI extracted FV image (ii) Labelled FV image

3.3 Finger Vein Dataset Augmentation

Most finger vein image databases consist of images from
different subjects with few images per person. The number of
images used for training per person significantly impacts the
verification performance of the model. To capture the variability
in vein patterns among individuals, a larger dataset is required. A
diverse dataset can improve generalization by making the model
more robust to different conditions such as rotation,
displacement, and lighting variations.

The dataset has been augmented using two strategies. First, using
conventional transformations like rotation, shifting, brightness
variations, and zooming. Secondly using Generative Adversarial
Networks (GAN). Conventional transformations rely on
predefined rules and geometric operations, while GANSs are deep
learning-based methods that require more computational power
and complex implementation but can create highly realistic and
diverse images. Combining both methods can enhance the dataset
for the effective training of deep learning models. Among the
transformation methods, systematic rotation helped in creating
images at various angles and aids in recognizing images at
different angles due to slight variations in finger positioning.
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Fig 3. Architecture of cGAN for finger vein dataset
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Fig 4. Architecture of motion tolerant deep learning model for finger vein authentication

Shifting helps in making the system less sensitive to small
positional shifts of the finger within the capture device.
Brightness variations reflect adaptability to different lightning
conditions. Zooming helps when the finger may appear at
varying distances from the camera. For augmenting using GANSs,
we employed conditional GANs (cGANSs) [28-30]. In cGANS,
additional information is provided to the generator and
discriminator during training. Manually labelled vein images are
given as additional information to the discriminator, helping to
maintain the semantic meaning. This approach creates new
samples based on the learned features of the dataset, capturing
more intricate and complex features of the data distribution,
resulting in more realistic and diverse augmented samples. Figure
3 illustrates the architecture of cGAN implemented for finger
vein dataset augmentation. The labelled image is inputted as
latent vector to the generator. The generator then generates fake
images initially and gradually real images after upon training
with the feedback from discriminator. The discriminator is also
provided with manually labelled images as additional
information. If the discriminator output is ‘fake image’, the
feedback is fed to generator and discriminator for training,
otherwise the image is added to the dataset.

Combine the augmented images to form D_conv
3. Apply Augmentation using cGANSs:
3.1 Initialize cGAN model components:Generator G,
Discriminator D
3.2 For each image | labelled as L in the dataset:
3.2.1 Input labelled image L as latent vector to generator G
3.2.2 Generator G generates initial fake image |_fake
3.2.3 Provide labelled image L to discriminator D
3.2.4 Discriminator D evaluates generated image:
output = D (I_fake, L)
3.2.5 If output is ‘fake image’:
3.2.5.1 Provide feedback to G and D for further training
3.2.6 Otherwise if output is ‘real image’:
3.2.6.1 Add |_fake to D_cGAN
4. Combine Augmented Datasets:
Combine D_conv and D_cGAN to form the final augmented
dataset D_aug
End Algorithm

Algorithm1: Finger Vein Image Dataset Augmentation

Start Algorithm
1. Load Original Dataset:
1.1 Load the original dataset
2. Apply Conventional Augmentation:
2.1 For each image | in the dataset:
2.1.1 Apply rotation transformations to generate images at
various angles: 1_rot = rotate (I, 0) for 6 in A
A: Set of angles used for rotating the images
2.1.2 Apply shifting transformations to generate images with
positional shifts:
I_shift = shift (I, dx, dy) for (0%, dy) in S
S: Set of shift values for x and y directions.
2.1.3 Apply brightness variations to simulate different
lighting conditions:
I_bright = adjust_brightness (I, p) for  in B
B: Set of brightness adjustment factors
2.1.4 Apply zooming transformations to simulate varying
distances:
I_zoom = zoom (I, z) for zin Z
Z: Set of zoom factors.

3.4 Proposed Deep Learning Model

The proposed model uses finger vein image sequences for
classification. The dataset is pre-processed with image labelling
and augmentation techniques. Each sequence groups finger vein
images of a single individual. The features are extracted using a
VGG16 model, retaining only the convolutional layers of the
model. As the fully connected layers are removed, the model
becomes lighter and more computationally efficient and focuses
solely on feature extraction, without being constrained by the
specific task of classification. These layers generate fixed-size
feature vectors for each input image. A Time Distributed layer
with flattening incorporates temporal information. It processes
each image in the sequence independently, reshaping the data for
a successive LSTM layer. LSTM layer, with 32 hidden units,
learns the relationships between these feature vectors across the
sequence. Finally, the sequence is classified by a dense layer
with neurons matching the count of classes and a softmax
activation function. Fig. 4 shows the architecture of the motion
tolerant model.
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Algorithm 2: Proposed Deep Learning model

Table 2. Comparison of performance for various approaches

Start Algorithm
1. Data Pre-processing:
1.1. Group the labelled and augmented images into sequences
Sj for each individual j: Sj= {lj,1, Ij, 2...,1j,T},
T : count of images in the sequence
Ij,t : th image in the sequence of the jth individual
2. Feature Extraction using pre-trained VGG16:
2.1. Initialize the pre-trained VGG16 model.
2.2. Remove the fully connected layers from the VGG16
model.
2.3. For each image lj,t in sequence Sj:
Fj,t=VGG16_Conv(lj,t)
3. Incorporate Temporal Information:
3.1. Apply a Time Distributed layer with flattening to each
feature vector
Fj,t'=Flatten(Fj,t)
4. Learn Temporal Relationships using LSTM:
4.1. Initialize an LSTM layer with U=32 hidden units.
4.2. For each sequence Sj with flattened feature vectors {Fj,1',
Fj,2"...,Fj,T:
Hj=LSTM ([Fj,1’, Fj,2"...,Fj,T"])
5. Classification:
5.1. Initialize a dense layer with ¢ neurons and a SoftMax
activation function. (c:number of classes)
5.2. For each hidden state sequence Hj, classify the sequence:
yj=Softmax (WHj+b)
6. Model Training and Evaluation:
6.1. Compile the model with the loss function categorical
cross-entropy and Adam Optimizer.
6.2. Train the model on the pre-processed and augmented
dataset:
model.fit(sequences, labels, validation_split =0.2, epochs
= num_epochs)
6.3. Evaluate the performance on a validation set:
model.evaluate (validationset)
End Algorithm

Proposed
VGG16
Model
VGG16 VGG16 +
. Labelled
Data  Comparison + + and Labelled
base Factor Original  Labelled Auamen and
Dataset Dataset fe d Augment-
d
Dataset ¢
Dataset
Training
. ; 54 36 110 72
i Time (min)
=
No. of
8 . 424 424 16960 16960
) images
Accuracy 94.30% 95.45% 97.11% 99.76%
Training
. . 35 25 85 56
E Time (min)
2 No. of
I . 220 220 8800 8800
= images
Accuracy 92.50% 96.34% 98.60% 99.89%

Comparison of accuracy for various approaches is shown in
Table 3. For the “SDUMLA” dataset the accuracy of VGG16 on
the initial dataset was 94.30%, which improved to 95.45% with
the labelled dataset. With the labelled and augmented dataset, the
accuracy further increased to 97.11%. The proposed model
achieved 99.76% accuracy with the labelled and augmented
dataset, indicating superior performance. For the THUFV dataset
the accuracy of VGG16 on the original dataset was 92.50%,
improving to 96.34% with the labelled dataset. Using the labelled
and augmented dataset, the accuracy increased to 98.60%. The
proposed motion tolerant model achieved an accuracy of 99.89%
on the labelled and augmented dataset, demonstrating the best
performance among all configurations.

Table 3. Accuracy obtained on SDUMLA and THUFV Database

4. Results and Discussion

Different approaches are adopted to assess the model
performance on the SDUMLA and THUFV databases. The first
approach utilized the VGG16 model with the original dataset.
The second approach involved the VGG16 trained on a labelled
dataset. The third approach uses the labelled and augmented
dataset, to improve model robustness and accuracy. Lastly, the
proposed model was evaluated using the labelled and augmented
dataset to compare its performance against the VGG16
configurations. These approaches assess the impact of labelling,
data augmentation, and model architecture on training time and
accuracy.

Table 2 compares performance metrics across different
configurations of models trained on two datasets, SDUMLA and
THUFV. The results highlight that while augmentation increases
training time, the proposed model effectively utilizes labelled and
augmented datasets to achieve significantly higher accuracy with
reduced training times compared to VGG16, showcasing its
robustness and efficiency in finger vein authentication
applications.

VGG16 Proposed
+ Model
VEGIe  VEGIS | abelled N
Database . and Labelled
Original Labelled Augment and
Dataset Dataset ed Augmented
Dataset Dataset
SDUMLA 94.3% 95.45% 97.11% 99.76%
THUFV 92.5% 96.34% 98.6% 99.89%

Figure 5 shows the accuracy graphs for the proposed model
trained on the THUFV dataset over 40 epochs and the SDUMLA
dataset over 25 epochs. For the THUFV dataset, the model's
accuracy began to stabilize around the 20th epoch, showing a
clear trend towards convergence. By the end of training, the
model achieved a remarkable accuracy of 99.89%. Similarly, on
the SDUMLA dataset, the model's convergence was observed
slightly earlier, starting to stabilize around the 10th epoch.
Despite a shorter training duration of 25 epochs, the model
attained a high accuracy of 99.76%. This underscores the
robustness of the proposed motion tolerant model architecture
and its capability to handle variations in finger vein patterns
across different datasets. This indicates that the model effectively
learned the intricate patterns within the finger vein images from
both the dataset, showing its ability to generalize and make
accurate predictions.
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Fig. 5. The accuracy graph for the proposed motion tolerant model using
labelled and augmented dataset (a) THUFV Dataset (b) SDUMLA
Dataset

Figure 6 shows the plot of Receiver Operating Characteristic
(ROC) plotted at varying threshold settings to evaluate the
model's performance. “Equal Error Rate (EER)” represents the
point where false rejection and acceptance rates are equal,
indicating when positives and negatives are equally likely. “Area
Under the Curve (AUC)” is a measure of how well the model
differentiates between positive and negative classes. The ROC
for the proposed model using labelled and augmented dataset is
depicted in Fig. 6. The EER for SDUMLA and THUFV dataset
are 1.73% and 1.42% respectively. The area under the curve for
SDUMLA and THUFV are 0.993 and 0.991 respectively, which
are close to 1. Both the EER and AUC metrics indicate a highly
effective classification system for both databases.

Table 5. EER and AUC vales for SDUMLA and THUFV Database
Database EER AUC

SDUMLA 1.73% 0.993
THUFV 1.42% 0.991

The proposed model also demonstrates better efficiency in
training time compared to VGG16 under similar conditions
which is detailed in table 4. For the SDUMLA database, training
the VGG16 model on the original dataset took 54 minutes, while

using the labelled dataset reduced this time to 36 minutes.
Training on the labelled and augmented dataset increased the
time to 110 minutes. The proposed model with the labelled and
augmented dataset required 72 minutes. Similarly, for training
original THUFV database on VGG16 took 35 minutes, and on
the labelled dataset, it reduced to 25 minutes. Training on the
labelled and augmented dataset took 85 minutes, while the
proposed model with the labelled and augmented dataset needed
56 minutes. Overall, while augmentation increases training time,
the proposed model offers a balance with improved performance
over the VGG16 with labelled and augmented datasets.

101 f(/_
081
-4
2 08
2
F
&
o 04
-
=
0.24 — THUFV (AUC=0.991)
SDUMLA (AUC=0.993)
# EER THUFY
001 ® EER SOUMLA
0.0 02 04 06 08 10

False Positive Rate

Fig 6. ROC for the proposed motion tolerant model using labelled and
augmented dataset for SDUMLA Dataset and THUFV Dataset

Table 4. Training time (in minutes) on SDUMLA and THUFV Database

VGG16 Proposed
veele VGG + Model +
+ Labelled Labelled
Database .
Original L abelled and and
Dataset Dataset Augmented  Augmented
Dataset Dataset
SDUMLA 54 36 110 72
THUFV 35 25 85 56

5. Conclusion

The study demonstrates that finger vein authentication systems
can significantly benefit from image labelling, data
augmentation, and advanced model architectures to improve
performance and robustness. Evaluations on the SDUMLA and
THUFV databases reveal that while the VGG16 model performs
well on original datasets, its accuracy substantially improves with
labelled datasets and further with labelled and augmented
datasets. The proposed model, incorporating a combination of
VGG16 and LSTM networks, achieves the highest accuracy and
demonstrates superior performance over VGG16 configurations,
achieving 99.76% accuracy on SDUMLA dataset and 99.89%
accuracy on THUFV dataset. Moreover, the proposed model
exhibits better training efficiency, balancing increased training
time due to augmentation with enhanced accuracy and
robustness. The ROC and AUC metrics confirm the high
effectiveness of the proposed system, underscoring its potential
for reliable biometric authentication in real-world applications.
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Overall, the integration of labelling, augmentation, and a motion-
tolerant deep learning architecture represents a significant step in
the development of secure and accurate finger vein
authentication systems.
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