
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1108 

Container Scheduling: A Taxonomy, Open Issues and Future Directions 

for Scheduling of Containerized Microservices in Cloud Environments 

Anil Prajapati1 *, Dr.Manish M Patel2  

Submitted: 03/05/2024    Revised: 16/06/2024     Accepted: 23/06/2024 

Abstract: Containerization offers lightweight virtualization and modern applications are adopting containers because of their scalability, 

portability, and flexible deployment, particularly with microservices. In contrast to monolithic architecture, microservice design is a new 

paradigm that delivers granular and loosely coupled services. With containerization, it is feasible to create a scalable application 

architecture made up of several microservices. For their production environment, companies like Netflix, Google, Microsoft, and others 

have been using cloud environments based on containers. We have presented an extensive review of containerization, and microservice 

architecture in this paper. The study also discusses container orchestration, classification of container scheduling techniques, optimization 

objectives for scheduling of container-based microservices, and a comparison of different container orchestration platforms. Container 

scheduling strategies are widely developed using heuristic and meta-heuristic techniques. Designing a resource efficient scheduling 

technique for containerized microservice is a key challenge due to various factors such as dynamic workload and diverse resource 

requirements. Machine learning has great potential and machine learning-based techniques have been employed for the optimized 

scheduling of containerized microservices in recent years. It is possible to implement an intelligent container scheduling approach to 

forecast performance. Machine learning-based multi-objective container scheduling solutions can be proposed to obtain effective resource 

usage of cloud environment. We mention areas that still need investigation in the field of container scheduling for containerized 

microservices.  

Keywords: Cloud Computing, Containerization, Container scheduling, Microservice, Machine learning 

1. Introduction 

These days, cloud computing is becoming more and more 

popular. Many apps are moving from private infrastructures 

to cloud-based environments to take advantage of its 

features, which include scalability, flexibility, agility, and 

cost-effectiveness. When physical resources of the cloud, 

such as memory, CPU, storage, and network resources, are 

allocated to different cloud-based applications and 

computational resources are used effectively, the cost of 

application deployment and operation is decreased. One of 

the main concerns for cloud service providers is how to 

deploy applications on the cloud at a reasonable cost. 

Resource management, scheduling, and allocation have all 

been extensively researched for the deployment of a variety 

of dynamic applications to address these problems. To 

streamline processes and minimize costs associated with 

developing and deploying cloud-based services, we have 

investigated the multiple architectural paradigms [1]. 

Resource virtualization—or sharing of resources amongst 

applications—is made possible by virtualization 

technologies. Applications on the same system can therefore 

operate in many execution environments. To provide the 

necessary resource isolation, hypervisor-based 

virtualization incurs expense by performing various 

duplicate functionalities to abstract the system resources. 

CPU overhead, memory overhead, network overhead, and 

Disk overhead are the overheads that occur in virtual 

machines [2]. 

Containers are quickly gaining popularity and replacing 

virtual machines in recent years due to their several 

promising characteristics, like shared host operating system, 

quick launch time, scalability, portability, and quick 

deployment. With containers, applications can boost 

productivity and portability by wrapping all required 

dependencies as code, runtime, code, system libraries, and 

system tools, into a single box. This creates a run-time 

environment that is platform-independent [3]. Software 

applications that offer virtualization at the operating system 

level are called containers. Container-based computing 

platforms can be installed, terminated, replicated, recovered 

from, and relocated in milliseconds owing to their 

architecture [4]. 

The paradigm of cloud computing is being revolutionized 

by containerization [3, 4, 5], and in response to the 

increasing demand for these services, numerous cloud 

service providers have begun to offer services based on 

containers. A few instances are Amazon Elastic Container 

Service, Google Container Engine, and Azure Container 

Services. Modern applications must communicate in real-

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1Research Scholar (209999913024), Gujarat Technological University, 

Gujarat, India 

ORCID ID :  0009-0002-6314-4987 
2 Professor, Department of Information Technology, Sankalchand Patel 

College of Engineering, Visnagar, Gujarat, India 

* Corresponding Author Email: anil.apit18@gmail.com, 

it43manish@gmail.com 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1109 

time, get regular updates, and deal with fluctuating traffic 

patterns.  

A new paradigm for developing applications for cloud 

computing is microservices. It separates an application into 

a collection of fine-grained, loosely connected services. It is 

a deployable and independently scalable application 

component. The traditional "monolithic" approach for 

developing applications, where every application is a stand-

alone, independent component, is contrasted with the 

microservice-based method. For example, in client-server 

applications, the server is a single unit that executes logic, 

gets and/or changes data, and responds to HTTP requests. 

Therefore, the challenge with these monolithic architectures 

is that every time the logic of the application changes, an 

updated version of the whole code base must be deployed. 

Because each microservice only handles a single subtask or 

service, there is less overhead in communication and less 

computing power needed.  

Numerous major corporations, such as Netflix, Amazon, 

IBM, Uber, Alibaba, and others, have moved their apps to 

this development framework because of microservices [6]. 

These days, cloud-based applications are frequently 

developed using the microservice architecture, which is 

growing in popularity in application design and 

development [7]. Microservices can be deployed and 

encapsulated in a cloud environment using containers, a 

lightweight virtualization technology. Certain scheduling 

techniques for containers have been suggested as a result of 

the advancements in container technology and the growing 

popularity of microservice architecture. Nonetheless, there 

are still a few significant issues with scheduling of 

containerized microservice in cloud environments that need 

to be resolved. 

The growing popularity of microservice architecture and 

container architecture for cloud computing offers the chance 

to enhance the elasticity and scalability of application 

development. Compared to virtual machines, containers 

offer more portability, faster deployment, and reduced 

utilization of resources. As a result, it's a great tool for 

scheduling, encapsulating, and deploying microservices. At 

present, Google Kubernetes, Apache Mesos, and Docker 

Swarm are the most popular container cluster management 

tools [8, 9, 10]. 

To the diverse workloads and resources available on the 

cloud, container scheduling has become essential for the 

cost-effective operation of microservices on the cloud 

platform. Researchers have proposed various container 

scheduling approaches to accomplish different performance 

objectives, including response time, energy consumption, 

resource utilization, and availability, load balancing, and 

cost. There was some investigation into the practical 

deployment of microservice-based applications using 

containers. In a cloud system based on containers, we 

investigated container scheduling for microservice 

deployment. One researcher has developed approaches to 

figuring out how much resources to allocate to each 

microservice and how to scale effectively when workload 

varies.  

In addition to meeting the cloud cluster's load requirements, 

an efficient container resource allocation strategy 

guarantees the cluster's reliability and efficiency. Additional 

study is necessary to investigate the performance of 

microservice applications, cloud cluster reliability, and 

network transmission overhead between microservices, all 

of which can be enhanced [7]. 

The remainder of the paper has been arranged in this 

manner. A brief history of containerization, container 

architecture, and microservices architecture is given in the 

second section. The third section presents a comparison of 

several container orchestration technologies, classifies 

container scheduling strategies, and explains the 

optimization objectives used to schedule microservices 

based on containers. The scheduling of containerized 

microservices is discussed in the fourth section along with 

the relevant container scheduling work for microservices. In 

the fifth section, the significance of machine learning is 

discussed, along with an in-depth investigation of the 

techniques based on machine learning that are employed in 

container scheduling. Additionally, it shows how well 

machine learning techniques perform in different 

optimization objectives and the scheduling container 

technology. The sixth section presents research and the 

future. The future and research directions in the field of 

containerized microservices scheduling are presented in the 

sixth section. The seventh section brings survey to its 

conclusion. 

2. Background 

Significant background information on container 

architecture, microservices architecture, and container 

engines is presented in this section. We have also showcased 

the associated research that compares the performance of 

virtual machines and containers made with Docker. 

2.1 Containerization  

High service downtime occurs while an application is being 

upgraded on a virtual machine. On the other hand, due to 

their faster startup times and improved performance, 

containers are promising lightweight virtualization 

technology for cloud-based services, particularly when it 

comes to microservices, edge computing, smart cars, and the 

Internet of Things [10]. The architectural approaches for 

virtual machines and container technologies are distinct, as 

seen in Figure 1. Considering the container architecture, a 

container engine represents the top layer of the stack's 

resource management system. It is situated directly on top 

of the host operating system, whereas the comparable layer 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1110 

in the virtual machine architecture is called the hypervisor. 

The fact that a guest operating system is not needed for 

running containers is a fascinating characteristic of the 

container-based design. Compared to virtual machines, it 

offers portability, efficiency, and less overhead because the 

hypervisor layer is removed [11]. 

 

Fig 1. Hosting Approach: Virtual Machines and Containers 

Furthermore, the authors in [11][12] found that in terms of 

total throughput, services deployed using containers 

perform far better than virtual machines. Virtual machine 

deployment of real-time applications was also found to have 

a significant performance overhead, as shown by the CPU 

utilization and memory consumption. Moreover, Docker 

containers are allegedly launched on top of Amazon EC2 

virtual machines by Amazon Cloud, which goes against the 

standard procedure for application deployment shown in 

Figure 1. The container deployment strategy used by 

Amazon Cloud Platform is depicted in Figure 2. 

 

Fig 2. Container hosting approach in Public Cloud 

Developers use container technologies extensively for 

deploying various microservices. Despite containers' 

enormous popularity in cloud computing, no comprehensive 

study is present that addresses scheduling approaches for 

containers from the perspective of containerized 

microservices [12,13]. When it comes to application 

deployment, developers who build and deploy application 

containers must make the most of the infrastructure's 

performance. The demand for various types of container 

scheduling algorithms for the deployment of containerized 

microservices is driven by this resistance to cloud providers. 

2.2. Container Engine Architecture 

Software developers build and distribute container images, 

which are files that include the data needed to run a 

containerized application. Containerization tools are used 

by developers to create read-only, non-modifiable images in 

containers. On top of any infrastructure, users can create 

containers with the use of containerization tools. The most 

widely used container solution available right now is called 

Docker, and here it is used to illustrate the concept of 

containerization.  

Docker is an open-source platform that makes it simpler to 

build, deploy, and run services that use containers. Users 

can deploy applications more quickly by separating the 

applications from the infrastructure through the use of 

Docker containers. Docker Swarm, Docker Compose, 

Docker Images, Docker Daemon, and Docker Engine are 

major components of Docker. We may manage this 

infrastructure in the same manner that we would an 

application. The Docker container engine's architecture is 

depicted in Figure 3. 

 

Fig 3.  Architecture of Container Engine [14] 

The component of Docker that creates and manages Docker 

containers is the Docker engine. The container is an instance 

of a Docker image that is currently running. A Docker image 

is a read-only template which contains the instructions on 

how to build a Docker container. The Docker daemon serves 

as a process that is used to manage and control the 

containers. The primary service that Docker users use to 

interact with Docker containers is the Docker client. Every 

Docker image is stored in a Docker registry. The Docker 

CLI (Command Line Interface) enables us to start, stop, or 

remove containers [14]. 

2.3. Microservice Architecture 

A new paradigm for developing cloud applications is 

microservices. An application is divided into several fine-

grained, loosely coupled services using microservice 

architecture. A microservice is a deployable, independently 

scaled application component. The traditional "monolithic" 

approach to application development, in which each 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1111 

application is a single autonomous unit, is compared with 

the microservice-based approach. Many organizations, 

including Uber, Netflix, and Amazon, are switching from 

traditional monolithic architecture to microservice 

architecture because of their high scalability requirements 

and massive user counts. A comparison of the microservice 

and monolithic architectures is shown in Figure 4. 

Monolithic applications are scaled by replicating them on 

multiple servers, while microservices are scaled by 

distributing across cloud servers and replicating them as and 

when required.  

 

Fig 4. Monolithic and Microservice architecture 

Compared to monolithic architectural approaches, 

microservices are independent components of an 

application that are small and easy to work with. The 

flexibility to adapt and be implemented on their own is 

referred to as the services' autonomy. Microservices can 

independently create, deploy, test, and operate; they are 

typically run by separate developer teams and structured 

around business logic. Moreover, microservices may utilize 

many technologies and be developed using different 

programming languages. Microservices are deployable and 

scalable using container-based virtualization [16]. The 

deployment of a microservice instance in a cloud container 

is depicted in Figure 5. 

A newly created microservice should be able to register 

itself by saving its runtime configurations and updating the 

deployment information so that it can communicate with 

other microservices in the same application. Microservices 

will have their development framework and each will be 

developed independently. To create microservice binaries, 

the deployment server retrieves the source code from the 

repository, compiles, and tests the microservice code. The 

deployment server generates a container image with these 

binaries, which is then kept in the repository of containers. 

These container images are deployed to the deployment 

server after they are created. The developed microservice 

would be deployed in one or more containers. 

 

 

Fig 5. Deployment of Microservice in container [16] 

A newly created microservice should be able to register 

itself by saving its runtime configurations and updating the 

deployment information so that it can communicate with 

other microservices in the same application. Microservices 

will have their development framework and each will be 

developed independently. To create microservice binaries, 

the deployment server retrieves the source code from the 

repository, compiles, and tests the microservice code. The 

deployment server generates a container image with these 

binaries, which is then kept in the repository of containers. 

These container images are deployed to the deployment 

server after they are created. The developed microservice 

would be deployed in one or more containers. 

3. Container Scheduling for Microservices 

Emerging requirements for container scheduling are 

imposed by the container-based infrastructure to guarantee 

the performance of deployed microservice-based 

containerized applications. The underlying physical 

machine or cloud cluster must provide the resources that a 

container requests, which are frequently a combination of 

several resources like CPU, memory, network, etc. Since 

there are frequent updates and data transfers, containers 

inside a distributed application frequently have a strong 

affinity for one another. Thus, affinity needs to be 

considered when planning container schedules. During the 

execution of the application, the scheduling algorithms are 

routinely called upon, especially when scaling out or 

recovering from failure, which typically involves crucial 

time constraints. As a result, the scheduling overhead ought 

to be minimal [17,4]. 

3.1 Container Scheduling Classification   

Numerous research papers on container scheduling have 

been reviewed by us. It was discovered that the four kinds 

of container scheduling approaches under investigation each 

had different performance and quality characteristics. The 

majority of the suggested approaches fall into Mathematical 

modeling-based techniques, Heuristics based techniques, 

Meta-heuristics-based technique, and Machine learning-



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1112 

based techniques.  

Mathematical modeling offers the optimization of a linear 

function using a set of linear constraints, the technique is 

called integer linear programming. From the perspective of 

container scheduling, it does not offer optimum solutions 

promptly. Many researchers have proposed linear 

programming models for container deployment considering 

various optimization objectives to obtain optimum container 

scheduling and showed efficient results as well. It has been 

observed that mathematical modeling is suitable to the 

problem in small size.  

After a detailed survey it is found that compared to 

mathematical modeling, the heuristic techniques are 

preferable in container scheduling. Most of the approaches 

investigated in recent years use some kind of heuristic to 

find the optimum container scheduling. In the majority of 

situations, heuristic algorithms are simple to use and offer 

effective scheduling in a small amount of time. Most of 

these approaches combine current container scheduling 

techniques and apply them in Kubernetes and Docker 

Swarm. [3] Summarized the heuristic techniques employed 

in container scheduling. A researcher has showed a scheme 

for efficient resource utilization. Container scheduling 

framework for the Docker environment also proposed best-

fit scheduling that offers dynamic monitoring and showed a 

23% energy-efficient solution as compared to Docker 

Swarm. A multi-objective approach that combines all three 

(Spread,Binpack,Random) of  Docker Swarm to provide 

efficient container scheduling is proposed with 

considerations of memory utilization, network delay, CPU 

utilization, and interaction between cluster nodes and 

containers. The approach showed efficient performance. 

After the survey, it is observed that heuristic techniques 

generally offer quick optimization, furthermore, they can be 

integrated with other optimization approaches for enhanced 

container scheduling. 

Meta-heuristic approaches are promising in getting the 

optimum solution in a variety of sectors nowadays. Ideally, 

these approaches are adaptive to the environment and they 

can be based on Genetic algorithms, Ant Colony 

Optimization, and Particle Swarm Optimization. [3] 

Summarizes meta-heuristic approaches used in container 

scheduling. Kaewsaki(2017) presented ACO(Ant colony 

optimization) based approach presented to improve resource 

usage and load balancing. The strategy was experimented 

on Docker Swarm and showed 15% enhanced performance. 

From the perspective of the microservice, Lin(2019) 

presented a multi-objective ACO scheduling technique that 

is used to optimize network transmission overhead, failure 

rate, and resource utilization of containerized microservices. 

Results showed enhanced resource usage and reliability. 

Genetic algorithms and Particle Swarm Optimization-based 

container scheduling techniques have also been proposed in 

recent years. Li(2018) proposed a PSO-based technique to 

improve load balancing and resource usage. Results showed 

enhanced performance by 20% compared to the spread 

technique of Docker Swarm.  

After an extended literature survey, it is observed that 

researchers have proposed hybrid scheduling techniques for 

container scheduling in which ACO and PSO are combined 

to offer efficient scheduling mechanisms. Furthermore, it is 

found that meta-heuristic approaches are more suitable for 

multi-objective optimization. The field of machine learning 

has been an emerging field of study that has shown 

tremendous potential in numerous applications across 

various fields and it holds great potential for container 

scheduling. Particularly when it comes to scheduling the 

containerized microservice, machine learning approaches 

are thoroughly investigated. We have investigated the 

machine learning algorithms employed for the scheduling of 

the containerized microservices and discussed in Section-5 

of the paper. 

3.2. Performance Objectives for Container Scheduling 

According to particular user requirements, the scheduling 

decisions typically need to accomplish several performance 

objectives. When deploying applications in containers, 

striking a balance between competing optimization 

objectives is still a major challenge. The objectives 

mentioned below are thought to be the most typical ones for 

scheduling cloud containers [3,4]. 

Energy efficiency: The huge amount of electricity used by 

cloud environments has become a major concern in the area 

of cloud computing due to the constantly expanding scale of 

cloud data centers. When deploying containers on nodes that 

are working, the amount of power used is referred to as 

energy consumption. The objective seeks to reduce the 

cluster's overall power consumption.  

Cost: The total cost of running an application is determined 

by the price of several services, including computing, 

storage, and communication. The amount of time needed to 

run an application on the cloud cluster's available cores is 

referred to as the computation cost. The more time an 

application runs on a processor, the more costly it becomes.  

Availability: It specifies how long a user has access to an 

application. Availability is a key component of cloud 

computing, where users should always be able to access a 

service or application. The objective is to ensure that the 

schedule that is generated offers some kind of fault tolerance 

for the different services that the application provides, 

requiring redundancy in the number of containers that are 

deployed in the cloud. 

Resource Utilization: It is the effectiveness with which a 

worker node uses its memory, core, and network bandwidth. 

To achieve this goal, a cluster node's energy efficiency and 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1113 

cost-effectiveness increase with its resource utilization. For 

energy and cost efficiency, infrastructure-level resource 

utilization measures like CPU and memory usage are 

typically regarded as vital application performance 

indicators. 

Load Balancing: The task of dividing up the workload 

among available resources equally so that no one node 

becomes overloaded is known as load balancing. 

Throughput, cost, and response time are all impacted by this 

objective. This measure is  

critical, particularly for container applications that take 

advantage of microservice architectures.  

Scalability: The scalability of containers to maintain the 

required service even in the face of growing system demand 

for the application or service is another important parameter. 

Latency: The duration needed for an application to run from 

start to finish is known as latency. Reducing latency is 

always the objective of a good scheduler. Cost and 

throughput are greatly impacted by this objective. 

Security: An ability to protect data and services from 

malicious attacks or software bugs by encryption and access 

control methods. Orchestration tools must be able to offer 

essential security.  

Network Bandwidth: The number of bits transferred in one 

second on the network is referred as network bandwidth. It 

would assist in assessing network delays and handling 

congestion that occurred during the communication of 

containers. 

Carbon Emission: It is the volume of Carbon Dioxide that 

is emitted into the atmosphere as a result of using electric 

power that is specifically created when fossil fuels are 

burned. 

SLA assurance: The majority of containerized applications 

are set up with precise performance parameters, including 

throughput, launch time, completion time, and response 

times. The majority of these constraints are outlined in SLA 

contracts, and breaking them may result in a penalty. 

3.3. Container Orchestration 

The containers are widely employed by organizations to 

deploy modern applications such as IoT and Big data in 

cloud data centres. As a result, container orchestration has 

emerged. Container orchestration facilitates defining, 

selecting, deploying, monitoring, and dynamically control 

the configuration of containerized services in the cloud. The 

container orchestrator performs the scheduling of 

containers, selecting the optimal node and ensuring the 

container is running in the desired state. Container 

orchestration system enables organizations to streamline 

application development by deploying the same application 

without having to rebuild it in a cloud computing 

environment. 

The deployment of containerized microservices, cost, and 

performance are all significantly impacted by the intricate 

container scheduling problem. Applications are not just 

moved between servers and turned on and off with container 

orchestration. When a multi-container application is 

deployed, users can specify how to manage the cloud's 

containers through the use of container orchestration. 

Container orchestration describes the way multiple 

containers are managed as a single unit in addition to how 

they are initially deployed [18]. The section discusses 

taxonomy of container orchestration and analyses the 

orchestration systems in the context of the scheduling of the 

containerized applications. [19] Analyses the existing 

container orchestration systems concerning container 

technology used, the application model it follows, 

placement constraints, and resource granularity. 

Orchestration systems for the system objectives such as 

scalability, availability, throughput, and resource utilization 

are also investigated. The result of the investigation is 

summarized in Table 1. 

Container orchestration tools available today are as follows.  

Docker Swarm 

The built-in scheduling and clustering mechanism for 

Docker containers is called Docker Swarm which 

orchestrates the application or service running in a Docker 

container. Applications are treated as services; they might 

be decomposed in microservices and may be deployed in 

one or more containers. The Swarm manager is used for 

controlling the entire life cycle of applications containerized 

in Docker containers. It supports three scheduling 

techniques by default: First, there is the Spread approach, 

which chooses the newly deployed containers for operation 

on the least loaded hosts; second, there is the BinPack 

strategy, which chooses the most loaded host with sufficient 

resources to run the containers. In addition to this, the third 

is the Random method, which chooses the node at random. 

Kubernetes 

An open-source container orchestrator called Kubernetes 

was first created by Google that facilitate the automated 

deployment and scaling of containerized applications. The 

pod is a group of containers and the basic building block of 

the Kubernetes orchestration framework. Kubernetes 

scheduler provides schedules for each pod based on 

available resources, filtered by user-specified requirements, 

and ranked according to application affinities that are 

individually defined. The Kubernetes cluster contains 

Master and Worker nodes, where the master node is the 

fundamental component and the worker nodes perform 

services to run pods. 

Mesos 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1114 

Two steps are available for scheduling with Apache Mesos. 

It allocates the physical node's resources to each application 

in order  

during the first stage, which is referred to as the framework. 

After accepting the offer, the framework can use its built-in 

framework scheduler to plan its tasks on the obtained 

resources. Mesos does not offer service discovery. Hence, 

Kubernetes or Swarm is integrated to address this lack. 

Orchestration frameworks Aurora and Marathon depend on 

Mesos to manage the cluster resources of the container 

cluster.  

Aurora is developed by Twitter, a scheduler that runs on 

top of Mesos and enables long-running services to be 

deployed on the container. 

is a framework for Mesos that is developed for the 

orchestration Marathon of long-running services. It offers 

fault tolerance and high availability; it ensures that deployed 

applications will continue running even in the situation of 

node failures. 

YARN is designed for orchestration of Hadoop tasks, it also 

supports frameworks like Giraph, Spark, and Storm. Each 

application framework running on top of YARN coordinates 

its execution flows and optimizations as it sees fit.  

Omega is Google's next-generation cluster management 

Table 1 . Taxonomy of Container orchestration tools 

Orchestrator Swarm Kubernetes 

Apache 

Mesos Aurora Marathon YARN Omega Fuxi 

Organization Docker Google UC Berkeley Twitter Mesosphere Apache Google Alibaba 

Open Source ✓ ✓ ✓ ✓ ✓ ✓ - - 

Technology 

of container Docker Docker 

Mesos 

containers, 

Dokcer 

Apache 

Mesos, 

Docker 

Mesos 

containers, 

Docker 

Linux 

cgroups-

based, 

Docker N/S 

Linux 

cgroups-

based 

Pre-emption - - - ✓ - - ✓ - 

Rescheduling - - - ✓ - - ✓ - 

Scheduling 

constraints 

Label 

and 

affinity-

based 

Label and 

affinity-

based N/A 

Value and 

limit-based 

Value and 

limit-based 

Value and 

limit-based N/S 

Value 

based 

Scalability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

High 

Availability ✓ - - - - - ✓ ✓ 

High 

Utilization ✓ - - - - - ✓ ✓ 

High 

Throughput ✓ - - - - - ✓ ✓ 

Resource 

granularity 

Fine-

grained 

Fine-

grained Fine-grained 

Fine-

grained Fine-grained 

coarse-

grained 

Fine-

grained 

Fine-

grained 

Application 

workload 

Long 

running 

tasks All All 

Long 

running 

tasks 

Long 

running 

tasks Batch tasks All 

Batch 

tasks 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1115 

system  

that offers a platform that enables specialized and 

customized schedulers to be developed, providing users 

with great flexibility. 

Fuxi is a resource management and scheduling system that 

supports Alibaba's proprietary data platform. It is the 

resource management module on their Aspara system, 

which is responsible for managing the physical resources of 

Linux clusters within a datacenter [20]. 

 

4. Container Scheduling for Microservices 

In addition to fulfilling user service needs, efficient 

container scheduling minimizes running overhead and 

guarantees the performance of the application and the cloud 

environment underneath it [9,20]. We have reviewed the 

open issues within the scheduling of containerized 

microservices and presented herein this paper, different 

scheduling methods employed for the containerized 

microservices are investigated and discussed in this section. 

 

4.1. Issues in Scheduling of Microservices 

The number of independently running microservices must 

fulfil the necessary function, handling thousands of requests 

for access and ensuring high availability, scalability, and 

tolerance over network failures [21]. The services that 

comprise the application must communicate with one 

another constantly to use the microservices architecture. In 

order to complete the task, each service must simultaneously 

use the interface for interaction between its services. The 

communication between microservices is extremely 

difficult because an enormous number of microservices 

instances run on a large number of containers, and the 

placement of microservices instances is also constantly 

changing High complexity and dynamicity pose many 

challenges for handling microservices.For managing 

microservices networked together such as 2-tier or 3-tier 

web applications and Internet of Things (IoT) based 

applications, we have yet to discover a conventional large-

scale, optimized scheduling platform. Following a thorough 

survey, we discovered the following issues with 

microservices scheduling [22]. 

Configuration and Management 

Typically, a cloud application integrates several 

interdependent microservices, such as a web server, 

database server, and load balancer, to provide a variety of 

functionality. These microservices also have interference 

and dataflow dependencies. Dealing with different 

microservice configurations and cloud data center resources 

operated by diverse performance needs presents some 

issues. 

Application Composition 

The workloads associated with various microservices are 

interdependent, meaning that modifications to one 

microservice dataflow and execution will have an impact on 

others. All things considered, the application composition 

must address the entire life cycle, including deploy, patch, 

monitor, reconfigure, and shutdown, all of which are 

influenced by each of the microservices' objectives for 

performance. 

Monitoring of microservice 

A clear and updated understanding of objectives for 

performance across microservices and data center resources 

is necessary for optimal application performance. Measures 

of performance include, for instance, throughput and latency 

for storage resources, utilization and throughput for CPU 

resources, and query response time for microservices based 

on NoSQL and SQL databases. Thus, there is still work that 

needs to be done to define and construct performance 

objectives across microservices in a coherent manner that 

provides a comprehensive perspective of data and control 

flows. 

Elastic Scheduling and runtime Adaptation 

Microservice scheduling is challenging due to several 

runtime uncertainties. Microservice workload behavior, 

including request arrival rate, type, and processing time, as 

well as Input/output system behavior and the number of 

users connecting to different microservice types and 

mixtures, is difficult to estimate. Developing workload 

models specifically for microservices presents a significant 

challenge: accurately determining and fitting statistical 

functions for observed distributions, including those 

pertaining to request arrival patterns, CPU and memory 

utilization patterns, I/O system behaviors, request 

processing time distributions, and network usage patterns. 

Manually solving the issue wouldn't be possible.   

Microservice Interference 

If several microservices are deployed in a single container, 

there may be resource conflict and interference because 

various microservices may have similar resource 

requirements. To minimize interference and make the best 

use of available resources, it's essential to understand how 

microservices running in tandem fluctuate in terms of 

performance. 

Service Discovery 

During the running time of microservices, discovering the 

proper microservice needs the orchestration which needs to 

be aligned with the essential quality of the service. An 

essential quality parameter is the latency of the discovered 

and triggered microservice. 

Performance isolation  



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1116 

In a containerized system, a single container can handle 

several heterogeneous microservices that offer different 

application-specific functionalities. Unexpected conflict 

and interference are possible in this scenario. Certain 

microservices have more storage requirements than others, 

some have more computational requirements than others 

(such as transactional query processing by database 

servers), and some have more communication requirements 

than storage requirements.  

Communication and integration  

These issues have arisen because of the distributed 

architecture of the microservices. It is challenging to ensure 

that the communication system is dependable and that the 

protocol to be used for communication and integration can 

manage challenging processes, even when microservices 

communicate with a more lightweight protocol. Reliability 

and durability are the two most crucial requirements for both 

problems; if these are not satisfied, the system's capacity to 

function properly and reliably will be impacted, perhaps 

leading to cascading failures. 

4.2 Approaches for scheduling of containerised 

microservices  

The deployment of containerized microservices poses some 

challenges, most of which are related to planning and 

deployment configuration in the container. The 

heterogeneous requirements of microservices demand an 

optimal container scheduling mechanism to meet these 

requirements. The microservices need to be monitored and 

automatically adjusted resources according to varying loads 

for the predictability and availability of the application. 

These requirements bring a lot of challenges for the 

scheduling. The chain of services must be arranged and 

managed, and the available resources must be scheduled for 

efficient utilization. The system's dependability and 

availability are directly impacted by ineffective scheduling. 

Additionally, container scheduling for microservices 

frequently needs to be reviewed for effective analysis and, 

further improvement. In this section, we have presented the 

studies and work related to the scheduling of microservices. 

[MIAO LIN, 9] presented a model to enhance the 

microservice-based container resource allocation approach. 

This model includes reducing overhead of network 

transmission between microservices, load, and enhancing 

the cluster services' reliability. The researcher used the 

average number of microservice request failures, the 

maximum value of the resource utilization rate, and the 

network transmission overhead between microservices to 

achieve this. This was implemented using an Ant colony 

optimization (ACO_MCMS) and it was presented to address 

the issue of containerized microservices in the cloud 

platform. It is compared with the current container 

scheduling policies for an average number of microservice 

request failures and computing resource utilization. The 

result shows enhanced performance.  

For microservices in clouds, [Sheng Wang, 23] suggested 

and developed a task scheduling algorithm of microservices 

as a cost optimization. Based on the workload statistics, the 

proposed strategy selects the container and adapts to the 

streaming load based on the statistics of the workload. The 

strategy was tested in simulation-based environment and 

results show reduced the cost in comparison with existing 

scheduling mechanisms. 

A microservices scheduling method called LWFF presented 

by [H M Fard, 24] in which the scheduling problem is 

characterized as an advanced version of the knapsack 

problem and solved using a multi-objective optimization 

technique, Findings indicate that, in comparison to the state-

of-the-art, the suggested mechanism is extremely scalable 

and concurrently boosts CPU and memory usage, which 

improves throughput. The suggested container scheduling 

technique outperforms the Spread and Binpack scheduling 

strategies in terms of throughput. 

A novel Microservice-based container framework proposed 

by [XUEHUA ZHAO, 25] for running mobility and delay-

sensitive applications at the lowest possible cost. The 

findings demonstrate that the suggested approaches can 

decrease costs, improve utilization of resources, and 

minimize service delay. 

Using the TOPSIS algorithm, [Tarek, 26] presented a novel 

scheduling approach that combines the principles of Bin-

Packing and the Spread techniques. The suggested approach 

aimed to identify, from a group of nodes that comprise a 

cloud infrastructure, the node with the best balance between 

three factors: (i) the total number of containers on the node; 

(ii) the total number of CPUs available; and (iii) the total 

amount of RAM accessible. The proposed scheduling 

mechanism is experimented with in Docker Swarm and 

compared with Spread, Binpack, and Random strategies. 

The result shows improved performance under various 

scenarios. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1117 

The first Ant Colony Optimization technique for container 

scheduling was introduced by [Kaewkasi, 3] to improve the 

utilization of resources through appropriate load balancing. 

Docker Swarm was used to integrate and test the proposed 

strategy. The outcomes demonstrated a 15% improvement 

in performance as compared to the Swarm Greedy 

technique. Nevertheless, the strategy only took into account 

a small number of optimization objectives, like load 

balancing and utilization of resources. 

[Mehmet,27] focuses on the challenges of scheduling and 

auto-scaling of containerized microservices. The authors 

claimed that existing scheduling mechanisms underperform 

with streaming workloads and in architecture consisting of 

virtual machines and containers. Thus, to overcome these 

challenges, researchers proposed an elastic scheduling 

mechanism that handles task scheduling and auto-scaling, 

which is based on a variable-sized bin packing problem 

(VSBPP). The proposed mechanism improves the success 

ratio and cost.  

C.T Joseph (2021) proposed a microservice rescheduling 

framework to address performance degradation and 

response time challenges. The author says, to define the 

quality of any microservice, response time is an important 

measure. The author claimed that the effect of configuration 

parameters of containerized microservices has not been 

handled well by the researchers. 

5. Machine Learning in scheduling of microservice 

based containers  

Automation of the container orchestration process for 

complex and heterogeneous workloads under cloud 

computing systems is very uncertain today. In the studies, 

we found that machine learning has already been employed 

in virtual machine orchestration. Current container 

scheduling mechanisms are typically designed with 

heuristic scheduling policies that do not take into account 

the variety of workload situations and QoS needs of an 

application. The majority of these techniques are used for 

small-scale systems that are configured offline based on 

specific workload scenarios. Such scheduling techniques 

cannot handle highly dynamic workloads where 

applications need to be scaled at runtime according to 

specific behavior patterns. When the system scales up, 

heuristic techniques may perform significantly worse. When 

resource provisioning, dependency structures between 

components of containerized systems are not taken into 

consideration. Within an application, several microservice 

units contain internal relationships and depend on one 

another. Microservice architecture suffers as a consequence 

of increased resource requirements and communication 

expenses. 

The majority of the attention of current container 

orchestration approaches is on evaluating infrastructure-

level metrics; application-level metrics and particular QoS 

(Quality of Service) needs are not given enough weight. The 

increasing complexity of managing applications on cloud 

platforms has compelled cloud service providers to use 

machine-learning approaches to optimize their container 

Table 2. Machine learning-based models used for scheduling containerized microservices 

 

Problem in scheduling of containerized 

applications 

Machine Learning 

 based solution 

Advantage/ Limitations 

How can the interdependencies between 

micro services be analyzed? 

 BO, GP, CNN, and  

  LSTM 

Increased accuracy of predictions/ 

Ignorance of updates regarding 

dependencies 

How can task dependencies in 

containerized applications be analyzed? 

  SVM Increased Accuracy/ The time overhead 

and computational expenses are explained 

implicitly 

How can resource scheduling for containers 

be made energy-efficient? 

MDP, Q-learning, and 

SARSA 

Cost saving, Minimizing task execution 

time/ Limited scalability 

When migrating micro services to cloud 

containers, how can the communication 

delay be minimized? 

DNN, Q-learning Minimizing task execution time/Limited 

scalability 

How can workloads be characterized by 

forecasting and modeling the behavior of 

requests and the pattern of resource 

consumption? 

ARIMA, Bi-LSTM, 

LSTM, K-means++,GRU, 

TSNNR 

Optimized Resource utilization/ 

Scheduling delays 

   



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1118 

orchestration strategies [28]. Therefore, machine learning 

techniques could be used to model and forecast metrics at 

the infrastructure or application level, including workload 

characteristics, system resource consumption, and 

application performance. However, machine learning 

algorithms, which offer better accuracy and less time 

overhead in large-scale systems, could generate resource 

management decisions directly in place of  

heuristic techniques. We investigated the research work 

where  

 

machine learning algorithms are utilized in container 

scheduling.  

In past years, machine learning has gained immense 

popularity and is widely employed in many research areas. 

According to their optimization objectives, we found that 

the most often used machine learning models in the 

container scheduling area are Regression, Classification and 

Decision-making. The overall performance of the 

application and resource efficiency are directly impacted by 

the quality of scheduling selections. Following our survey, 

it was found that a few researchers used machine learning-

based models in the last few years, particularly for 

scheduling of containerized applications.  

[3] Reported the work related to machine learning-based 

container scheduling. Resource optimization is very 

challenging in diverse workload scenarios. To boot resource 

usage, Nanda(2018) proposed a reinforcement learning-

based approach for container consolidation. The proposed 

technique showed enhanced results compared SJF and 

random scheduling techniques. Lv(2019) presented a 

random forest regression model for the prediction of the 

need of containers. The model accurately predicted the 

future resource needs. Liu(2020) proposed a model to 

predict the physical machine-level resource usage are 

considered to improve energy efficiency and Service Level 

Agreement of datacenters. The proposed model was tested 

in ContainerCloudSim and showed reduced energy 

consumption.   

[28] Shows an evaluation of machine learning-based 

container scheduling technologies. In 2016, K-nearest 

neighbor was employed to estimate the resource 

consumption of containerized applications. However, the 

application model only considered the time series pattern of 

infrastructure-level resource metrics. In Shah(2017)  long 

short-term memory (LSTM) model was applied to 

microservices dependency analysis, based on neural 

networks and fitted for classification, processing, and 

forecasting. The approach assessed the time series pattern of 

resource metrics as   

Table 3. Container scheduling techniques and optimization objectives have been used by the researchers 

 

Objectives ML 

approach 

used 

Container 

Technology 

used 

Limitations 

Energy Availability Utilization Load 

Balancin

g 

Cost Network 

  ✓ ✓   ACO Docker Require parameter 

tuning 

 ✓ ✓ ✓  ✓ First multi-

objective 

GA 

Kubernetes No energy 

reduction 

✓ ✓ ✓ ✓   GA Docker Slow 

  ✓ ✓   Random 

Forest 

Kubernetes Only predict the 

resources and lack 

of testing in real 

time 

✓  ✓ ✓   K-means Docker Few optimization 

objectives are used 

✓      NN based 

model 

Docker Performance is not 

considered 

✓  ✓    Linear 

Regression 

Cloudsim Cost is not taken in 

consideration 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1119 

 

well as the internal relationships among microservices. 

Tang(2018) presented a  model for performance analysis of 

important resource metrics which was carried out using the 

bidirectional LSTM (Bi-LSTM) model. This model was 

employed to forecast application throughput and workload 

arrival rates. Comparing their training module to ARIMA 

and LSTM models, it has shown a notable gain in accuracy 

in terms of time series prediction. Podolskiy(2019) used 

Lasso regression (LASSO) to forecast the service level 

indicators (SLI) for the predictions of application response 

time and throughput. The ANN model was trained using the 

reinforcement learning technique, which provided the best 

scheduling mechanism with the least amount of 

performance interference.  

In 2020, many Reinforcements Learning based approaches 

were suggested. Qiu (2020), employed a model for 

microservice dependency analysis and identification of the 

essential components most likely to encounter resource 

shortages and performance degradations. This model was 

implemented using SVM. Zhang (2021), proposed a model 

combination of Convolutional neural networks (CNNs) and 

boosted trees (BT) to analyze the dependability and 

performance of microservices, with promising results. 

Table 2 displays findings following our thorough analysis 

of the machine learning-based container scheduling model. 

It demonstrates how different machine learning-based 

scheduling techniques have been designed for containerized 

microservices. A summary of meta-heuristics and machine 

learning-based container scheduling techniques 

summarized with the optimization objectives have been 

used by the researcher and shown in Table 3.  Analysis has 

shown that approaches based on machine learning and meta-

heuristics are better suited for multi-objective optimization. 

To summarize, the majority of research studies use 

reinforcement learning models for scheduling decision-

making to improve utilization of resources and reduce task 

completion time. 

6. Discussion and Future Research Directions  

Applications like the Internet of Things (IoT), 

microservices, smart infrastructure, and containers are 

growing at a rapid pace and are widely used in cloud 

computing environments. Containerization is a lightweight 

virtualization solution that facilitates microservice 

application encapsulation, scheduling, and deployment. For 

this reason, a lot of cloud service providers have integrated 

container technologies into their infrastructure to automate 

applications. Container scheduling is proposed as a key 

research challenge to address the automation of deployment, 

scheduling, auto-scaling, and networking of containerized 

applications. Applications that are highly diverse and 

dynamic, significantly increase the complexity of container 

scheduling. 

Conventional scheduling and optimization techniques are 

insufficient for scheduling containerized applications, 

according to an analysis of different container scheduling 

methods. All of the important objectives for performance 

cannot be achieved by a single algorithm. Therefore, there 

are still several issues that need to be resolved as important 

areas for future research in the field of scheduling the 

deployment of containerized applications in cloud 

environments. With the rise of the fog computing paradigm, 

processing and storage are being pushed closer to the user 

for real-time applications resulting in reduced energy 

consumption and quicker response time. The essential 

technology used to provide such services are 

containerization, which allows for dynamic workloads and 

applications. To use this new field of microservice 

applications, more resource-aware and energy-efficient 

container scheduling strategies are also needed. 

In the last few years, machine learning-based techniques 

have also been used for containerized application 

scheduling improvement. Nonetheless, we have shown how 

different strategies compare in terms of performance and 

optimization objectives. Only machine learning would be 

useful for dynamic and varied workload-specific scheduling 

strategies. It would also be able to predict future 

consumption of resources and workload, which would 

enable intelligent scheduling decisions. Microservices have 

become widely used in many domains, and most cloud-

native applications these days might have a large number of 

microservices. 

The number of user requests, their interdependence, 

interference, and scalability all affect how an application 

behaves, which increases overhead and lowers performance. 

Therefore, an intelligent and efficient container scheduling 

that takes into consideration every microservice architecture 

issue would be needed. Multi-dimensional metrics for 

performance would be predicted using machine learning 

methods. The quality of scheduling and resource 

provisioning decisions made in response to shifting user 

demands in complex systems with diverse resource 

utilization and dynamic workloads may be further enhanced 

by these insights. 

7. Conclusion 

In this paper, we showed that the most appropriate method 

for deploying containerized microservices in a cloud context 

is containerization, which offers lightweight virtualization. 

The growing popularity of cloud-based containers 

highlights how crucial microservices management and 

orchestration are to the entire microservices architecture. 

Based on the optimization strategy used for containerized 

application scheduling, we have presented the classification 

of scheduling approaches and discussed several container 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1120 

orchestration tools. 

Docker and Kubernetes would provide the best performance 

in container orchestration and management from the 

perspective of application developers. Our research 

indicates that estimating the behaviour of microservice 

workload concerning processing time, request arrival rate, 

type, and number of users connecting to various 

microservice types is challenging. For predicting 

performance objectives, the microservice-based workload 

model can be employed. In our studies, we found that 

Machine Learning has a great potential for implementing 

intelligent scheduling mechanisms. Our survey results show 

that machine learning techniques are the most effective for 

the scheduling of containerized microservices by making 

the most use of the underlying cloud resources. Based on 

these findings, we have suggested potential further studies 

in this paper. 

Furthermore, to offer efficient container scheduling, multi-

objective container scheduling techniques can be employed 

to manage resources efficiently. Hybrid machine learning-

based approaches can also be employed. Our survey would 

help researchers identify the key characteristics of Machine 

learning-based approaches and choose the most suitable 

method for efficient container scheduling for the 

microservices. 

Conflicts of interest 

The authors declare no conflicts of interest. 

References 

[1] XiliWana , XinjieGuana,∗ , TianjingWanga , 

GuangweiBaia , Baek-Yong Choi, “Application 

deployment using Microservice and Docker 

containers: Framework and optimization”, Journal of 

Network and Computer Applications 119 (2018) 97–

109 

[2] M. SRIRAGHAVENDRA1 & PRATEEK JAIN2,” 

VIRTUAL MACHINE VS CONTAINER: AN 

APPLICATION PERFOMANCE”  ,International 

Journal of General  Engineering and Technology 

(IJGET) ,ISSN(P): 2278-9928; ISSN(E): 2278-9936 

Vol. 6, Issue4, Jun – Jul 2017; 29-40 

[3] Imtiaz Ahmad, Mohammad Gh. AlFailakawi  , 

AsayelAlMutawa, LatifaAlsalman,” Container 

scheduling techniques: A Survey and assessment”, 

Journal of King Saud University – Computer and 

Information Sciences 

[4] Y. Hu, H. Zhou, C.d. Laat et al.,” Concurrent container 

scheduling on heterogeneous clusters with multi-

resource constraints” ,Future Generation Computer 

Systems 102 (2020) 562–573 

[5] MIAO LIN 1 , JIANQING XI1 , WEIHUA BAI 2 , 

AND JIAYIN WU ,“Ant Colony Algorithm for Multi-

Objective Optimization of Container-Based 

Microservice Scheduling in Cloud”IEEE Access 

VOLUME 7, 2019 

[6] Qian Qu, Ronghua Xu, SeyedYahyaNikouei, Yu Chen 

“An Experimental Study on Microservices based Edge 

Computing Platforms”, IEEE Xplore 2017 

[7] VindeepSingh,Sateesh K Peddoju,”Container-based 

Microservice Architecture for Cloud Applications”,   

IEEE International Conference on Computing, 

Communication and Automation (ICCCA2017), 

ISBN: 978-1-5090-6471-7/17/$31.00 ©2017 IEEE   

[8] OMOGBAI OLEGHE, “Container Placement and 

Migration in Edge Computing: Concept and 

Scheduling Models”,IEEE Access 2021 

[9] Guisheng Fan1,2 , Liang Chen1 , Huiqun Yu1 , and 

Wei Qi1,”Multi-Objective Optimization of Container-

Based Microservice Scheduling in Edge Computin”, 

Computer Science and Information Systems 2020 

[10]  Ouafa Bentaleb1,2,3 · Adam S. Z. Belloum3  · 

Abderrazak Sebaa4,5  Aouaouche El-

Maouhab,”Containerization technologies: 

taxonomies, applications and challenges”, The Journal 

of Supercomputing 2021 

[11]  Salah, M. Jamal Zemerly, Chan YeobYeun, 

Mahmoud Al-Qutayri, Yousof Al-Hammadi,” 

Performance Comparison between Container-based 

and VM-based Services”, 978-1-5090-3672-

1/17/$31.00 ©2017 IEEE 

[12]  Sheng Wang, Zhijun Ding, Senior Member, IEEE, 

ChangjunJiang,”Elastic Scheduling for Microservice  

Applications in Clouds”, IEEE TRANSACTIONS ON 

PARALLEL AND DISTRIBUTED SYSTEMS:1045-

92(19)-2020 

[13]  JunmiBo An, Donggang Cao, Xiangqun Chen,” 

Comparing Container-based Microservices and 

Workspace as a Service:Which One to Choose?”, 2018 

IEEE Symposium on Service-Oriented System 

Engineering”, 0-7695-6394-5/18/$31.00 ©2018 IEEE 

[14]  Docker Containers and 

VMs.https://www.weave.works/blog/a-practical-

guide-to-choosing-between-docker-containers-and-

vms.Accessed  January 2022 

[15]  Microservice vs Monolithic. 

https://www.suse.com/c/rancher_blog/microservices-

vs-monolithic-architectures/. Accessed June 2023 

[16]   Chris Richardson of Eventuate,Building 

Microservices, https://www.nginx.com/blog/building-

microservices-using-an-api-gateway/. Accessed: 

December 2023 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1121 

[17]  Tarek Menouer,PatriceDarmon ,“New Scheduling 

Strategy based on Multi-CriteriaDecision Algorithm” 

2019 27th Euromicro International Conference on 

Parallel, Distributed and Network-Based Processing 

(PDP), 2377-5750/19/$31.00 ©2019 IEEE 

[18]  Rajkumar Buyya1, Maria A. Rodriguez1, Adel 

NadjaranToosi, Jaeman Park,” Cost-Efficient 

Orchestration of Containers in Clouds: A Vision, 

Architectural Elements, and Future Directions”, Cloud 

Computing and Distributed Systems (CLOUDS) Lab 

[19]  Claus Pahl∗ and Antonio Brogi‡ and Jacopo Soldani‡ 

and PooyanJamshidi† “Cloud Container 

Technologies: a State-of-the-Art Review”, IEEE 

Transactions on Cloud computing 2017 

[20]  Maria A. Rodriguez RajkumarBuyya,” Container-

based cluster orchestration systems: A taxonomy and 

future directions”, © 2018 John Wiley & Sons, Ltd 

[21]  Abdul Saboor 1,* ,MohdFadzil Hassan 2, 

Containerized Microservices Orchestration and 

Provisioning in Cloud Computing: A Conceptual 

Framework and Future Perspectives”, Appl. Sci. 2022, 

12, 5793 

[22]  Maria 

Fazio,AntonioCelest,RajivRanjan,LydiaChen,Chang 

Liu,” Open Issues  in Scheduling Microservices in the 

Cloud”  ,IEEE cloud computing , 2325-

6095/16/$33.00 © 2016 IEEE    September/October 

2016   

[23]  Kaewkasi , KornrathakChuenmuneewong,” 

Improvement of Container Scheduling for Docker 

using Ant Colony Optimization”  ,IEEE cloud 

computing , 978-1-4673-9077/4/17/ © 2017 IEEE   

October 2017 

[24]  Hamid MohammadiFard ,“Dynamic Multi-objective 

Scheduling of Microservices in the Cloud” 2020 

IEEE/ACM 13th International Conference on Utility 

and Cloud Computing (UCC) 

[25]   XUEHUA ZHAO,” Microservice Based 

Computational Offloading Framework and Cost 

Efficient Task Scheduling Algorithm in 

Heterogeneous Fog Cloud Network”,IEEE Access 

VOLUME 8, 2020 

[26]  Tarek Menouer Patrice Darmon,” New Scheduling 

Strategy based on Multi-Criteria Decision Algorithm” 

, 2019 27th Euromicro International Conference on 

Parallel, Distributed and Network-Based Processing 

,2377-5750/19/$31.00 ©2019 IEEE DOI 

10.1109/PDP.2019.00022   

[27]  Mehmet Söylemez1 ,BedirTekinerdogan 2,* and 

AyçaKolukısaTarhan 1,” Challenges and Solution 

Directions of Microservice Architectures: A 

Systematic Literature Review”, Appl. Sci. 2022, 12, 

5507. https://doi.org/10.3390/app12115507 

[28]  Z. Zhong, “Machine Learning-based Orchestration of 

Containers: A Taxonomy and Future Directions” 

ACM Computing Surveys, Vol. 54, No. 10s, Article 

217. Publication date: September 2022 

[29]  NandanJha,Saurabh Garg, Prem Prakash 

Jayaraman,RajkumarBuyya,RajivRanjanCelest, ” A 

Holistic Evaluation of Docker Containers for 

Interfering Microservices” , 2018 IEEE International 

Conference on Services Computing,2474-

2473/18/$31.00 ©2018 IEEEDOI 

10.1109/SCC.2018.00012 

[30]  MingchangWei,Yang Yu,,” A Container Scheduling 

Strategy Based on Machine Learning in Microservice 

Architecture”, 2019 IEEE International Conference on 

Services Computing (SCC), 2474-2473/19/$31.00 

©2019 IEEEDOI 10.1109/SCC.2019.00023 

[31]  Ye Wu ,HaopengChen,”ABP Scheduler :Speeding up 

service spread in Docker swarm” , 2017 IEEE 

International journal on Parallel and distributed 

Processing with Applications”, 0-7695-6329-5/17 

2017 IEEE 

[32]  Junming Ma, Bo An, Donggang Cao, Xiangqun 

Chen,” Comparing Container-based Microservices 

and Workspace as a Service:Which One to Choose?”, 

2018 IEEE Symposium on Service-Oriented System 

Engineering”, 0-7695-6394-5/18/$31.00 ©2018 IEEE 

[33]  Christophe C´ erin, Tarek Menouer, WalidSaad and 

Wiem Ben AbdallahChris,” A New Docker Swarm 

Scheduling Strategy”, 2017 IEEE 7th International 

Symposium on Cloud and Service Computing, 978-0-

7695-6328-2/17 $31.00 © 2017 IEEE 

[34]  Ayman Noor∗†, DevkiNandanJha∗, Karan Mitra‡, 

Prem Prakash Jayaraman§, Arthur Souza¶, Rajiv 

Ranjan∗andSchahramDustdar, “A framework for 

monitoring microservice-oriented cloud applications 

in heterogeneous virtualization environments”, 2019 

IEEE 12th International Conference on Cloud 

Computing (CLOUD), 2159-6190/19/$31.00 ©2019 

IEEE 

[35]  Michel Gokan Khan, Member, IEEE, Javid Taheri, 

Senior Member, IEEE,”PerfSim: A Performance 

Simulator for Cloud Native Microservice Chains:, 

arXiv:2103.08983v2 [2017] 

[36]  Guo ,“A Container Scheduling Strategy Based on 

Neighborhood Division in Micro Service” 978-1-

5386-3416-5/18/$31.00 ©2018 IEEE 

[37]  Raj Gunasekaran,”Characterizing Bottlenecks in 

https://doi.org/10.3390/app12115507


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1108–1122  |  1122 

Scheduling Microservices on Serverless Platforms”, 

2020 IEEE 40th International Conference on 

Distributed Computing Systems (ICDCS) 

[38]  Rohan Mahapatra,Exploring Efficient ML-based 

Scheduler for Microservices in Heterogeneous 

Clusters 

[39]  1st Guozhi Li,” Microservices: architecture, 

container, and challenges”, 2020 IEEE 20th 

International Conference on Software Quality, 

Reliability and Security Companion (QRS-C) 

[40]  Qilong Li, “Multi-Algorithm Collaboration 

Scheduling Strategy for Docker Container”, 2017 

International Conference on Computer Systems, 

Electronics and Control (ICCSEC) 

[41]  Christina Terese Joseph K. Chandrasekaran,” 

Straddling the crevasse: A review of microservice 

software architecture foundations and recent 

advancements”, DOI: 10.1002/spe.2729 

[42]  Yanjun Shi *, YijiaGuo, LinglingLv and Keshuai 

Zhang,” An Efficient Resource Scheduling Strategy 

for V2X Microservice Deployment in Edge Servers”, 

Future Internet 2020, 12, 172; doi:10.3390/fi12100172 

[43]  1Pratham Jangra, 2Anuttam Anand, 3Dr. Amit Kumar 

Tyagi, “Survey on Container Systems and Their 

Efficient Orchestration Algorithms”, International 

Journal of Creative Research Thoughts (IJCRT) 

[44]  Ebook for .Net microservice for containerized 

applications, Microsoft book 

[45]  Yiren Li1,2, Tieke Li1 , Pei Shen2 , Liang Hao2,” 

Sim-DRS: a similarity-based dynamic resource 

scheduling algorithm for microservice-based web 

systems”, PeerJComput. Sci. 7:e824 DOI 

10.7717/peerj-cs.824 

[46]  Vishal Rao1 , Vishnu Singh1 “Scheduling 

Microservice Containers on Large Core Machines 

through Placement and Coalescing”  

 


