

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1164

Critical Path-Aware Deep Learning Architecture for Efficient Test Case

Prioritization and Minimization

Vinita Tomar1, Mamta Bansal2, and Pooja Singh3

Submitted: 05/05/2024 Revised: 18/06/2024 Accepted: 25/06/2024

Abstract: Test case prioritization and minimization are essential practices to augment the efficiency of the testing process in software

testing. However, conventional methods often struggle with large-scale software systems due to their inability to effectively handle the

critical path, leading to suboptimal prioritization and minimal test coverage This research paper proposes an Enhanced Electric-Eel with

Critical Path-Aware Foraging Optimization (EECPFO) algorithm tailored for test case minimization and prioritization in software testing.

The algorithm is designed to address the challenges of minimizing redundancy, prioritizing critical paths, and maintaining diversity in test

suites. To achieve this, modifications including a Dynamic Fitness Function, Redundancy-aware Foraging, Critical Path Sensitivity, and

Diversity Maintenance are integrated into the EEFO framework. The proposed algorithm is evaluated for its effectiveness using three open-

source Java programs (JTopas, Ant, and JMeter) from the Software Infrastructure Repository (SIR), employing well-known metrics such

as Average Percentage of Fault Detection (APFD) and Average Percentage of Fault Detection with Cost (APFDc). Experimental results

demonstrate significant improvements in test case prioritization and minimization compared to benchmark algorithms, showcasing en-

hanced fault detection rates, coverage, and cost reduction percentages. The findings, highlight the potential of the proposed EECPFO

algorithm as a valuable tool for optimizing software testing processes, leading to more efficient and effective quality assurance practices.

Keywords: Test case prioritization; Test case minimization; Optimization; Software testing; Critical path analysis; Deep learning

1. INTRODUCTION

In the realm of software testing, the significance of prioritiz-

ing and minimizing test cases cannot be overstated. As soft-

ware systems get more intricate, the traditional methods often

fall short of effectively identifying critical test cases for pri-

oritization and minimizing redundant ones. In response to

this challenge, a novel approach emerges, leveraging deep

learning techniques to introduce a Critical Path-Aware archi-

tecture. This architecture not only streamlines the process of

test case prioritization but also minimizes redundancy, thus

optimizing testing resources and accelerating the software

development lifecycle. In this paper, we delve into the intri-

cacies of this innovative architecture, its underlying princi-

ples, and its potential to revolutionize the software testing do-

main. The continuous integration and advancement pro-

cesses require regression testing. Test case prioritization

(TCP), test case selection (TCS), and test case minimization

(TCM) are the three strategies used in regression testing to

deal with these complex issues [1]. TCP prioritizes the test

cases using predesigned plans, while TCS focuses on the cru-

cial test cases impacted by the altered part. In addition, TCM

minimizes the test suite by eliminating unnecessary data. Op-

timization-related challenges are encountered frequently in

our day-to-day work and lives. The pursuit of efficient and

effective approaches to optimization challenges is

progressively taking center stage as a field of study. Optimi-

zation is the technique of identifying the ideal solution, or an

approximate representation of the optimum solution, amidst

various possibilities for a given issue under specific con-

straints [2]. Numerous optimization challenges are growing

more widespread and sophisticated in lots of diverse engi-

neering disciplines due to the quick development of new

technology. Optimization saves money, reduces computing

load, and greatly increases efficiency. Optimization tech-

niques encompass two broad categories: mathematical meth-

ods and metaheuristic methods. These categories form the

foundation for a robust and comprehensive approach to opti-

mization.

Using a carefully constructed mathematical model and a spe-

cific initial condition, the process involves employing vari-

ous mathematical procedures and techniques to iteratively re-

fine and determine the most optimal solution. This iterative

approach allows for thorough examination and analysis to

ensure the best possible outcome is achieved. Conventional

mathematical methodologies prove efficacious in ascertain-

ing the optimal solution in instances where the glitches are

uncomplicated and there are restricted dimensionalities in the

solution space. Nevertheless, real-world applications present

a multitude of large-scale, multimodal, nonlinear, and com-

plex optimization challenges [3][4]. These challenges typi-

cally necessitate mathematical techniques that rely on the

gradient information provided by the problems and are nota-

bly complex to the selection of early points [5]. The task of

identifying the optimal solution to intricate problems is in-

herently challenging, with the potential to inadvertently

1,2Department of Computer Science, Shobhit Institute of Engineering &

Technology (Deemed-to-be University), Meerut, U.P. 250110, India
3Department of Computer Science, Maharaja Surajmal Institute, Janakpuri,

New Delhi 110058, India

E-mail address: 1tomar.vinita@gmail.com

mailto:tomar.vinita@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1165

converge towards localized optimal solutions. Consequently,

the application of mathematical methodologies to tackle

complex optimization problems is accompanied by notable

constraints.

The metaheuristic approach is an algorithmic framework that

applies heuristics driven by mathematical concepts, natural

occurrences, and biological processes, without depending on

the specific situation [6][7]. Their incorporation of arbitrari-

ness, ease of execution, and consideration of black box func-

tions position metaheuristic approaches as favorable alterna-

tives to traditional mathematical methods, thereby mitigating

the associated drawbacks. Notably, metaheuristics have re-

cently gained substantial consideration in academic works

and are extensively functioning to address a myriad of com-

plex engineering challenges. Optimization algorithms are in-

creasingly being used in various industries due to rapid tech-

nological advancements and new application needs. Conse-

quently, it is essential to possess investigating and learning

techniques that enhance these applications and to identify

practical optimization technologies. Despite the many opti-

mizers available in the market today, formulating a new op-

timizer is still mandatory. The Critical Path-Aware Deep

Learning Architecture represents a significant advancement

in the domain of software testing methodologies. By integrat-

ing deep learning techniques with critical path analysis, this

architecture offers a transformative approach to test case pri-

oritization and minimization. Unlike traditional methods,

which often rely on manual selection or heuristic algorithms,

this architecture harnesses the power of deep learning algo-

rithms to automatically identify critical paths within a soft-

ware system. By understanding the dependencies and inter-

actions between various components, it can intelligently pri-

oritize test cases founded on their impact on the critical path,

thereby maximizing the efficiency of testing efforts. Further-

more, the architecture facilitates the minimization of redun-

dant test cases by recognizing overlapping functionalities and

eliminating unnecessary redundancy. Through this innova-

tive combination of deep learning and critical path analysis,

the Critical Path-Aware Deep Learning Architecture presents

a promising solution to enhance the effectiveness and effi-

ciency of software testing processes.

Test case prioritization is a fundamental aspect of software

testing, crucial for maximizing the efficiency and effective-

ness of testing efforts. The determination of the testing se-

quence entails a meticulous consideration of how individual

test cases are completed, considering their relative relevance

and potential influence on the software system. This method

ensures that tests with the highest criticality and impact are

prioritized, facilitating the early detection and resolution of

high-priority issues during the testing phase. This prioritiza-

tion is typically guided by various factors such as the critical-

ity of system functionalities, the likelihood of uncovering se-

vere defects, project deadlines, and resource constraints. By

systematically arranging test cases in order of priority, testing

teams can ensure that the most critical aspects of the software

are thoroughly evaluated first, reducing the risk of overlook-

ing crucial defects and expediting the identification and res-

olution of issues. Moreover, prioritization helps allocate lim-

ited testing resources judiciously, optimizing the testing pro-

cess and ultimately enhancing the overall excellence and de-

pendability of the software product. Test case minimization

is a strategic approach employed in software testing to

streamline the testing process and optimize resource utiliza-

tion. This strategy effectively classifies and addresses any

needless or redundant test cases while ensuring adequate test

coverage. By decreasing the quantity of test cases without

sacrificing the comprehensiveness of the testing, teams can

save time and resources, accelerating the testing phase and

ultimately expediting the software development lifecycle.

Test case minimization involves techniques such as identify-

ing equivalent test cases, removing duplicates, and consoli-

dating test scenarios to cover multiple functionalities effi-

ciently. Through this process, testing efforts become more

focused and efficient, allowing teams to allocate their re-

sources more effectively and prioritize critical testing activi-

ties. The result is a more streamlined testing process, im-

proved productivity, and enhanced software quality.

Various nature-inspired algorithms have been applied in re-

gression testing for TCP and TCM systems to enhance vari-

ous aspects such as test case selection, prioritization, cover-

age, scheduling, and resource allocation, ultimately improv-

ing testing efficiency and effectiveness. Table 1 illustrates

various Metaheuristics Algorithms along with their descrip-

tion and application in TCP/TCM Regression Testing.

TABLE 1 Metaheuristics Algorithms along with their de-

scription and application in TCP/TCM Regression Testing

Algo-

rithm

Description Application in

TCP/TCM Regression

Testing

Im-

proved

Bat Al-

gorithm

(iBAT)

Inspired by the

echolocation be-

havior of bats,

used for optimi-

zation problems

with enhanced

efficiency

Optimizes test case se-

lection and prioritiza-

tion by exploring the

solution space effi-

ciently, reducing testing

time.

Whale

Algo-

rithm

(WA)

Inspired by the

bubble-net hunt-

ing strategy of

humpback

whales, used for

solving global

optimization

problems.

Enhances regression

test suite by clustering

and prioritizing test

cases based on similar-

ity and coverage, im-

proving test effective-

ness.

Genetic Mimics natural

selection and

Optimizing test case se-

lection, prioritizing test

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1166

Algo-

rithm

(GA)

evolution pro-

cesses to find op-

timal solutions.

cases based on cover-

age, and minimizing re-

dundancy in testing.

Particle

Swarm

Optimi-

zation

(PSO)

Motivated by the

flocking social

behavior of

birds. Improves

candidate solu-

tions iteratively.

Optimizing test suite

selection, improving

test coverage, and bal-

ancing trade-offs be-

tween testing objec-

tives.

Ant Col-

ony Op-

timiza-

tion

(ACO)

Motivated by the

methods of for-

aging used by

ants. Particularly

useful for solv-

ing combinato-

rial optimization

problems.

Optimizing test suite

prioritization, identify-

ing critical test cases,

and navigating complex

testing scenarios effi-

ciently.

Artificial

Bee Col-

ony

(ABC)

Algo-

rithm

Motivated by the

way a swarm of

honeybee’s for-

ages. Iteratively

improves candi-

date solutions.

Optimizing test case se-

lection, minimizing

testing cost, and im-

proving fault detection

capabilities.

Firefly

Algo-

rithm

(FA)

Motivated by the

way fireflies

flash. Focuses on

attraction and

movement to-

wards brighter

ones.

Optimizing test sched-

uling, prioritizing test

execution, and improv-

ing resource allocation

for testing tasks.

Integrating metrics such as Average Percentage of Faults De-

tected (APFD) and its complement, APFDc (APFD consid-

ering costs), represents a crucial step in the assessment and

optimization of software testing strategies. APFD provides a

quantitative measure of the efficacy of test case prioritization

by considering both the order and coverage of test cases in

detecting faults. By calculating the proportion of faults de-

tected within a given budget of executed test cases, APFD

offers valuable insights into the quality of the testing process.

Moreover, incorporating APFDc extends this analysis by ac-

counting for the costs associated with executing test cases,

such as time, resources, and potential risks. This integration

enables testing teams to make informed decisions regarding

the allocation of resources, balancing the trade-offs between

cost and effectiveness. By leveraging metrics like APFD and

APFDc, organizations can optimize their testing strategies,

improve fault detection rates, and ultimately enhance the re-

liability and quality of their software products. The key ver-

dicts of this study comprise:

• Developed a dynamic fitness function that incorporates

the objectives of test case minimization and

prioritization. Integrate metrics like APFD and APFDc

directly into the fitness function, ensuring that the algo-

rithm optimizes for these criteria throughout the optimi-

zation process.

• Redundancy-aware Foraging: Introduced a mechanism to

identify and avoid redundant test cases during the forag-

ing process. This could involve analyzing the similarity

between test cases and prioritizing the inclusion of unique

and effective test cases, ultimately reducing redundancy.

• Critical Path Sensitivity: Enhanced the algorithm's

awareness of critical paths within the software programs.

This was achieved by incorporating information about

dependencies and execution paths, ensuring that the algo-

rithm prioritizes test cases that are more likely to impact

the critical paths.

• Diversity Maintenance: Implemented strategies to main-

tain diversity in the population of solutions. This encour-

ages the exploration of the solution space, preventing

premature convergence to unsatisfactory solutions. It

may lead to the discovery of more efficient techniques for

test case prioritization and minimization.

The subsequent sections of this article are organized as fol-

lows: Section 2 provides a detailed description of the pro-

grams used in this investigation. The study is thoroughly de-

scribed in Part 3, while Section 4 outlines the proposed work.

Sections 5 and 6 cover performance measurements, experi-

mental design, and findings analysis. The article concludes

in Section 7.

2. PROGRAMS USED

2.1 JTopas

JTopas is a Java-based text parsing library that aids develop-

ers in processing textual data in Java applications. It offers

features like regular expressions, customizable rules, and ro-

bust error-handling mechanisms, enabling developers to

tackle various text-processing challenges. As an open-source

library, it encourages collaboration and innovation within the

Java development community.

2.2 Ant Programs

Ant Programs are optimization algorithms inspired by real

ants, using pheromone trails to find optimal solutions to com-

plex problems. They navigate through solution spaces, rein-

forcing pheromone trails as they find promising routes. These

algorithms are useful in routing, scheduling, network design,

and combinatorial optimization tasks. Their adaptive nature

and scalability make them valuable tools for tackling com-

plex problems.

2.3 JMeter programs

JMeter is a versatile platform for web application testing, of-

fering performance, load, and functional testing. Its intuitive

interface allows users to create detailed test plans, utilizing

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1167

samplers, listeners, controllers, assertions, timers, and con-

figuration elements. JMeter supports plugins, enhancing its

capabilities for specific testing requirements. Its versatility

ensures web application reliability, scalability, and perfor-

mance efficiency in today's digital landscape.

3. RELATED WORK

The pursuit of software excellence has sparked extensive re-

search into software testing, test case prioritization, and test

case minimization. A few of them are listed below:

An object-oriented program's test case reduction method

employing Ant Colony Optimization (ACO) is presented in

a study done by Mohapatra and Prasad [8]. Utilizing ants'

foraging behavior as a model, the method finds and removes

unnecessary test cases while keeping those that are neces-

sary to maximize fault detection. The objective of this ACO-

based approach is to decrease test suite size and execution

time without sacrificing testing efficacy. The outcomes

show that, in comparison to traditional reduction techniques,

the method may effectively minimize test cases, guarantee-

ing sufficient test coverage and enhanced fault detection

rates. Bajaj, A. et al. [9] introduced the DAPSO method, a

mix of the dragonfly algorithm (DA) and the particle swarm

optimization algorithm (PSO). Algorithms for test case pri-

oritization (TCP) and minimization (TCM) have been devel-

oped. In terms of prioritizing, reduction, and performance

metrics, the DAPSO method performs better than random

search (RS), genetic algorithm (GA), bat algorithm, and

PSO. In numerical values, GA performs better. For im-

proved validation, they have recommended investigating

different dragonfly algorithms in subsequent research. Ant

colony optimization, or ACO, was used by Sugave et al. [10]

to improve the variety of the search process by using the bat

algorithm for TCM and a new fitness function. They pre-

sented obstacles to minimizing costs and meeting all re-

quirements. Their suggested approach outperformed other

current techniques when tested on various software infra-

structure repository programs. The test suite prioritizing ap-

proach presented in Nayak and Ray's [11] study makes use

of Particle Swarm Optimization (PSO) and is based on Mod-

ified Condition Decision Coverage (MCDC) criteria. By

guaranteeing that crucial conditions and decision routes are

checked early on, this strategy seeks to improve fault detec-

tion efficiency through test case prioritization. The method

efficiently arranges test cases to increase the comprehen-

siveness and speed of defect detection by integrating PSO

with MCDC. The findings demonstrate that this strategy

works better at obtaining higher coverage and fault detection

rates than conventional prioritization techniques. An en-

hanced bat algorithm for test case prioritization (TCP) and

test case minimization (TCM) has been proposed by Bajaj,

A. et al. [12]. It outperforms algorithms inspired by nature

and random searches, such as the whale optimization algo-

rithm (WA), bird swarm algorithm (BSA), bat algorithm

(BAT), genetic algorithm (GA), and novel bat algorithm

(nBAT). In terms of cost reduction, statement coverage, and

test case priority, the enhanced innovative bat algorithm

(iBAT) performed better. To improve validation, their up-

coming work will involve creating a method for choosing

test cases and investigating hybridized bat algorithms with

algorithms influenced by nature. Among others, Feng Li et

al, [13] suggested Test Case Prioritization using an Acceler-

ated Greedy Additional Algorithm: Test case prioritization

is addressed in this study through the introduction of the Ac-

celerated Greedy Additional Algorithm (AGA). Using a

clever selection and ranking process based on test case po-

tential for defect detection, the AGA algorithm seeks to in-

crease test case prioritization's efficacy and efficiency. Crit-

ical test cases can be identified more quickly thanks to

AGA's use of a greedy additional method, which speeds up

the prioritization process. By offering a unique algorithm for

optimizing test case prioritization, this research progresses

the software testing field and may result in more effective

software testing procedures.

A new method for test case minimization designed for con-

figuration-aware structural testing is presented by Ahmed

[14]. Combinatorial optimization techniques and fault detec-

tion capabilities are integrated into this method to minimize

the number of test cases while preserving or enhancing the

efficacy of fault detection. The technique seeks to improve

testing speed, minimize redundancy, and guarantee thor-

ough test coverage by concentrating on pertinent configura-

tions and utilizing optimization strategies. Comparing the

suggested method to conventional techniques, notable gains

are shown in test suite reduction and defect identification. A

test case prioritizing technique utilizing Particle Swarm Op-

timization (PSO) in conjunction with string distance meas-

urements is presented by Khatibsyarbini et al. [15]. The goal

of this strategy is to raise the number of fault detections early

in the testing process by optimizing the sequence of test

cases. The method ranks test cases according to their likeli-

hood of identifying distinct errors by computing their simi-

larity. When compared to conventional prioritization meth-

ods, the results show increased testing efficacy and effi-

ciency. A multi-objective test case prioritization technique

based on test case effectiveness is presented in a work by

Samad et al. [16]. The scoring method is multicriteria. This

method, which aims to optimize the testing process, assesses

and ranks test cases based on several factors, namely execu-

tion cost, coverage, and fault detection potential. Through

careful consideration of these variables, the method ranks

the test cases that have the highest overall efficacy, resulting

in an earlier in the testing cycle and more effective flaw dis-

covery. Empirical assessments reveal that the approach out-

performs conventional prioritization techniques. Bharathi

[17] presents a hybrid method for software test case minimi-

zation that combines Ranked Firefly Algorithm (RFA) and

Particle Swarm Optimization (PSO) in her study. This

method seeks to retain a high level of defect detection capa-

bilities while reducing the entire number of test cases. The

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1168

hybrid approach efficiently finds and removes redundant

test cases by utilizing both the local search effectiveness of

RFA and the global search capability of PSO. When com-

pared to stand-alone optimization techniques, the method

performs better in terms of reducing test suites and improv-

ing testing efficiency. Deneke et al. [18] provide a Particle

Swarm Optimization (PSO) based test suite minimization

method. The goal of the approach is to decrease the test

suite's size while preserving or enhancing its fault-detection

capabilities. Testing efficiency and coverage are improved

by the method's efficient identification and removal of re-

dundant tests, which is accomplished by optimizing test case

selection through PSO. When compared to conventional

minimizing strategies, the study shows that PSO can greatly

expedite the testing procedure. Boyar, T et al. [19] offer a

revolutionary method for software regression test case pri-

oritization. To guarantee that crucial functionality is evalu-

ated early in the regression cycle, the approach makes use of

a dynamic mechanism that adjusts to changes in the software

being tested. The method seeks to maximize test execution

time and enhance fault detection efficacy by taking into ac-

count the effects of modifications and integrating input from

prior test runs. The study shows how the suggested method

can improve software quality while requiring less regression

testing work. Discrete and combinatorial gravitational

search methods were introduced by Bajaj and Sangwan [20]

for test case minimization and prioritization in software test-

ing. The method optimizes test case selection and order by

applying gravitational principles, to reduce test suite size

and increase fault detection efficiency. The method demon-

strates improved performance over conventional techniques

by balancing coverage and minimization objectives through

the integration of discrete and combinatorial procedures. Ta-

ble 2 illustrates the comparison between TCP and TCM.

TABLE 2 Comparison between various techniques used for

Test Case prioritization and minimization.

Authors &

Year

Techniques

Used

Findings and

Conclusions

Mohapatra,

S.K. Prasad, S.

(2015)

Ant Colony

Optimization

Effective reduction

of test cases in

object-oriented

programs,

enhancing

efficiency in

software testing.

Bajaj, Anu, et

al. (2022)

Improved

Quantum-

Behaved

Particle

Swarm

Optimization

Enhanced

prioritization,

selection, and

reduction of test

cases, improving

fault detection and

test coverage in

software testing

scenarios.

Sugave SR,

Patil SH,

Reddy BE

(2018)

DIV-TBAT

algorithm

Efficient test suite

reduction with

maintained or

improved fault

detection

capabilities,

suitable for large-

scale software

systems.

Nayak, G.;

Ray, M. (2019)

Particle

Swarm

Optimization

Prioritization based

on Modified

Condition Decision

Coverage criteria,

leading to improved

test effectiveness

and coverage in

software testing.

Bajaj, A.,

Sangwan, O.P.

& Abraham,

A. (2022)

Novel Bat

Algorithm

Effective test case

prioritization and

minimization,

achieving

comprehensive test

coverage while

reducing

redundancy in

software testing.

Li, F., Zhou, J.,

Li, Y., Hao,

D., & Zhang,

L. (2021)

Accelerated

Greedy

Additional

Algorithm

(AGA)

Accelerated test

case prioritization,

optimizing the order

of execution for

faster fault

detection and

improved software

reliability.

Ahmed, B.S.

(2016)

Fault

detection and

combinatorial

optimization

techniques

Configuration-

aware structural

testing approach for

minimizing test

cases, ensuring

thorough coverage

of critical

configurations in

software systems.

Khatibsyarbini,

M.; Isa, M.A.;

Jawawi,

D.N.A. (2018)

Particle

Swarm

Optimization

using string

distance

Effective

prioritization based

on string distance

metrics, enhancing

the fault detection

capability and

efficiency of

software testing.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1169

Samad, A., et

al. (2021)

Multiobjective

Scoring

Method

Multi-criteria

approach to test

case prioritization,

balancing

effectiveness,

coverage, and

execution cost for

improved software

quality.

Bharathi, M.

(2022)

Hybrid

Particle

Swarm and

Ranked

Firefly

Metaheuristic

Optimization-based

approach for test

case minimization,

combining

strengths of PSO

and Firefly

algorithms to

reduce redundancy

and enhance

efficiency in

software testing.

Deneke, A.;

Assefa, B.G.;

Mohapatra,

S.K. (2022)

Particle

Swarm

Optimization

Test suite

minimization

approach using

PSO, optimizing the

size and

composition of test

suites for efficient

software testing.

Boyar, T., Oz,

M., Oncu, E.,

& Aktas, M. S.

(2021)

Dynamic Test

Prioritization

Novel approach

adapting to software

changes,

prioritizing tests to

detect critical

regressions early,

and improving

software reliability.

Bajaj, A., &

Sangwan, O. P.

(2021)

Discrete and

Combinatorial

Gravitational

search

algorithm

Innovative

algorithms for test

case prioritization

and minimization,

achieving balanced

coverage and

minimal

redundancy in

software testing

scenarios.

4. PROPOSED WORK

The hunting habits of the electric eel, an intriguing aquatic

animal recognized for its capacity to produce electric shocks

for both defense and prey acquisition, serve as the model for

the bioinspired algorithm known as Enhanced Electric-Eel

with Critical Path-Aware Foraging Optimization (EECPFO)

algorithm. To effectively solve optimization problems,

EECPFO imitates the electric eel's foraging style. The algo-

rithm identifies the best solutions by analyzing the solution

space, much like an eel looks for food in its surroundings.

Using a combination of exploration and exploitation strate-

gies, EECPFO assesses the fitness of population members

who represent viable solutions using established objective

functions [21]. By modifying the electric eel's behavior, the

algorithm iteratively improves its search by constantly mod-

ifying its parameters to balance the exploration of new terri-

tory and the exploitation of promising areas. This bio-in-

spired method has demonstrated encouraging outcomes in a

range of optimization tasks, indicating its efficacy in resolv-

ing challenging issues in a variety of fields.

4.1. Mathematical model and algorithm

The EECPFO's stages of exploration and exploitation were

intricately designed to replicate the complex social preda-

tion behaviors observed in electric eels, encompassing their

resting, hunting, migrating, and interacting behaviors [22].

The mathematical representations of these foraging behav-

iors are elaborated upon in the following sections.

4.1.1. Interacting

Whenever electric eels see a school of fish, they collaborate

by swimming in a large, electrified circle to corral a signifi-

cant number of small fish in the center. In this Enhanced

Electric-Eel with Critical Path-Aware Foraging Optimiza-

tion (EECPFO) strategy, every eel in the system acts as a

viable candidate solution, with the intended prey being the

most promising solution discovered so far. The eels exhibit

behavior that suggests they are aware of each other's posi-

tions and cooperate during this global exploration phase

[22]. This behavior enables an eel to utilize the positional

information of each individual in the eel population to inter-

act with another eel chosen at random. The updating of an

eel's position comprises the comparison of its location with

the population center. Utilizing geographic data within the

search space, an electric eel is capable of engaging with

other eels chosen at random from the population. The pro-

cess entails comparing the place of an eel that emerged arbi-

trarily inside the search space with one selected from the

population. Eels exhibit erratic movement in various direc-

tions, termed churning, as a form of social interaction. The

mathematical model illustrates this churn using various

equations. The interactive action is laid out as follows:

(1)

𝑐(𝑔) =
1

𝑚
∑ 𝑐𝑟(𝑞)
𝑛
𝑖=1 (2)

𝑐𝑖 = 𝐿𝑜𝑤 + 𝑖 × (𝑈𝑝 − 𝐿𝑜𝑤) (3)

𝑒𝑟(𝑔 + 1) = 𝑐𝑞(𝑔) + 𝑋 × 𝑐 (𝑔) − 𝑐𝑞(𝑔) 𝑘1 > 0.5

𝑒𝑟(𝑔 + 1) = 𝑐𝑞(𝑔) + 𝑋 × 𝑐𝑖(𝑔) − 𝑐𝑟(𝑔) 𝑘1 ≤ 0.5
 𝑓𝑖𝑡 𝑐𝑞(𝑔) < 𝑓𝑖𝑡(𝑐𝑟(𝑔))

𝑒𝑟(𝑔 + 1) = 𝑐𝑟(𝑔) + 𝑋 × 𝑐 (𝑔) − 𝑐𝑞(𝑔) 𝑘2 > 0.5

𝑒𝑟(𝑔 + 1) = 𝑐𝑟(𝑔) + 𝑋 × 𝑐𝑖(𝑔) − 𝑐𝑞(𝑔) 𝑘2 ≤ 0.5
 𝑓𝑖𝑡 𝑐𝑞(𝑔) ≤ 𝑓𝑖𝑡(𝑐𝑟(𝑔))

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1170

Here, random numbers are k1 and k2 within (0, 1), the fitness

of the candidate position of the electric eel is fit(c(r)), cq is the

position of an eel chosen randomly from the current popula-

tion, and q ∕=r, m is the size of the population, i1 is a random

number within (0,1), i is the random vector within (0,1), and

the lower and upper boundaries are Low and Up respectively.

Equation (1) suggests that electric eels can migrate toward

different areas in the search area due to their interacting ac-

tivity, which may greatly benefit the exploration of EECPFO

throughout the whole search area.

4.1.2. Resting

In EECPFO, Electric eels must shape their resting area before

appealing to resting activity. In order to improve search effi-

ciency, a resting area is constructed in the area where the ma-

jor diagonal of the search space is projected onto any dimen-

sion of an eel's position vector. By narrowing the search to a

specified location, this method may increase the likelihood

of discovering a solution. To find a resting location, the eel's

position and the search space are both normalized to a 0–1

range. The center of the eel's resting area is projected onto

the main diagonal of the normalized search space using a ran-

domly chosen dimension of the eel's position. The resting

area has been described by various mathematical equations.

The furthermost optimal resolution is embodied in cprey, the

initial scale of the resting area is denoted by α0, and the range

of the location where one is resting is shown by the term α0

×⃒A(g) π cprey(t)⃒, the random position dimension of a ran-

domly selected individual from the current population is rep-

resented by c rand(w) and rand(m), and a is the normalized

number. An eel so chooses its resting spot within its allotted

resting space before beginning to rest:

Ir(g + 1) = A(g) + α × |A(g) − cprey(g)| (4)

α = α0 × sin(2πi2) (5)

Here, the scale of the resting area is taken as α and i2 is a

random value inside the interval (0,1). With every iteration,

the scale α reduces the size of the resting region, facilitating

simpler exploitation. After it has been detected, eels will

move to the specified resting location. In other words, an eel

adjusts its location in the path of its resting area based on its

current resting posture. The way that the body rests can be

described as:

er(g + 1) = Ir(g + 1) +m2 × (Ir(g + 1)round(rand) ×

cr(g)) (6)

4.1.3. Hunting

Eels surround their prey in a broad circle and utilize elec-

tric discharges for coordination and communication rather

than just swarming to hunt. The circle narrows as their en-

gagement gets more intense, forcing the prey to go from

deeper waters to shallower spots where they are more effort-

lessly captured. The electric circle turns into a hunting area

as a result of this behavior, and the terrified prey begins to

move wildly and shift places regularly within it. Several

equations have been proposed to define the hunting area.

Sprey(g + 1) = cprey(g) + β × |c̅(g) − cprey(g)| (7)

β = β0 × sin(2πi3) (8)

Here, β denotes the hunting area's scale, and i3 is a random

value within the range (0,1). β causes the hunting area's

range to gradually shrink over time, favoring exploitation

4.1.4. Migrating

Whenever eels see prey, they usually relocate from their rest-

ing location to their hunting area. Analyzing the migration

behavior of eels is feasible with the following equation:

𝑒𝑟(𝑡 + 1) = −𝑖5 × 𝐼𝑟(𝑔 + 1) + 𝑖6 × 𝑆𝑖(𝑔 + 1) − 𝑂 ×

 (𝑆𝑖(𝑔 + 1) − 𝑐𝑟(𝑔)) (9)

𝑆𝑖(𝑔 + 1) = 𝑐𝑝𝑟𝑒𝑦(𝑔) + 𝛽 × |𝑐 (𝑔) − 𝑐𝑝𝑟𝑒𝑦(𝑔)| (10)

Here, Si is equivalent to any location in the hunting area

whereas i5, and i6 are random numbers within (0,1). Eels

travel in the direction of the hunting area, as indicated by the

expression (Si (g + 1)-cr(g)). The Levy flight function, or O,

is implemented, to evade getting surrounded by local optima

during the exploitation phase of EECPFO. As stated by

[24][25], O can be obtained as:

𝑂 = 0.01 × |
𝑓∙𝜎

|𝑒|
1
𝑦

| (11)

𝑓, 𝑒 ~ 𝑀(0,1) (12)

𝜎 = (
Γ(1+𝑦)×sin

𝜋𝑦

2

Γ
1+𝑦

2
 ×𝑦×2

𝑦−1
2

)

1

𝑦

 (13)

where y = 1.5 and Γ is the conventional gamma function

4.1.5. Procedure of EECPFO

Initially, the algorithm uses original search tactics that

are different from any other algorithm's search strategies. As

a result, it is simple to integrate this combination of addi-

tional optimization operators with an algorithm or algorithms

to create hybrid or enhanced algorithms that offer notable im-

provements. Since this algorithm does not include any extra

parameters, one may concentrate more on refining the search

strategy rather than analyzing how variations in parameter

values affect search performance. This facilitates the use of

the enhanced algorithm for a larger variety of engineering

challenges. Lastly, it has been shown that this algorithm has

strong global optimal solution search capabilities, which can

greatly enhance the performance of the improved algorithm

in terms of optimization, including convergence rate and op-

timal solution accuracy. Several control parameters, particu-

larly the maximum number of repetitions and the population

number of electric eels, are initialized by EECPFO at the out-

set. In the meantime, a uniform distribution of eel

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1171

populations is generated at random. Every eel uses its inter-

active behavior to execute exploration at each iteration when

the energy factor U > 1. Each eel engages in exploitation

when the energy component U ≤ 1, employing the same prob-

ability when resting, traveling, or hunting. Every case is ap-

plied to every eel to produce fresh candidate solutions. These

solutions are then contrasted with the existing ones. The cur-

rent best solution has been upgraded in the interim. As the

iteration goes on, E diminishes, compelling all eels to go

from exploration to exploitation. The interactive process is

carried out till the stop condition is satisfied. This preserves

the best answer found up until that moment.

4.1.6 Fitness Function: 𝐶𝑃𝑊(𝑒𝑖)

The Critical Path Weighted (CPW) fitness function: It is a

strategic strategy used to rank and select test cases based on

their impact on the critical path of the program being tested,

in the context of test case prioritization and minimization. It

is important to address concerns in these areas promptly be-

cause the critical path is a sequence of dependent tasks that

determines the shortest possible duration to complete the

task. Test cases are evaluated by the CPW fitness function,

considering both their impact on the critical path and their

weight, which could represent factors such as risk, past de-

fect rates, or business significance. This approach ensures

that the most crucial tests are prioritized by calculating a

CPW score, which takes into consideration the critical path

impact and the weight of each test case. Prioritizing in this

way optimizes the use of testing resources and enhances the

likelihood of early problem detection in the most critical ar-

eas of the system.

Dynamic Fitness Function F: The fitness of each electric eel

agent 𝑒𝑖 is evaluated based on a combination of APFD and

APFDc to address both prioritization and minimization,

alongside cost considerations.

𝐶𝑃𝑊(𝑒𝑖) = 𝑤1 ⋅ 𝐴𝑃𝐹𝐷(𝑒𝑖) + 𝑤2 ⋅ 𝐴𝑃𝐹𝐷𝑐(𝑒𝑖) − 𝑤3 ⋅

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦(𝑒𝑖) − 𝑤4 ⋅ 𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡(𝑒𝑖) (14)

• APFD (i) and APFDc (i) are the Average Percent-

age of Fault Detection and its cost-considerate

variant for solution i, respectively.

• Redundancy (ei) quantifies the redundancy level

of test cases in ei.

• PathCost (ei) reflects the critical path impact cost.

• w1, w2, w3, and w4 are weights to balance the ob-

jectives.

Algorithm 1 represents the Pseudo-code of an Enhanced

Electric-eel with a Critical Path-Aware Foraging Optimiza-

tion (EECPFO) for Test Case Prioritization and Minimiza-

tion

Algorithm 1: EECPFO for Test Case Prioritization and

Minimization

Input:

• SUT: Software Under Test [].

• θ: Control parameter threshold.

• ϕ: Critical Path Weight (CPW) threshold.

• 𝐸: Exploration rate.

• 𝑃: Initial population of test cases.

Output:

Optimized set of prioritized and minimized test cases.

Procedure:

1. Initialize:

o Load Specified SUT.

o Set control parameters for EECPFO, in-

cluding θ and ϕ.

o Generate initial population 𝑃 of test cases.

2. Evaluate Initial Fitness:

o For each test case 𝑖 in 𝑃, calculate fitness

𝑓(𝑖) using 𝐶𝑃𝑊(𝑖)

o 𝑓(𝑖) = 𝐶𝑃𝑊(𝑖)

o Sort 𝑃 based on 𝑓(𝑖)

3. Main Optimization Loop:

o While stopping condition not met:

▪ For each test case 𝑖 in 𝑃:

▪ If 𝑟𝑎𝑛𝑑() < 𝜃

Perform Resting Behaviour using Eq. (6)

▪ Else:

Perform Migrating Behaviour using Eq. (9)

o Evaluate and update fitness 𝑓(𝑖) for all 𝑖

in 𝑃 using 𝑓(𝑖) = 𝐶𝑃𝑊(𝑖)

▪ Sort 𝑃 based on 𝑓(𝑖).

▪ Apply Interacting Behaviour

using Eq. (1) if 𝐸 > 1 to intro-

duce diversity.

4. Post-Optimization:

o Identify test cases 𝑖 where 𝑓(𝑖) > 𝜙 for

minimization.

o Select the best test cases based on mini-

mized CPW and prioritization criteria.

5. Output:

o Return the optimized set of test cases that

are both prioritized and minimized.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1172

6. End.

5. PERFORMANCE MEASUREMENTS

To ensure that the algorithms are efficient and effective, their

performance has to be assessed. The test case minimization

and prioritizing methods have been assessed using a variety

of performance metrics, as detailed below:

5.1 Test case prioritization

The test cases are often ranked according to two distinct test-

ing criteria: statement coverage and fault coverage. Since

code coverage data is often accessible for any software, it is

extensively utilized by a variety of researchers [27]. Some,

however, believe that, if prior information on the defects is

available, fault coverage is a crucial factor in determining the

order in which to arrange the test cases [28]. Here, we have

demonstrated the suggested algorithm's robustness using

both testing criteria. As a result, the following definitions ap-

ply to the well-known metrics that are employed as effective-

ness measures and fitness metrics: APFD, or the average per-

centage of fault detection, [29] state that based on their posi-

tion in the test suite, determines the weighted average of the

covered problems. Table 3 depicts parameter values for algo-

rithms.

TABLE 3 Parameter Settings

Algo-

rithms

Parameters values

Com-

mon

Pa-

rame-

ters

Population size = 100

Generation size = 1000

Number of executions = 30

 Software under test Jtopas, Ant, Jmeter

 TCM Evaluation Parameters: APFD, APFDc

 TSP, CLP, FLP, CRP,

Low Low bound of search space. 0

Up Up bound of search space. 1

E Energy factor.

E=E0*log(1/rand)

Alpha scale of resting area. 2*(exp(1)-

exp (It/MaxIt))*sin(2*pi*rand);

Beta scale of the hunting area. 2*(exp(1)-

exp (It/MaxIt))*sin(2*pi*rand);%

Eta Curling factor.

Eta=exp(r4*(1-It)/MaxIt)*(cos(2*pi*r4)); %

It is calculated as:

𝐴𝑃𝐹𝐷 = 1 −
∑ 𝐺𝑉(𝑟)𝑛
𝑟=1

𝑚∗𝑛
+

1

2∗𝑚
 (15)

The location of the test case that determines the rth fault first

is directed by GV(r), and the number of faults that the test

suite of size n covers is indicated by m. It is between 0 and

100, with greater being better. While fault levels of severity

and test case costs are usually non-uniform, APFD considers

uniform values. This is known as the Average Percentage of

Fault Detection with Cost (APFDc). In light of this, a cost-

conscious metric called APFDc has been proposed that inte-

grates several costs and fault severities in APFD [23]. It is

defined as:

𝐴𝑃𝐹𝐷𝑐 = 1 −
∑ 𝑣ℎ(𝑟) ∗ ∑ cos 𝑔(𝑞)−

1

2
 cos𝑔(𝐺𝑉(𝑟))𝑚

𝑞=𝐺𝑉(𝑟) 𝑛
𝑟=1

∑ cos𝑔(𝑟) ∗ 𝑚
𝑟=1 ∑ 𝑣ℎ(𝑟)𝑛

𝑟

 (16)

In this scenario, cost (r) represents the test execution cost of

a rth test case, vh(r) represents the fault severity of the rth

fault, and cost (GV(r)) represents the execution cost of the

test case that finds the rth fault first. Similar to the APFD

and APFDc, the Average Percentage of Statement Coverage

(APSC) and APSC with cost (APSCc) are calculated. The

sole distinction is that statement coverage is calculated ra-

ther than blame coverage. Additionally, these measures

serve as the search space's fitness function, directing search-

based algorithms.

5.2. Test case minimization

Test suite reduction/test selection percentage and cost reduc-

tion % are the most widely utilized effectiveness metrics.

Test case minimization, which comes after test case prioriti-

zation, uses 100% fault coverage or 100% statement cover-

age to minimize the size of the test suite. Reducing the test

suite for a particular coverage basis has an impact on the

other coverage criteria. For instance, some statement cover-

age loss results from fault coverage-based reduction, and

vice versa. Consequently, for 100% fault coverage and

100% statement coverage, we have used coverage loss per-

centage and fault detection capability loss percentage, re-

spectively, as the performance metrics, as explained below:

The proportion of the original test suite's size to the smaller

test suite's size is known as the test selection percentage, or

TSP.

𝑇𝑆𝑃 =
𝑖

𝑚
∗ 100 (17)

Here, i symbolizes the reduced test cases in the test suite of

m test cases. The proportion of the original test suite's cov-

ered statements to the test suite's minimized coverage of the

remaining statements is known as the Coverage Loss Per-

centage (CLP).

𝐶𝐿𝑃 =
𝑚ℎ𝑜

𝑔ℎ
∗ 100 (18)

where gh is the total number of statements and mho is the

number of statements left uncovered. The ratio of the num-

ber of defects found by the reduced test suite to the total

number of faults covered by the original test suite is known

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1173

as the loss percentage or Fault Detection Capability Loss

Percentage (FLP).

𝐹𝐿𝑃 =
𝑚𝑣𝑜

𝑔𝑣
∗ 100 (19)

Here mvo is the number of faults left uncovered gv is the

total number of faults. The Cost Reduction Percentage

(CRP) illustrates the cost savings achieved by the new test

suite in comparison to the original suite.

𝐶𝑅𝑃 =
𝑥𝑖

𝑔𝑖
∗ 100 (20)

xi is the cost of the reduced test suite and gi is the cost of the

original test suite.

6. EXPERIMENTAL SETUP AND RESULT

ANALYSIS

Examining various fitness functions, this section assesses

the TCP and TCM algorithms.

6.1 Performance Analysis of Test Case Prioritization

We have displayed the experiments and results of Test case

prioritization in this area. The proposed Enhanced Electric-

Eel with Critical Path-Aware Foraging Optimization

(EECPFO) algorithm demonstrates impressive performance

across the key metrics of APFD, APFDc, and CPW when

compared to the existing techniques of iBAT, WA, and GA.

The EECPFO algorithm achieved the highest APFD scores,

ranging from 95.66% to 98.32% across the tested programs.

This represents significant improvements over the other al-

gorithms, with EECPFO outperforming iBAT by 2.1% to

2.8%, WA by 3.8% to 5.4%, and GA by 5.5% to 7.7%. The

EECPFO algorithm also exhibited the highest APFDc

scores, again outperforming the other techniques. The im-

provements ranged from 2.1% to 3.6% over iBAT, 3.8% to

4.7% over WA, and 5.5% to 7.0% over GA. This demon-

strates the EECPFO algorithm's effectiveness in not only

prioritizing test cases but also minimizing them while con-

sidering the cost-cognizant aspect.

Furthermore, the EECPFO algorithm showed the best per-

formance in terms of the Critical Path Weighted (CPW) met-

ric, achieving values between 98.84% and 99.79%. The im-

provements over the other algorithms ranged from 0.0% to

2.4% against iBAT, 0.1% to 2.6% against WA, and 0.7% to

3.2% against GA. This highlights the EECPFO algorithm's

enhanced awareness of critical paths within the software

programs, leading to more effective prioritization of test

cases targeting these critical components.

Fig. 1. Average fitness value of the EECPFO compared to

iBAT, WA, and GA algorithms

Figure 1 shows a comparison of the average fitness values

achieved by the EECPFO algorithm and three other ap-

proaches (iBAT, WA, and GA) across three different pro-

grams: Jtopas, Ant, and Jmeter. For the Jtopas program, the

EECPFO algorithm demonstrated the highest average fitness

value of 98.84, outperforming the other techniques. The

iBAT algorithm came in second with 98.30, followed by WA

at 98.16 and GA at 97.46. In the Ant program, the EECPFO

algorithm once again showed its superiority, achieving the

highest average fitness of 99.79. The iBAT and WA algo-

rithms trailed behind with 97.48 and 97.24, respectively,

while the GA algorithm had the lowest average fitness of

96.66.

When it comes to the Jmeter program, the EECPFO and

iBAT algorithms had very similar average fitness values of

98.97 and 98.99, respectively, indicating a close perfor-

mance. The WA algorithm followed with 98.92, and the GA

algorithm had the lowest average fitness of 98.33. Across all

three programs, the EECPFO algorithm consistently outper-

formed the other techniques, demonstrating its superior ef-

fectiveness in optimizing the test case prioritization and min-

imization objectives. This consistent pattern of higher aver-

age fitness values for the EECPFO algorithm suggests that it

is a more efficient and reliable approach for these software

testing tasks.

Fig. 2. Average test case prioritization performance of the

fitness functions across all programs

Figure 2 presents the average performance of the fitness

functions across the tested programs for three key metrics:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1174

Average Percentage of Fault Detection (APFD), Average

Percentage of Fault Detection with Cost (APFDc), and Crit-

ical Path Weight (CPW). For the APFD metric, the average

performance was 93.92%. This indicates that the fitness

functions were able to effectively prioritize test cases to de-

tect a high percentage of faults. Regarding the APFDc met-

ric, which considers the cost of executing test cases, the av-

erage performance was 93.99%. This suggests that the fitness

functions were able to balance the objectives of test case pri-

oritization and minimization while accounting for the associ-

ated costs. The most impressive performance was observed

in the Critical Path Weight (CPW) metric, where the average

value reached 98.26%. This indicates that the fitness func-

tions were highly effective in prioritizing test cases that target

critical paths within the software programs, which is a crucial

aspect of efficient testing. The results demonstrate the strong

performance of the fitness functions across the three key met-

rics. The high average values for APFD, APFDc, and CPW

suggest that the proposed approach is capable of delivering

efficient and effective test case prioritization and minimiza-

tion, with a particular focus on addressing critical paths

within the software under test.

The consistent and substantial improvements exhibited by

the EECPFO algorithm across all three metrics and the tested

programs underscore its superiority in the domain of test case

prioritization and minimization, particularly in the context of

critical path-aware software testing

Fig. 3. Average Fitness functions wise TSP and Improve-

ments (%)

On average, across all the programs, the EECPFO algorithm

achieved an APFD of 16.31, an APFDc of 16.32, and a CPW

of 12.10 as shown in Figure 3. These results reveal the overall

effectiveness of the EECPFO algorithm in test case prioriti-

zation, cost-aware test case prioritization, and critical path-

aware test case prioritization, with consistent improvements

over the other algorithms considered in the study.

6.2 Performance Analysis of Test Case Minimization

In this section, we have shown the experiments and results of

Test case minimization.

Fig. 4. Average Coverage loss for all fitness functions

For the Jmeter program the EECPFO, iBAT, WA, and GA

algorithms all had similar coverage losses across the three

metrics, with APFD losses ranging from 3.4 to 5.4, APFDc

losses ranging from 3.5 to 5.3, and CPW losses of 3.7 or 3.8.

On average, across all the programs, the EECPFO algorithm

had an APFD coverage loss, Figure 4, of 7.2, an APFDc cov-

erage loss of 7.2, and a CPW coverage loss of 5.3. These av-

erage values demonstrate the overall lower coverage loss

achieved by the EECPFO algorithm compared to the other

algorithms, indicating its effectiveness in maintaining high

coverage while prioritizing and minimizing the test cases.

The results suggest that the EECPFO algorithm can strike a

better balance between test case prioritization, cost-aware-

ness, and critical path sensitivity, leading to lower coverage

losses across the evaluated metrics compared to the iBAT,

WA, and GA algorithms

Fig. 5. Average Cost Reduction (%) for all fitness functions

Figure 5 depicts the average cost reduction percentages

achieved by the EECPFO algorithm and the other algorithms

(iBAT, WA, and GA) across the three programs: Jtopas, Ant,

and Jmeter have been presented in this paper. The cost reduc-

tion is measured in terms of APFD, APFDc, and CPW. The

WA and GA algorithms both had a 92.6% cost reduction in

APFD, a 92.8% and 92.5% reduction in APFDc, respec-

tively, and a 94.4% and 94.1% reduction using CPW, respec-

tively. These average values demonstrate the overall higher

cost reduction achieved by the EECPFO algorithm compared

to the other algorithms, indicating its effectiveness in mini-

mizing the test case execution cost while maintaining high

prioritization and critical path sensitivity.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1175

The results suggest that the EECPFO algorithm can strike a

better balance between test case prioritization, cost aware-

ness, and critical path sensitivity, leading to higher cost re-

ductions across the evaluated metrics compared to the iBAT,

WA, and GA algorithms.

4. Conclusion

Prioritizing and minimizing test cases are crucial procedures

in software testing that improve the process' effectiveness.

This paper presents an Enhanced Electric-Eel with Critical

Path-Aware Foraging Optimization (EECPFO) algorithm de-

signed to solve the limits of traditional test case prioritization

and minimization methods in large-scale software testing. To

better handle the complexity of contemporary software sys-

tems, the EECPFO algorithm effectively enhances the classic

Electric-eel Foraging Optimization (EEFO) framework by

incorporating crucial innovations like a dynamic fitness func-

tion, redundancy-aware foraging, critical path sensitivity,

and diversity maintenance. Using three open-source Java

programs (JTopas, Ant, and JMeter) from the Software Infra-

structure Repository (SIR) for a rigorous evaluation, the pro-

posed algorithm shows significant improvements in key met-

rics like Average Percentage of Fault Detection (APFD) and

Average Percentage of Fault Detection with Cost (APFDc).

The experimental results show the EECPFO algorithm im-

proves fault detection rates, prioritizes critical software test

cases, and minimizes testing costs. It also incorporates cost-

aware metrics like APFDc, reducing redundant test cases and

maintaining diversity in test suites. This makes it a cost-effi-

cient solution for large-scale software testing. When com-

pared to the current methods of iBAT, WA, and GA, the pro-

posed Enhanced Electric-eel with Critical Path-Aware For-

aging Optimization (EECPFO) algorithm exhibits excellent

performance across the key metrics of APFD, APFDc, and

CPW. In this research paper, the Critical Path Weighted

(CPW) fitness function is effectively employed to enhance

the efficiency and effectiveness of the testing process [26]. In

conclusion, the EECPFO algorithm stands out as a robust and

efficient solution for test case prioritization and minimization

in software testing. It may be possible to fully utilize the al-

gorithm's potential in real-world scenarios by integrating it

with automated testing frameworks, researching its applica-

tion to additional programming languages and software do-

mains, and further improving the method

LIST OF ABBREVIATIONS

EEFO= Electric-eel Foraging Optimization

CPW= Critical Path Weighted

EECPFO= Enhanced Electric-Eel with Critical

Path-Aware Foraging Optimization (EECPFO)

APFD= Average Percentage of Fault Detection

APFDc= Average Percentage of Fault Detection

 with Cost

CONFLICT OF INTEREST

The author declares no conflict of interest financial or other-

wise.

REFERENCES

[1] Tomar, V., Bansal, M., & Singh, P., “Regression

Testing Approaches, Tools, and Applications in

Various Environments.” 4th International Conference

on Artificial Intelligence and Speech Technology

(AIST), 1-6, IEEE, (2022).

https://doi.org/10.1109/AIST55798.2022.10064753

[2] Tomar, V., & Bansal, M., “Software Testing and Test

Case Optimization: Concepts and Trends.” Electronic

Systems and Intelligent Computing: Proceedings of

ESIC 2021, 525-532. Singapore: Springer Nature

Singapore., (2022). https://doi.org/10.1007/978-981-

16-9488-2_50

[3] Houssein, E. H., Saad, M. R., Hashim, F. A., Shaban,

H., & Hassaballah, M., “Lévy flight distribution: A new

metaheuristic algorithm for solving engineering

optimization problems.” Engineering Applications of

Artificial Intelligence, 94, 103731, (2020).

https://doi.org/10.1016/j.engappai.2020.103731

[4] Meng, Z., Li, G., Wang, X., Sait, S. M., & Yıldız, A. R.,

“A comparative study of metaheuristic algorithms for

reliability-based design optimization

problems.” Archives of Computational Methods in

Engineering, 28, 1853-1869, (2021).

https://doi.org/10.1007/ s11831-020-09443-z

[5] Agushaka, J. O., & Ezugwu, A. E., “Evaluation of

several initialization methods on arithmetic

optimization algorithm performance.” Journal of

Intelligent Systems, 31(1), 70-94, (2021).

https://doi.org/10.1515/jisys-2021-0164

[6] Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. K.,

“Metaheuristic algorithms: A comprehensive

review.” Computational intelligence for multimedia big

data on the cloud with engineering applications, 185-

231, (2018).

[7] Tomar, V., Bansal, M., & Singh, P., “Metaheuristic

Algorithms for Optimization: A Brief

Review.” Engineering Proceedings, 59(1), 238, (2024).

https://doi.org/10.3390/engproc2023059238

[8] Mohapatra, S. K., & Prasad, S., “Test case reduction

using ant colony optimization for object-oriented

program.” International Journal of Electrical and

Computer Engineering, 5(6), (2015).

[9] Bajaj, A., & Abraham, A., “Prioritizing and Minimizing

the Test Cases using the Dragonfly

Algorithms.” International Journal of Computer

https://doi.org/10.1109/AIST55798.2022.10064753
https://doi.org/10.1007/978-981-16-9488-2_50
https://doi.org/10.1007/978-981-16-9488-2_50
https://doi.org/10.1016/j.engappai.2020.103731
https://doi.org/10.1515/jisys-2021-0164
https://doi.org/10.3390/engproc2023059238

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176 | 1176

Information Systems and Industrial Management

Applications, 13, 10-10, (2021).

[10] Rushikesh Sugave, S., Patil, S. H., & Eswara Reddy, B.,

“DIV‐TBAT algorithm for test suite reduction in

software testing.” IET Software, 12(3), 271-279,

(2018).

[11] Nayak, G., & Ray, M., “Modified condition decision

coverage criteria for test suite prioritization using

particle swarm optimization.” International Journal of

Intelligent Computing and Cybernetics, 12(4), 425-443,

(2019).

[12] Bajaj, A., Sangwan, O. P., & Abraham, A., “Improved

novel bat algorithm for test case prioritization and

minimization.” Soft Computing, 26(22), 12393-12419,

(2022). https://doi.org/10.1007/s00500-022-07121-9

[13] Li, F., Zhou, J., Li, Y., Hao, D., & Zhang, L., “Aga: An

accelerated greedy additional algorithm for test case

prioritization.” IEEE Transactions on Software

Engineering, 48(12), 5102-5119, (2021).

[14] Ahmed, B. S., “Test case minimization approach using

fault detection and combinatorial optimization

techniques for configuration-aware structural

testing.” Engineering Science and Technology, an

International Journal, 19(2), 737-753, (2016).

[15] Khatibsyarbini, M., Isa, M. A., & Jawawi, D. N. A.,

“Particle swarm optimization for test case prioritization

using string distance.” Advanced Science

Letters, 24(10), 7221-7226, (2018).

[16] Samad, A., Mahdin, H. B., Kazmi, R., Ibrahim, R., &

Baharum, Z., “Multiobjective test case prioritization

using test case effectiveness: multicriteria scoring

method.” Scientific Programming, 2021(1), 9988987,

(2021).

[17] Bharathi, M., “Hybrid particle swarm and ranked firefly

metaheuristic optimization-based software test case

minimization.” International Journal of Applied

Metaheuristic Computing (IJAMC), 13(1), 1-20,

(2022).

[18] Deneke, A., Assefa, B. G., & Mohapatra, S. K., “Test

suite minimization using particle swarm

optimization.” Materials Today: Proceedings, 60, 229-

233, (2022).

[19] Boyar, T., Oz, M., Oncu, E., & Aktas, M. S., “A novel

approach to test case prioritization for software

regression tests.” Computational Science and Its

Applications–ICCSA 2021: 21st International

Conference, Cagliari, Italy, September 13–16, 2021,

Proceedings, Part VII 21, 201-216. Springer

International Publishing, (2021).

[20] Bajaj, A., & Sangwan, O. P., “Discrete and

combinatorial gravitational search algorithms for test

case prioritization and minimization.” International

Journal of Information Technology, 13, 817-823,

(2021).

[21] Zhao, W., Wang, L., Zhang, Z., Fan, H., Zhang, J.,

Mirjalili, S., & Cao, Q., “Electric eel foraging

optimization: A new bio-inspired optimizer for

engineering applications.” Expert Systems with

Applications, 238, 122200, (2024).

[22] Bastos, D. A., Zuanon, J., Rapp Py‐Daniel, L., & de

Santana, C. D., “Social predation in electric

eels.” Ecology and evolution, 11(3), 1088-1092,

(2021). https://doi.org/10.1002/ ece3.7121

[23] Malishevsky, A. G., Ruthruff, J. R., Rothermel, G., &

Elbaum, S., “Cost-cognizant test case prioritization.”

Technical report TR-UNLCSE-2006–0004, University

of Nebraska-Lincoln, 97–106, (2006).

[24] Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V.,

Murphy, E. J., Prince, P. A., & Stanley, H. E., “Lévy

flight search patterns of wandering

albatrosses.” Nature, 381(6581), 413-415, (1996).

https://doi.org/10.1038/381413a0

[25] Zhao, S., Zhang, T., Ma, S., & Wang, M., “Sea-horse

optimizer: A novel nature-inspired meta-heuristic for

global optimization problems.” Applied

Intelligence, 53(10), 11833-11860. (2023).

https://doi.org/10.1007/s10489-022-03994-3

[26] V. Tomar, M. Bansal, and P. Singh, “Application of

Gradient-Based Optimizer for Development of

Enhanced Fitness Function with Critical Path Weights

for Generating Test Data.” International Journal of

Intelligent Systems and Applications in Engineering,

12(21s), 4403, (2024). –. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/6296

[27] Li, Z., Harman, M., & Hierons, R. M., “Search

algorithms for regression test case prioritization.” IEEE

Transactions on software engineering, 33(4), 225-237,

(2007).

[28] Marchetto, A., Islam, M. M., Asghar, W., Susi, A., &

Scanniello, G., “A multi-objective technique to

prioritize test cases.” IEEE Transactions on Software

Engineering, 42(10), 918-940, (2015).

[29] Elbaum, S., Malishevsky, A. G., & Rothermel, G.,

“Test case prioritization: A family of empirical

studies.” IEEE transactions on software

engineering, 28(2), 159-182, (2002).

https://doi.org/10.1007/s10489-022-03994-3

