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Abstract: Test case prioritization and minimization are essential practices to augment the efficiency of the testing process in software 

testing. However, conventional methods often struggle with large-scale software systems due to their inability to effectively handle the 

critical path, leading to suboptimal prioritization and minimal test coverage This research paper proposes an Enhanced Electric-Eel with 

Critical Path-Aware Foraging Optimization (EECPFO) algorithm tailored for test case minimization and prioritization in software testing. 

The algorithm is designed to address the challenges of minimizing redundancy, prioritizing critical paths, and maintaining diversity in test 

suites. To achieve this, modifications including a Dynamic Fitness Function, Redundancy-aware Foraging, Critical Path Sensitivity, and 

Diversity Maintenance are integrated into the EEFO framework. The proposed algorithm is evaluated for its effectiveness using three open-

source Java programs (JTopas, Ant, and JMeter) from the Software Infrastructure Repository (SIR), employing well-known metrics such 

as Average Percentage of Fault Detection (APFD) and Average Percentage of Fault Detection with Cost (APFDc). Experimental results 

demonstrate significant improvements in test case prioritization and minimization compared to benchmark algorithms, showcasing en-

hanced fault detection rates, coverage, and cost reduction percentages. The findings, highlight the potential of the proposed EECPFO 

algorithm as a valuable tool for optimizing software testing processes, leading to more efficient and effective quality assurance practices. 
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1. INTRODUCTION  

In the realm of software testing, the significance of prioritiz-

ing and minimizing test cases cannot be overstated. As soft-

ware systems get more intricate, the traditional methods often 

fall short of effectively identifying critical test cases for pri-

oritization and minimizing redundant ones. In response to 

this challenge, a novel approach emerges, leveraging deep 

learning techniques to introduce a Critical Path-Aware archi-

tecture. This architecture not only streamlines the process of 

test case prioritization but also minimizes redundancy, thus 

optimizing testing resources and accelerating the software 

development lifecycle. In this paper, we delve into the intri-

cacies of this innovative architecture, its underlying princi-

ples, and its potential to revolutionize the software testing do-

main. The continuous integration and advancement pro-

cesses require regression testing. Test case prioritization 

(TCP), test case selection (TCS), and test case minimization 

(TCM) are the three strategies used in regression testing to 

deal with these complex issues [1]. TCP prioritizes the test 

cases using predesigned plans, while TCS focuses on the cru-

cial test cases impacted by the altered part. In addition, TCM 

minimizes the test suite by eliminating unnecessary data. Op-

timization-related challenges are encountered frequently in 

our day-to-day work and lives. The pursuit of efficient and 

effective approaches to optimization challenges is 

progressively taking center stage as a field of study. Optimi-

zation is the technique of identifying the ideal solution, or an 

approximate representation of the optimum solution, amidst 

various possibilities for a given issue under specific con-

straints [2]. Numerous optimization challenges are growing 

more widespread and sophisticated in lots of diverse engi-

neering disciplines due to the quick development of new 

technology. Optimization saves money, reduces computing 

load, and greatly increases efficiency. Optimization tech-

niques encompass two broad categories: mathematical meth-

ods and metaheuristic methods. These categories form the 

foundation for a robust and comprehensive approach to opti-

mization. 

Using a carefully constructed mathematical model and a spe-

cific initial condition, the process involves employing vari-

ous mathematical procedures and techniques to iteratively re-

fine and determine the most optimal solution. This iterative 

approach allows for thorough examination and analysis to 

ensure the best possible outcome is achieved. Conventional 

mathematical methodologies prove efficacious in ascertain-

ing the optimal solution in instances where the glitches are 

uncomplicated and there are restricted dimensionalities in the 

solution space. Nevertheless, real-world applications present 

a multitude of large-scale, multimodal, nonlinear, and com-

plex optimization challenges [3][4]. These challenges typi-

cally necessitate mathematical techniques that rely on the 

gradient information provided by the problems and are nota-

bly complex to the selection of early points [5]. The task of 

identifying the optimal solution to intricate problems is in-

herently challenging, with the potential to inadvertently 

1,2Department of Computer Science, Shobhit Institute of Engineering & 

Technology (Deemed-to-be University), Meerut, U.P. 250110, India 
3Department of Computer Science, Maharaja Surajmal Institute, Janakpuri, 

New Delhi 110058, India 

E-mail address: 1tomar.vinita@gmail.com 

 

mailto:tomar.vinita@gmail.com


 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176  |  1165 

converge towards localized optimal solutions. Consequently, 

the application of mathematical methodologies to tackle 

complex optimization problems is accompanied by notable 

constraints.  

The metaheuristic approach is an algorithmic framework that 

applies heuristics driven by mathematical concepts, natural 

occurrences, and biological processes, without depending on 

the specific situation [6][7]. Their incorporation of arbitrari-

ness, ease of execution, and consideration of black box func-

tions position metaheuristic approaches as favorable alterna-

tives to traditional mathematical methods, thereby mitigating 

the associated drawbacks. Notably, metaheuristics have re-

cently gained substantial consideration in academic works 

and are extensively functioning to address a myriad of com-

plex engineering challenges. Optimization algorithms are in-

creasingly being used in various industries due to rapid tech-

nological advancements and new application needs. Conse-

quently, it is essential to possess investigating and learning 

techniques that enhance these applications and to identify 

practical optimization technologies. Despite the many opti-

mizers available in the market today, formulating a new op-

timizer is still mandatory. The Critical Path-Aware Deep 

Learning Architecture represents a significant advancement 

in the domain of software testing methodologies. By integrat-

ing deep learning techniques with critical path analysis, this 

architecture offers a transformative approach to test case pri-

oritization and minimization. Unlike traditional methods, 

which often rely on manual selection or heuristic algorithms, 

this architecture harnesses the power of deep learning algo-

rithms to automatically identify critical paths within a soft-

ware system. By understanding the dependencies and inter-

actions between various components, it can intelligently pri-

oritize test cases founded on their impact on the critical path, 

thereby maximizing the efficiency of testing efforts. Further-

more, the architecture facilitates the minimization of redun-

dant test cases by recognizing overlapping functionalities and 

eliminating unnecessary redundancy. Through this innova-

tive combination of deep learning and critical path analysis, 

the Critical Path-Aware Deep Learning Architecture presents 

a promising solution to enhance the effectiveness and effi-

ciency of software testing processes. 

Test case prioritization is a fundamental aspect of software 

testing, crucial for maximizing the efficiency and effective-

ness of testing efforts. The determination of the testing se-

quence entails a meticulous consideration of how individual 

test cases are completed, considering their relative relevance 

and potential influence on the software system. This method 

ensures that tests with the highest criticality and impact are 

prioritized, facilitating the early detection and resolution of 

high-priority issues during the testing phase. This prioritiza-

tion is typically guided by various factors such as the critical-

ity of system functionalities, the likelihood of uncovering se-

vere defects, project deadlines, and resource constraints. By 

systematically arranging test cases in order of priority, testing 

teams can ensure that the most critical aspects of the software 

are thoroughly evaluated first, reducing the risk of overlook-

ing crucial defects and expediting the identification and res-

olution of issues. Moreover, prioritization helps allocate lim-

ited testing resources judiciously, optimizing the testing pro-

cess and ultimately enhancing the overall excellence and de-

pendability of the software product. Test case minimization 

is a strategic approach employed in software testing to 

streamline the testing process and optimize resource utiliza-

tion. This strategy effectively classifies and addresses any 

needless or redundant test cases while ensuring adequate test 

coverage. By decreasing the quantity of test cases without 

sacrificing the comprehensiveness of the testing, teams can 

save time and resources, accelerating the testing phase and 

ultimately expediting the software development lifecycle. 

Test case minimization involves techniques such as identify-

ing equivalent test cases, removing duplicates, and consoli-

dating test scenarios to cover multiple functionalities effi-

ciently. Through this process, testing efforts become more 

focused and efficient, allowing teams to allocate their re-

sources more effectively and prioritize critical testing activi-

ties. The result is a more streamlined testing process, im-

proved productivity, and enhanced software quality. 

Various nature-inspired algorithms have been applied in re-

gression testing for TCP and TCM systems to enhance vari-

ous aspects such as test case selection, prioritization, cover-

age, scheduling, and resource allocation, ultimately improv-

ing testing efficiency and effectiveness. Table 1 illustrates 

various Metaheuristics Algorithms along with their descrip-

tion and application in TCP/TCM Regression Testing. 

TABLE 1 Metaheuristics Algorithms along with their de-

scription and application in TCP/TCM Regression Testing 

Algo-

rithm 

Description Application in 

TCP/TCM Regression 

Testing 

Im-

proved 

Bat Al-

gorithm 

(iBAT) 

Inspired by the 

echolocation be-

havior of bats, 

used for optimi-

zation problems 

with enhanced 

efficiency 

Optimizes test case se-

lection and prioritiza-

tion by exploring the 

solution space effi-

ciently, reducing testing 

time. 

Whale 

Algo-

rithm 

(WA) 

Inspired by the 

bubble-net hunt-

ing strategy of 

humpback 

whales, used for 

solving global 

optimization 

problems. 

Enhances regression 

test suite by clustering 

and prioritizing test 

cases based on similar-

ity and coverage, im-

proving test effective-

ness. 

Genetic Mimics natural 

selection and 

Optimizing test case se-

lection, prioritizing test 



 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1164–1176  |  1166 

Algo-

rithm 

(GA) 

evolution pro-

cesses to find op-

timal solutions. 

cases based on cover-

age, and minimizing re-

dundancy in testing. 

Particle 

Swarm 

Optimi-

zation 

(PSO) 

Motivated by the 

flocking social 

behavior of 

birds. Improves 

candidate solu-

tions iteratively. 

Optimizing test suite 

selection, improving 

test coverage, and bal-

ancing trade-offs be-

tween testing objec-

tives. 

Ant Col-

ony Op-

timiza-

tion 

(ACO) 

Motivated by the 

methods of for-

aging used by 

ants. Particularly 

useful for solv-

ing combinato-

rial optimization 

problems. 

Optimizing test suite 

prioritization, identify-

ing critical test cases, 

and navigating complex 

testing scenarios effi-

ciently. 

Artificial 

Bee Col-

ony 

(ABC) 

Algo-

rithm 

Motivated by the 

way a swarm of 

honeybee’s for-

ages. Iteratively 

improves candi-

date solutions. 

Optimizing test case se-

lection, minimizing 

testing cost, and im-

proving fault detection 

capabilities. 

Firefly 

Algo-

rithm 

(FA) 

Motivated by the 

way fireflies 

flash. Focuses on 

attraction and 

movement to-

wards brighter 

ones. 

Optimizing test sched-

uling, prioritizing test 

execution, and improv-

ing resource allocation 

for testing tasks. 

 

Integrating metrics such as Average Percentage of Faults De-

tected (APFD) and its complement, APFDc (APFD consid-

ering costs), represents a crucial step in the assessment and 

optimization of software testing strategies. APFD provides a 

quantitative measure of the efficacy of test case prioritization 

by considering both the order and coverage of test cases in 

detecting faults. By calculating the proportion of faults de-

tected within a given budget of executed test cases, APFD 

offers valuable insights into the quality of the testing process. 

Moreover, incorporating APFDc extends this analysis by ac-

counting for the costs associated with executing test cases, 

such as time, resources, and potential risks. This integration 

enables testing teams to make informed decisions regarding 

the allocation of resources, balancing the trade-offs between 

cost and effectiveness. By leveraging metrics like APFD and 

APFDc, organizations can optimize their testing strategies, 

improve fault detection rates, and ultimately enhance the re-

liability and quality of their software products. The key ver-

dicts of this study comprise: 

• Developed a dynamic fitness function that incorporates 

the objectives of test case minimization and 

prioritization. Integrate metrics like APFD and APFDc 

directly into the fitness function, ensuring that the algo-

rithm optimizes for these criteria throughout the optimi-

zation process. 

• Redundancy-aware Foraging: Introduced a mechanism to 

identify and avoid redundant test cases during the forag-

ing process. This could involve analyzing the similarity 

between test cases and prioritizing the inclusion of unique 

and effective test cases, ultimately reducing redundancy. 

• Critical Path Sensitivity: Enhanced the algorithm's 

awareness of critical paths within the software programs. 

This was achieved by incorporating information about 

dependencies and execution paths, ensuring that the algo-

rithm prioritizes test cases that are more likely to impact 

the critical paths. 

• Diversity Maintenance: Implemented strategies to main-

tain diversity in the population of solutions. This encour-

ages the exploration of the solution space, preventing 

premature convergence to unsatisfactory solutions. It 

may lead to the discovery of more efficient techniques for 

test case prioritization and minimization. 

The subsequent sections of this article are organized as fol-

lows: Section 2 provides a detailed description of the pro-

grams used in this investigation. The study is thoroughly de-

scribed in Part 3, while Section 4 outlines the proposed work. 

Sections 5 and 6 cover performance measurements, experi-

mental design, and findings analysis. The article concludes 

in Section 7.   

2. PROGRAMS USED 

2.1 JTopas 

JTopas is a Java-based text parsing library that aids develop-

ers in processing textual data in Java applications. It offers 

features like regular expressions, customizable rules, and ro-

bust error-handling mechanisms, enabling developers to 

tackle various text-processing challenges. As an open-source 

library, it encourages collaboration and innovation within the 

Java development community. 

2.2 Ant Programs 

Ant Programs are optimization algorithms inspired by real 

ants, using pheromone trails to find optimal solutions to com-

plex problems. They navigate through solution spaces, rein-

forcing pheromone trails as they find promising routes. These 

algorithms are useful in routing, scheduling, network design, 

and combinatorial optimization tasks. Their adaptive nature 

and scalability make them valuable tools for tackling com-

plex problems. 

2.3 JMeter programs  

JMeter is a versatile platform for web application testing, of-

fering performance, load, and functional testing. Its intuitive 

interface allows users to create detailed test plans, utilizing 
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samplers, listeners, controllers, assertions, timers, and con-

figuration elements. JMeter supports plugins, enhancing its 

capabilities for specific testing requirements. Its versatility 

ensures web application reliability, scalability, and perfor-

mance efficiency in today's digital landscape. 

3. RELATED WORK 

The pursuit of software excellence has sparked extensive re-

search into software testing, test case prioritization, and test 

case minimization. A few of them are listed below: 

An object-oriented program's test case reduction method 

employing Ant Colony Optimization (ACO) is presented in 

a study done by Mohapatra and Prasad [8]. Utilizing ants' 

foraging behavior as a model, the method finds and removes 

unnecessary test cases while keeping those that are neces-

sary to maximize fault detection. The objective of this ACO-

based approach is to decrease test suite size and execution 

time without sacrificing testing efficacy. The outcomes 

show that, in comparison to traditional reduction techniques, 

the method may effectively minimize test cases, guarantee-

ing sufficient test coverage and enhanced fault detection 

rates. Bajaj, A. et al. [9] introduced the DAPSO method, a 

mix of the dragonfly algorithm (DA) and the particle swarm 

optimization algorithm (PSO). Algorithms for test case pri-

oritization (TCP) and minimization (TCM) have been devel-

oped. In terms of prioritizing, reduction, and performance 

metrics, the DAPSO method performs better than random 

search (RS), genetic algorithm (GA), bat algorithm, and 

PSO. In numerical values, GA performs better. For im-

proved validation, they have recommended investigating 

different dragonfly algorithms in subsequent research. Ant 

colony optimization, or ACO, was used by Sugave et al. [10] 

to improve the variety of the search process by using the bat 

algorithm for TCM and a new fitness function. They pre-

sented obstacles to minimizing costs and meeting all re-

quirements. Their suggested approach outperformed other 

current techniques when tested on various software infra-

structure repository programs. The test suite prioritizing ap-

proach presented in Nayak and Ray's [11] study makes use 

of Particle Swarm Optimization (PSO) and is based on Mod-

ified Condition Decision Coverage (MCDC) criteria. By 

guaranteeing that crucial conditions and decision routes are 

checked early on, this strategy seeks to improve fault detec-

tion efficiency through test case prioritization. The method 

efficiently arranges test cases to increase the comprehen-

siveness and speed of defect detection by integrating PSO 

with MCDC. The findings demonstrate that this strategy 

works better at obtaining higher coverage and fault detection 

rates than conventional prioritization techniques. An en-

hanced bat algorithm for test case prioritization (TCP) and 

test case minimization (TCM) has been proposed by Bajaj, 

A. et al. [12]. It outperforms algorithms inspired by nature 

and random searches, such as the whale optimization algo-

rithm (WA), bird swarm algorithm (BSA), bat algorithm 

(BAT), genetic algorithm (GA), and novel bat algorithm 

(nBAT). In terms of cost reduction, statement coverage, and 

test case priority, the enhanced innovative bat algorithm 

(iBAT) performed better. To improve validation, their up-

coming work will involve creating a method for choosing 

test cases and investigating hybridized bat algorithms with 

algorithms influenced by nature. Among others, Feng Li et 

al, [13] suggested Test Case Prioritization using an Acceler-

ated Greedy Additional Algorithm: Test case prioritization 

is addressed in this study through the introduction of the Ac-

celerated Greedy Additional Algorithm (AGA). Using a 

clever selection and ranking process based on test case po-

tential for defect detection, the AGA algorithm seeks to in-

crease test case prioritization's efficacy and efficiency. Crit-

ical test cases can be identified more quickly thanks to 

AGA's use of a greedy additional method, which speeds up 

the prioritization process. By offering a unique algorithm for 

optimizing test case prioritization, this research progresses 

the software testing field and may result in more effective 

software testing procedures.   

A new method for test case minimization designed for con-

figuration-aware structural testing is presented by Ahmed 

[14]. Combinatorial optimization techniques and fault detec-

tion capabilities are integrated into this method to minimize 

the number of test cases while preserving or enhancing the 

efficacy of fault detection. The technique seeks to improve 

testing speed, minimize redundancy, and guarantee thor-

ough test coverage by concentrating on pertinent configura-

tions and utilizing optimization strategies. Comparing the 

suggested method to conventional techniques, notable gains 

are shown in test suite reduction and defect identification. A 

test case prioritizing technique utilizing Particle Swarm Op-

timization (PSO) in conjunction with string distance meas-

urements is presented by Khatibsyarbini et al. [15]. The goal 

of this strategy is to raise the number of fault detections early 

in the testing process by optimizing the sequence of test 

cases. The method ranks test cases according to their likeli-

hood of identifying distinct errors by computing their simi-

larity. When compared to conventional prioritization meth-

ods, the results show increased testing efficacy and effi-

ciency. A multi-objective test case prioritization technique 

based on test case effectiveness is presented in a work by 

Samad et al. [16]. The scoring method is multicriteria. This 

method, which aims to optimize the testing process, assesses 

and ranks test cases based on several factors, namely execu-

tion cost, coverage, and fault detection potential. Through 

careful consideration of these variables, the method ranks 

the test cases that have the highest overall efficacy, resulting 

in an earlier in the testing cycle and more effective flaw dis-

covery. Empirical assessments reveal that the approach out-

performs conventional prioritization techniques. Bharathi 

[17] presents a hybrid method for software test case minimi-

zation that combines Ranked Firefly Algorithm (RFA) and 

Particle Swarm Optimization (PSO) in her study. This 

method seeks to retain a high level of defect detection capa-

bilities while reducing the entire number of test cases. The 
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hybrid approach efficiently finds and removes redundant 

test cases by utilizing both the local search effectiveness of 

RFA and the global search capability of PSO. When com-

pared to stand-alone optimization techniques, the method 

performs better in terms of reducing test suites and improv-

ing testing efficiency. Deneke et al. [18] provide a Particle 

Swarm Optimization (PSO) based test suite minimization 

method. The goal of the approach is to decrease the test 

suite's size while preserving or enhancing its fault-detection 

capabilities. Testing efficiency and coverage are improved 

by the method's efficient identification and removal of re-

dundant tests, which is accomplished by optimizing test case 

selection through PSO. When compared to conventional 

minimizing strategies, the study shows that PSO can greatly 

expedite the testing procedure. Boyar, T et al. [19] offer a 

revolutionary method for software regression test case pri-

oritization. To guarantee that crucial functionality is evalu-

ated early in the regression cycle, the approach makes use of 

a dynamic mechanism that adjusts to changes in the software 

being tested. The method seeks to maximize test execution 

time and enhance fault detection efficacy by taking into ac-

count the effects of modifications and integrating input from 

prior test runs. The study shows how the suggested method 

can improve software quality while requiring less regression 

testing work. Discrete and combinatorial gravitational 

search methods were introduced by Bajaj and Sangwan [20] 

for test case minimization and prioritization in software test-

ing. The method optimizes test case selection and order by 

applying gravitational principles, to reduce test suite size 

and increase fault detection efficiency. The method demon-

strates improved performance over conventional techniques 

by balancing coverage and minimization objectives through 

the integration of discrete and combinatorial procedures. Ta-

ble 2 illustrates the comparison between TCP and TCM. 

TABLE 2 Comparison between various techniques used for 

Test Case prioritization and minimization. 

Authors & 

Year 

Techniques 

Used 

Findings and 

Conclusions 

Mohapatra, 

S.K. Prasad, S. 

(2015) 

Ant Colony 

Optimization 

Effective reduction 

of test cases in 

object-oriented 

programs, 

enhancing 

efficiency in 

software testing. 

Bajaj, Anu, et 

al. (2022) 

Improved 

Quantum-

Behaved 

Particle 

Swarm 

Optimization 

Enhanced 

prioritization, 

selection, and 

reduction of test 

cases, improving 

fault detection and 

test coverage in 

software testing 

scenarios. 

Sugave SR, 

Patil SH, 

Reddy BE 

(2018) 

DIV-TBAT 

algorithm 

Efficient test suite 

reduction with 

maintained or 

improved fault 

detection 

capabilities, 

suitable for large-

scale software 

systems. 

Nayak, G.; 

Ray, M. (2019) 

Particle 

Swarm 

Optimization 

Prioritization based 

on Modified 

Condition Decision 

Coverage criteria, 

leading to improved 

test effectiveness 

and coverage in 

software testing. 

Bajaj, A., 

Sangwan, O.P. 

& Abraham, 

A. (2022) 

Novel Bat 

Algorithm 

Effective test case 

prioritization and 

minimization, 

achieving 

comprehensive test 

coverage while 

reducing 

redundancy in 

software testing. 

Li, F., Zhou, J., 

Li, Y., Hao, 

D., & Zhang, 

L. (2021) 

Accelerated 

Greedy 

Additional 

Algorithm 

(AGA) 

Accelerated test 

case prioritization, 

optimizing the order 

of execution for 

faster fault 

detection and 

improved software 

reliability. 

Ahmed, B.S. 

(2016) 

Fault 

detection and 

combinatorial 

optimization 

techniques 

Configuration-

aware structural 

testing approach for 

minimizing test 

cases, ensuring 

thorough coverage 

of critical 

configurations in 

software systems. 

Khatibsyarbini, 

M.; Isa, M.A.; 

Jawawi, 

D.N.A. (2018) 

Particle 

Swarm 

Optimization 

using string 

distance 

Effective 

prioritization based 

on string distance 

metrics, enhancing 

the fault detection 

capability and 

efficiency of 

software testing. 
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Samad, A., et 

al. (2021) 

Multiobjective 

Scoring 

Method 

Multi-criteria 

approach to test 

case prioritization, 

balancing 

effectiveness, 

coverage, and 

execution cost for 

improved software 

quality. 

Bharathi, M. 

(2022) 

Hybrid 

Particle 

Swarm and 

Ranked 

Firefly 

Metaheuristic 

Optimization-based 

approach for test 

case minimization, 

combining 

strengths of PSO 

and Firefly 

algorithms to 

reduce redundancy 

and enhance 

efficiency in 

software testing. 

Deneke, A.; 

Assefa, B.G.; 

Mohapatra, 

S.K. (2022) 

Particle 

Swarm 

Optimization 

Test suite 

minimization 

approach using 

PSO, optimizing the 

size and 

composition of test 

suites for efficient 

software testing. 

Boyar, T., Oz, 

M., Oncu, E., 

& Aktas, M. S. 

(2021) 

Dynamic Test 

Prioritization 

Novel approach 

adapting to software 

changes, 

prioritizing tests to 

detect critical 

regressions early, 

and improving 

software reliability. 

Bajaj, A., & 

Sangwan, O. P. 

(2021) 

Discrete and 

Combinatorial 

Gravitational 

search 

algorithm  

Innovative 

algorithms for test 

case prioritization 

and minimization, 

achieving balanced 

coverage and 

minimal 

redundancy in 

software testing 

scenarios. 

4. PROPOSED WORK 

The hunting habits of the electric eel, an intriguing aquatic 

animal recognized for its capacity to produce electric shocks 

for both defense and prey acquisition, serve as the model for 

the bioinspired algorithm known as Enhanced Electric-Eel 

with Critical Path-Aware Foraging Optimization (EECPFO) 

algorithm. To effectively solve optimization problems, 

EECPFO imitates the electric eel's foraging style. The algo-

rithm identifies the best solutions by analyzing the solution 

space, much like an eel looks for food in its surroundings. 

Using a combination of exploration and exploitation strate-

gies, EECPFO assesses the fitness of population members 

who represent viable solutions using established objective 

functions [21]. By modifying the electric eel's behavior, the 

algorithm iteratively improves its search by constantly mod-

ifying its parameters to balance the exploration of new terri-

tory and the exploitation of promising areas. This bio-in-

spired method has demonstrated encouraging outcomes in a 

range of optimization tasks, indicating its efficacy in resolv-

ing challenging issues in a variety of fields. 

4.1. Mathematical model and algorithm 

The EECPFO's stages of exploration and exploitation were 

intricately designed to replicate the complex social preda-

tion behaviors observed in electric eels, encompassing their 

resting, hunting, migrating, and interacting behaviors [22]. 

The mathematical representations of these foraging behav-

iors are elaborated upon in the following sections. 

4.1.1. Interacting  

Whenever electric eels see a school of fish, they collaborate 

by swimming in a large, electrified circle to corral a signifi-

cant number of small fish in the center. In this Enhanced 

Electric-Eel with Critical Path-Aware Foraging Optimiza-

tion (EECPFO) strategy, every eel in the system acts as a 

viable candidate solution, with the intended prey being the 

most promising solution discovered so far. The eels exhibit 

behavior that suggests they are aware of each other's posi-

tions and cooperate during this global exploration phase 

[22]. This behavior enables an eel to utilize the positional 

information of each individual in the eel population to inter-

act with another eel chosen at random. The updating of an 

eel's position comprises the comparison of its location with 

the population center. Utilizing geographic data within the 

search space, an electric eel is capable of engaging with 

other eels chosen at random from the population. The pro-

cess entails comparing the place of an eel that emerged arbi-

trarily inside the search space with one selected from the 

population. Eels exhibit erratic movement in various direc-

tions, termed churning, as a form of social interaction. The 

mathematical model illustrates this churn using various 

equations. The interactive action is laid out as follows: 

                                                                                             
(1) 

𝑐(𝑔) =  
1

𝑚
∑ 𝑐𝑟(𝑞)
𝑛
𝑖=1      (2) 

𝑐𝑖 = 𝐿𝑜𝑤 + 𝑖 × (𝑈𝑝 − 𝐿𝑜𝑤)    (3) 

 
 
 

 
  

𝑒𝑟(𝑔 + 1) =  𝑐𝑞(𝑔) + 𝑋 ×  𝑐 (𝑔) −  𝑐𝑞(𝑔) 𝑘1 > 0.5

𝑒𝑟(𝑔 + 1) =  𝑐𝑞(𝑔) + 𝑋 ×  𝑐𝑖(𝑔) −  𝑐𝑟(𝑔) 𝑘1  ≤ 0.5
  𝑓𝑖𝑡  𝑐𝑞(𝑔) < 𝑓𝑖𝑡(𝑐𝑟(𝑔))

 
𝑒𝑟(𝑔 + 1) =  𝑐𝑟(𝑔) + 𝑋 ×  𝑐 (𝑔) −  𝑐𝑞(𝑔) 𝑘2 > 0.5

𝑒𝑟(𝑔 + 1) =  𝑐𝑟(𝑔) + 𝑋 ×  𝑐𝑖(𝑔) −  𝑐𝑞(𝑔) 𝑘2  ≤ 0.5
  𝑓𝑖𝑡  𝑐𝑞(𝑔) ≤ 𝑓𝑖𝑡(𝑐𝑟(𝑔))
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Here, random numbers are k1 and k2 within (0, 1), the fitness 

of the candidate position of the electric eel is fit(c(r)), cq is the 

position of an eel chosen randomly from the current popula-

tion, and q ∕=r, m is the size of the population, i1 is a random 

number within (0,1), i is the random vector within (0,1), and 

the lower and upper boundaries are Low and Up respectively. 

Equation (1) suggests that electric eels can migrate toward 

different areas in the search area due to their interacting ac-

tivity, which may greatly benefit the exploration of EECPFO 

throughout the whole search area. 

4.1.2. Resting 

In EECPFO, Electric eels must shape their resting area before 

appealing to resting activity. In order to improve search effi-

ciency, a resting area is constructed in the area where the ma-

jor diagonal of the search space is projected onto any dimen-

sion of an eel's position vector. By narrowing the search to a 

specified location, this method may increase the likelihood 

of discovering a solution. To find a resting location, the eel's 

position and the search space are both normalized to a 0–1 

range. The center of the eel's resting area is projected onto 

the main diagonal of the normalized search space using a ran-

domly chosen dimension of the eel's position. The resting 

area has been described by various mathematical equations. 

The furthermost optimal resolution is embodied in cprey, the 

initial scale of the resting area is denoted by α0, and the range 

of the location where one is resting is shown by the term α0 

×⃒A(g) π cprey(t)⃒, the random position dimension of a ran-

domly selected individual from the current population is rep-

resented by c rand(w) and rand(m), and a is the normalized 

number. An eel so chooses its resting spot within its allotted 

resting space before beginning to rest: 

Ir(g + 1) = A(g) +  α × |A(g) − cprey(g)|  (4) 

α =  α0  ×  sin(2πi2)    (5) 

Here, the scale of the resting area is taken as α and i2 is a 

random value inside the interval (0,1). With every iteration, 

the scale α reduces the size of the resting region, facilitating 

simpler exploitation. After it has been detected, eels will 

move to the specified resting location. In other words, an eel 

adjusts its location in the path of its resting area based on its 

current resting posture. The way that the body rests can be 

described as: 

er(g + 1) =  Ir(g + 1) +m2  × (Ir(g + 1)round(rand) ×

cr(g))              (6) 

4.1.3. Hunting  

Eels surround their prey in a broad circle and utilize elec-

tric discharges for coordination and communication rather 

than just swarming to hunt. The circle narrows as their en-

gagement gets more intense, forcing the prey to go from 

deeper waters to shallower spots where they are more effort-

lessly captured. The electric circle turns into a hunting area 

as a result of this behavior, and the terrified prey begins to 

move wildly and shift places regularly within it. Several 

equations have been proposed to define the hunting area. 

Sprey(g + 1) =  cprey(g) +  β × |c̅(g) − cprey(g)| (7) 

β =  β0 × sin(2πi3)    (8) 

Here, β denotes the hunting area's scale, and i3 is a random 

value within the range (0,1). β causes the hunting area's 

range to gradually shrink over time, favoring exploitation 

4.1.4. Migrating  

Whenever eels see prey, they usually relocate from their rest-

ing location to their hunting area. Analyzing the migration 

behavior of eels is feasible with the following equation:  

𝑒𝑟(𝑡 + 1) =  −𝑖5  ×  𝐼𝑟(𝑔 + 1) + 𝑖6  ×  𝑆𝑖(𝑔 + 1) − 𝑂 ×

 (𝑆𝑖(𝑔 + 1) − 𝑐𝑟(𝑔))                                 (9) 

𝑆𝑖(𝑔 + 1) =  𝑐𝑝𝑟𝑒𝑦(𝑔) +  𝛽 ×  |𝑐 (𝑔) − 𝑐𝑝𝑟𝑒𝑦(𝑔)|    (10) 

Here, Si is equivalent to any location in the hunting area 

whereas i5, and i6 are random numbers within (0,1). Eels 

travel in the direction of the hunting area, as indicated by the 

expression (Si (g + 1)-cr(g)). The Levy flight function, or O, 

is implemented, to evade getting surrounded by local optima 

during the exploitation phase of EECPFO. As stated by 

[24][25], O can be obtained as: 

𝑂 = 0.01 ×  |
𝑓∙𝜎

|𝑒|
1
𝑦

|                 (11) 

𝑓, 𝑒 ~ 𝑀(0,1)                                (12)

                         

𝜎 =  (
Γ(1+𝑦)×sin 

𝜋𝑦

2
 

Γ 
1+𝑦

2
 ×𝑦×2

𝑦−1
2

)

1

𝑦

                               (13) 

where y = 1.5 and Γ is the conventional gamma function 

4.1.5. Procedure of EECPFO  

Initially, the algorithm uses original search tactics that 

are different from any other algorithm's search strategies. As 

a result, it is simple to integrate this combination of addi-

tional optimization operators with an algorithm or algorithms 

to create hybrid or enhanced algorithms that offer notable im-

provements. Since this algorithm does not include any extra 

parameters, one may concentrate more on refining the search 

strategy rather than analyzing how variations in parameter 

values affect search performance. This facilitates the use of 

the enhanced algorithm for a larger variety of engineering 

challenges. Lastly, it has been shown that this algorithm has 

strong global optimal solution search capabilities, which can 

greatly enhance the performance of the improved algorithm 

in terms of optimization, including convergence rate and op-

timal solution accuracy. Several control parameters, particu-

larly the maximum number of repetitions and the population 

number of electric eels, are initialized by EECPFO at the out-

set. In the meantime, a uniform distribution of eel 
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populations is generated at random. Every eel uses its inter-

active behavior to execute exploration at each iteration when 

the energy factor U > 1. Each eel engages in exploitation 

when the energy component U ≤ 1, employing the same prob-

ability when resting, traveling, or hunting. Every case is ap-

plied to every eel to produce fresh candidate solutions. These 

solutions are then contrasted with the existing ones. The cur-

rent best solution has been upgraded in the interim. As the 

iteration goes on, E diminishes, compelling all eels to go 

from exploration to exploitation. The interactive process is 

carried out till the stop condition is satisfied. This preserves 

the best answer found up until that moment. 

4.1.6 Fitness Function: 𝐶𝑃𝑊(𝑒𝑖) 

The Critical Path Weighted (CPW) fitness function: It is a 

strategic strategy used to rank and select test cases based on 

their impact on the critical path of the program being tested, 

in the context of test case prioritization and minimization. It 

is important to address concerns in these areas promptly be-

cause the critical path is a sequence of dependent tasks that 

determines the shortest possible duration to complete the 

task. Test cases are evaluated by the CPW fitness function, 

considering both their impact on the critical path and their 

weight, which could represent factors such as risk, past de-

fect rates, or business significance. This approach ensures 

that the most crucial tests are prioritized by calculating a 

CPW score, which takes into consideration the critical path 

impact and the weight of each test case. Prioritizing in this 

way optimizes the use of testing resources and enhances the 

likelihood of early problem detection in the most critical ar-

eas of the system. 

Dynamic Fitness Function F: The fitness of each electric eel 

agent 𝑒𝑖 is evaluated based on a combination of APFD and 

APFDc to address both prioritization and minimization, 

alongside cost considerations. 

𝐶𝑃𝑊(𝑒𝑖) = 𝑤1 ⋅ 𝐴𝑃𝐹𝐷(𝑒𝑖) + 𝑤2 ⋅ 𝐴𝑃𝐹𝐷𝑐(𝑒𝑖) − 𝑤3 ⋅

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦(𝑒𝑖) − 𝑤4 ⋅ 𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡(𝑒𝑖)                     (14)  

• APFD (i) and APFDc (i) are the Average Percent-

age of Fault Detection and its cost-considerate 

variant for solution i, respectively. 

• Redundancy (ei) quantifies the redundancy level 

of test cases in ei. 

• PathCost (ei) reflects the critical path impact cost. 

• w1, w2, w3, and w4 are weights to balance the ob-

jectives. 

Algorithm 1 represents the Pseudo-code of an Enhanced 

Electric-eel with a Critical Path-Aware Foraging Optimiza-

tion (EECPFO) for Test Case Prioritization and Minimiza-

tion 

Algorithm 1: EECPFO for Test Case Prioritization and 

Minimization 

Input: 

• SUT: Software Under Test []. 

• θ: Control parameter threshold. 

• ϕ: Critical Path Weight (CPW) threshold. 

• 𝐸: Exploration rate. 

• 𝑃: Initial population of test cases. 

Output: 

Optimized set of prioritized and minimized test cases. 

Procedure: 

1. Initialize: 

o Load Specified SUT. 

o Set control parameters for EECPFO, in-

cluding θ and ϕ. 

o Generate initial population 𝑃 of test cases. 

2. Evaluate Initial Fitness: 

o For each test case 𝑖 in 𝑃, calculate fitness 

𝑓(𝑖) using 𝐶𝑃𝑊(𝑖)  

o 𝑓(𝑖) = 𝐶𝑃𝑊(𝑖) 

o Sort 𝑃 based on 𝑓(𝑖) 

3. Main Optimization Loop: 

o While stopping condition not met: 

▪ For each test case 𝑖 in 𝑃: 

▪ If 𝑟𝑎𝑛𝑑()  <  𝜃 

Perform Resting Behaviour using Eq. (6)  

▪ Else: 

Perform Migrating Behaviour using Eq. (9) 

o Evaluate and update fitness 𝑓(𝑖)  for all 𝑖 

in 𝑃 using 𝑓(𝑖) = 𝐶𝑃𝑊(𝑖) 

▪ Sort 𝑃 based on 𝑓(𝑖). 

▪ Apply Interacting Behaviour 

using Eq. (1) if 𝐸 > 1 to intro-

duce diversity. 

4. Post-Optimization: 

o Identify test cases 𝑖  where 𝑓(𝑖) > 𝜙  for 

minimization. 

o Select the best test cases based on mini-

mized CPW and prioritization criteria. 

5. Output: 

o Return the optimized set of test cases that 

are both prioritized and minimized. 
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6. End. 

5. PERFORMANCE MEASUREMENTS 

To ensure that the algorithms are efficient and effective, their 

performance has to be assessed. The test case minimization 

and prioritizing methods have been assessed using a variety 

of performance metrics, as detailed below: 

5.1 Test case prioritization 

The test cases are often ranked according to two distinct test-

ing criteria: statement coverage and fault coverage. Since 

code coverage data is often accessible for any software, it is 

extensively utilized by a variety of researchers [27]. Some, 

however, believe that, if prior information on the defects is 

available, fault coverage is a crucial factor in determining the 

order in which to arrange the test cases [28]. Here, we have 

demonstrated the suggested algorithm's robustness using 

both testing criteria. As a result, the following definitions ap-

ply to the well-known metrics that are employed as effective-

ness measures and fitness metrics: APFD, or the average per-

centage of fault detection, [29] state that based on their posi-

tion in the test suite, determines the weighted average of the 

covered problems. Table 3 depicts parameter values for algo-

rithms. 

TABLE 3 Parameter Settings 

Algo-

rithms  

Parameters values 

Com-

mon 

Pa-

rame-

ters 

Population size = 100 

Generation size = 1000 

Number of executions = 30 

 Software under test Jtopas, Ant, Jmeter 

 TCM Evaluation Parameters: APFD, APFDc 

 TSP, CLP, FLP, CRP,  

Low  Low bound of search space.      0                 

Up  Up bound of search space.        1              

E  Energy factor.                       

E=E0*log(1/rand)             

Alpha  scale of resting area.      2*(exp(1)-

exp (It/MaxIt))*sin(2*pi*rand);                  

Beta scale of the hunting area.         2*(exp(1)-

exp (It/MaxIt))*sin(2*pi*rand);%  

Eta  Curling factor.           

Eta=exp(r4*(1-It)/MaxIt)*(cos(2*pi*r4)); %  

 

It is calculated as: 

𝐴𝑃𝐹𝐷 = 1 − 
∑ 𝐺𝑉(𝑟)𝑛
𝑟=1

𝑚∗𝑛
+ 

1

2∗𝑚
                              (15) 

The location of the test case that determines the rth fault first 

is directed by GV(r), and the number of faults that the test 

suite of size n covers is indicated by m. It is between 0 and 

100, with greater being better. While fault levels of severity 

and test case costs are usually non-uniform, APFD considers 

uniform values. This is known as the Average Percentage of 

Fault Detection with Cost (APFDc). In light of this, a cost-

conscious metric called APFDc has been proposed that inte-

grates several costs and fault severities in APFD [23]. It is 

defined as: 

𝐴𝑃𝐹𝐷𝑐 = 1 − 
∑ 𝑣ℎ(𝑟) ∗  ∑ cos 𝑔(𝑞)− 

1

2
 cos𝑔(𝐺𝑉(𝑟))𝑚

𝑞=𝐺𝑉(𝑟)  𝑛
𝑟=1

∑ cos𝑔(𝑟) ∗ 𝑚
𝑟=1 ∑ 𝑣ℎ(𝑟)𝑛

𝑟
 

                                (16) 

In this scenario, cost (r) represents the test execution cost of 

a rth test case, vh(r) represents the fault severity of the rth 

fault, and cost (GV(r)) represents the execution cost of the 

test case that finds the rth fault first. Similar to the APFD 

and APFDc, the Average Percentage of Statement Coverage 

(APSC) and APSC with cost (APSCc) are calculated. The 

sole distinction is that statement coverage is calculated ra-

ther than blame coverage. Additionally, these measures 

serve as the search space's fitness function, directing search-

based algorithms. 

5.2. Test case minimization 

Test suite reduction/test selection percentage and cost reduc-

tion % are the most widely utilized effectiveness metrics. 

Test case minimization, which comes after test case prioriti-

zation, uses 100% fault coverage or 100% statement cover-

age to minimize the size of the test suite. Reducing the test 

suite for a particular coverage basis has an impact on the 

other coverage criteria. For instance, some statement cover-

age loss results from fault coverage-based reduction, and 

vice versa. Consequently, for 100% fault coverage and 

100% statement coverage, we have used coverage loss per-

centage and fault detection capability loss percentage, re-

spectively, as the performance metrics, as explained below: 

The proportion of the original test suite's size to the smaller 

test suite's size is known as the test selection percentage, or 

TSP. 

𝑇𝑆𝑃 = 
𝑖

𝑚
∗ 100                                             (17) 

Here, i symbolizes the reduced test cases in the test suite of 

m test cases. The proportion of the original test suite's cov-

ered statements to the test suite's minimized coverage of the 

remaining statements is known as the Coverage Loss Per-

centage (CLP). 

𝐶𝐿𝑃 =  
𝑚ℎ𝑜

𝑔ℎ
∗ 100                 (18) 

where gh is the total number of statements and mho is the 

number of statements left uncovered. The ratio of the num-

ber of defects found by the reduced test suite to the total 

number of faults covered by the original test suite is known 
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as the loss percentage or Fault Detection Capability Loss 

Percentage (FLP). 

𝐹𝐿𝑃 =  
𝑚𝑣𝑜

𝑔𝑣
∗ 100                  (19) 

Here mvo is the number of faults left uncovered gv is the 

total number of faults. The Cost Reduction Percentage 

(CRP) illustrates the cost savings achieved by the new test 

suite in comparison to the original suite. 

𝐶𝑅𝑃 =  
𝑥𝑖

𝑔𝑖
∗ 100                   (20) 

xi is the cost of the reduced test suite and gi is the cost of the 

original test suite. 

6. EXPERIMENTAL SETUP AND RESULT 

ANALYSIS 

Examining various fitness functions, this section assesses 

the TCP and TCM algorithms.  

6.1 Performance Analysis of Test Case Prioritization 

We have displayed the experiments and results of Test case 

prioritization in this area. The proposed Enhanced Electric-

Eel with Critical Path-Aware Foraging Optimization 

(EECPFO) algorithm demonstrates impressive performance 

across the key metrics of APFD, APFDc, and CPW when 

compared to the existing techniques of iBAT, WA, and GA. 

The EECPFO algorithm achieved the highest APFD scores, 

ranging from 95.66% to 98.32% across the tested programs. 

This represents significant improvements over the other al-

gorithms, with EECPFO outperforming iBAT by 2.1% to 

2.8%, WA by 3.8% to 5.4%, and GA by 5.5% to 7.7%. The 

EECPFO algorithm also exhibited the highest APFDc 

scores, again outperforming the other techniques. The im-

provements ranged from 2.1% to 3.6% over iBAT, 3.8% to 

4.7% over WA, and 5.5% to 7.0% over GA. This demon-

strates the EECPFO algorithm's effectiveness in not only 

prioritizing test cases but also minimizing them while con-

sidering the cost-cognizant aspect. 

Furthermore, the EECPFO algorithm showed the best per-

formance in terms of the Critical Path Weighted (CPW) met-

ric, achieving values between 98.84% and 99.79%. The im-

provements over the other algorithms ranged from 0.0% to 

2.4% against iBAT, 0.1% to 2.6% against WA, and 0.7% to 

3.2% against GA. This highlights the EECPFO algorithm's 

enhanced awareness of critical paths within the software 

programs, leading to more effective prioritization of test 

cases targeting these critical components. 

 

Fig. 1. Average fitness value of the EECPFO compared to 

iBAT, WA, and GA algorithms 

Figure 1 shows a comparison of the average fitness values 

achieved by the EECPFO algorithm and three other ap-

proaches (iBAT, WA, and GA) across three different pro-

grams: Jtopas, Ant, and Jmeter. For the Jtopas program, the 

EECPFO algorithm demonstrated the highest average fitness 

value of 98.84, outperforming the other techniques. The 

iBAT algorithm came in second with 98.30, followed by WA 

at 98.16 and GA at 97.46.  In the Ant program, the EECPFO 

algorithm once again showed its superiority, achieving the 

highest average fitness of 99.79. The iBAT and WA algo-

rithms trailed behind with 97.48 and 97.24, respectively, 

while the GA algorithm had the lowest average fitness of 

96.66. 

When it comes to the Jmeter program, the EECPFO and 

iBAT algorithms had very similar average fitness values of 

98.97 and 98.99, respectively, indicating a close perfor-

mance. The WA algorithm followed with 98.92, and the GA 

algorithm had the lowest average fitness of 98.33. Across all 

three programs, the EECPFO algorithm consistently outper-

formed the other techniques, demonstrating its superior ef-

fectiveness in optimizing the test case prioritization and min-

imization objectives. This consistent pattern of higher aver-

age fitness values for the EECPFO algorithm suggests that it 

is a more efficient and reliable approach for these software 

testing tasks. 

 

Fig. 2. Average test case prioritization performance of the 

fitness functions across all programs 

Figure 2 presents the average performance of the fitness 

functions across the tested programs for three key metrics: 
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Average Percentage of Fault Detection (APFD), Average 

Percentage of Fault Detection with Cost (APFDc), and Crit-

ical Path Weight (CPW).  For the APFD metric, the average 

performance was 93.92%. This indicates that the fitness 

functions were able to effectively prioritize test cases to de-

tect a high percentage of faults.  Regarding the APFDc met-

ric, which considers the cost of executing test cases, the av-

erage performance was 93.99%. This suggests that the fitness 

functions were able to balance the objectives of test case pri-

oritization and minimization while accounting for the associ-

ated costs. The most impressive performance was observed 

in the Critical Path Weight (CPW) metric, where the average 

value reached 98.26%. This indicates that the fitness func-

tions were highly effective in prioritizing test cases that target 

critical paths within the software programs, which is a crucial 

aspect of efficient testing. The results demonstrate the strong 

performance of the fitness functions across the three key met-

rics. The high average values for APFD, APFDc, and CPW 

suggest that the proposed approach is capable of delivering 

efficient and effective test case prioritization and minimiza-

tion, with a particular focus on addressing critical paths 

within the software under test. 

The consistent and substantial improvements exhibited by 

the EECPFO algorithm across all three metrics and the tested 

programs underscore its superiority in the domain of test case 

prioritization and minimization, particularly in the context of 

critical path-aware software testing 

 

Fig. 3. Average Fitness functions wise TSP and Improve-

ments (%) 

On average, across all the programs, the EECPFO algorithm 

achieved an APFD of 16.31, an APFDc of 16.32, and a CPW 

of 12.10 as shown in Figure 3. These results reveal the overall 

effectiveness of the EECPFO algorithm in test case prioriti-

zation, cost-aware test case prioritization, and critical path-

aware test case prioritization, with consistent improvements 

over the other algorithms considered in the study. 

6.2 Performance Analysis of Test Case Minimization 

In this section, we have shown the experiments and results of 

Test case minimization.  

 

Fig. 4. Average Coverage loss for all fitness functions 

For the Jmeter program the EECPFO, iBAT, WA, and GA 

algorithms all had similar coverage losses across the three 

metrics, with APFD losses ranging from 3.4 to 5.4, APFDc 

losses ranging from 3.5 to 5.3, and CPW losses of 3.7 or 3.8. 

On average, across all the programs, the EECPFO algorithm 

had an APFD coverage loss, Figure 4, of 7.2, an APFDc cov-

erage loss of 7.2, and a CPW coverage loss of 5.3. These av-

erage values demonstrate the overall lower coverage loss 

achieved by the EECPFO algorithm compared to the other 

algorithms, indicating its effectiveness in maintaining high 

coverage while prioritizing and minimizing the test cases. 

The results suggest that the EECPFO algorithm can strike a 

better balance between test case prioritization, cost-aware-

ness, and critical path sensitivity, leading to lower coverage 

losses across the evaluated metrics compared to the iBAT, 

WA, and GA algorithms 

 

Fig. 5. Average Cost Reduction (%) for all fitness functions 

Figure 5 depicts the average cost reduction percentages 

achieved by the EECPFO algorithm and the other algorithms 

(iBAT, WA, and GA) across the three programs: Jtopas, Ant, 

and Jmeter have been presented in this paper. The cost reduc-

tion is measured in terms of APFD, APFDc, and CPW.  The 

WA and GA algorithms both had a 92.6% cost reduction in 

APFD, a 92.8% and 92.5% reduction in APFDc, respec-

tively, and a 94.4% and 94.1% reduction using CPW, respec-

tively. These average values demonstrate the overall higher 

cost reduction achieved by the EECPFO algorithm compared 

to the other algorithms, indicating its effectiveness in mini-

mizing the test case execution cost while maintaining high 

prioritization and critical path sensitivity. 
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The results suggest that the EECPFO algorithm can strike a 

better balance between test case prioritization, cost aware-

ness, and critical path sensitivity, leading to higher cost re-

ductions across the evaluated metrics compared to the iBAT, 

WA, and GA algorithms.  

4. Conclusion 

Prioritizing and minimizing test cases are crucial procedures 

in software testing that improve the process' effectiveness. 

This paper presents an Enhanced Electric-Eel with Critical 

Path-Aware Foraging Optimization (EECPFO) algorithm de-

signed to solve the limits of traditional test case prioritization 

and minimization methods in large-scale software testing. To 

better handle the complexity of contemporary software sys-

tems, the EECPFO algorithm effectively enhances the classic 

Electric-eel Foraging Optimization (EEFO) framework by 

incorporating crucial innovations like a dynamic fitness func-

tion, redundancy-aware foraging, critical path sensitivity, 

and diversity maintenance. Using three open-source Java 

programs (JTopas, Ant, and JMeter) from the Software Infra-

structure Repository (SIR) for a rigorous evaluation, the pro-

posed algorithm shows significant improvements in key met-

rics like Average Percentage of Fault Detection (APFD) and 

Average Percentage of Fault Detection with Cost (APFDc). 

The experimental results show the EECPFO algorithm im-

proves fault detection rates, prioritizes critical software test 

cases, and minimizes testing costs. It also incorporates cost-

aware metrics like APFDc, reducing redundant test cases and 

maintaining diversity in test suites. This makes it a cost-effi-

cient solution for large-scale software testing. When com-

pared to the current methods of iBAT, WA, and GA, the pro-

posed Enhanced Electric-eel with Critical Path-Aware For-

aging Optimization (EECPFO) algorithm exhibits excellent 

performance across the key metrics of APFD, APFDc, and 

CPW. In this research paper, the Critical Path Weighted 

(CPW) fitness function is effectively employed to enhance 

the efficiency and effectiveness of the testing process [26]. In 

conclusion, the EECPFO algorithm stands out as a robust and 

efficient solution for test case prioritization and minimization 

in software testing. It may be possible to fully utilize the al-

gorithm's potential in real-world scenarios by integrating it 

with automated testing frameworks, researching its applica-

tion to additional programming languages and software do-

mains, and further improving the method 

LIST OF ABBREVIATIONS 

EEFO=      Electric-eel Foraging Optimization  

CPW=       Critical Path Weighted 

EECPFO= Enhanced Electric-Eel with Critical  

Path-Aware Foraging Optimization (EECPFO)  

APFD=      Average Percentage of Fault Detection 

APFDc=     Average Percentage of Fault Detection 
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