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Abstract: The escalating need for robust, privacy-preserving IoT Healthcare data management systems has prompted the exploration of 

security models that ensure non-mutability and stringent security. Traditional methods often fall short in effectively balancing privacy, 

accessibility, and computational efficiency. Addressing these limitations, this paper introduces a novel framework utilizing encrypted 

federated learning, access control, anomaly detection, and predictive analytics tailored for IoT Healthcare applications. Our proposed 

model comprises four innovative methods: Encrypted Federated Learning with Homomorphic Encryption (EFLHE), Reinforcement 

Learning-Driven Access Control (RLAC), AI-Driven Anomaly Detection with Autoencoder Fusion (AIDA), and timestamp Series-Based 

IoT Healthcare Forecasting with Grey Wolf Optimizer (TS-GWO). EFLHE harnesses homomorphic encryption to train machine learning 

models on encrypted data across multiple nodes, preserving patient confidentiality while enabling decentralized computation. This 

method overcomes the existing challenges of data privacy and computational overhead associated with traditional federated learning 

systems. Furthermore, RLAC employs reinforcement learning to dynamically optimize access control policies via smart contracts based 

on real-time interaction and system feedback, thus enhancing both security and user experience. This adaptive control mechanism 

significantly outperforms static access control systems in responding to evolving security threats and user requirements. In parallel, 

AIDA integrates autoencoders with AI-driven models to meticulously detect anomalies and potentially fraudulent activities within the 

network. By learning standard transaction patterns and identifying deviations, AIDA provides a dual-layer security framework that 

significantly reduces the risk of security breaches. Lastly, TS-GWO leverages the Grey Wolf Optimizer to refine the parameters of 

timestamp series forecasting models. This optimization facilitates more accurate predictions regarding disease progression, treatment 

outcomes, and resource allocation, which are critical for proactive IoT Healthcare management. Collectively, these methods not only 

fortify the security and privacy of IoT Healthcare data but also enhance the operational efficiency of IoT Healthcare systems. The 

impacts of this work are profound, offering a scalable, secure, and efficient framework for IoT Healthcare data management that meets 

the rigorous demands of modern IoT Healthcare infrastructures and compliance standards. This model sets a new benchmark for privacy-

preserving, real-time IoT Healthcare data systems, potentially revolutionizing patient care through technologically advanced solutions 

that safeguard sensitive information and optimize clinical decision-making processes. 
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1. Introduction 

The digital transformation of IoT Healthcare systems has 

necessitated the development of sophisticated data 

management frameworks that not only ensure the integrity 

and security of patient data but also enhance the 

accessibility and efficiency of IoT Healthcare services. The 

integration of secure technology promises to revolutionize 

the IoT Healthcare industry by providing solutions that are 

inherently secure, transparent, and immutable. However, 

the application of security in IoT Healthcare poses unique 

challenges, primarily related to the privacy of sensitive 

patient data, the scalability of the system, and the dynamic 

nature of access control. 

Recent advancements in cryptographic techniques and 

machine learning have paved the way for innovative 

approaches to address these challenges. Particularly, 

homomorphic encryption (HE) and federated learning (FL) 

have emerged as pivotal technologies enabling privacy-

preserving computations on encrypted data distributed 

across multiple nodes. Despite their potential, traditional 

FL and HE are impeded by significant computational 

overhead and limited operational flexibility, which are 

critical in the processing of large-scale IoT Healthcare data 

samples. 

To overcome these limitations, this study introduces an 

integrated model that leverages encrypted federated 

learning enhanced with homomorphic encryption 

(EFLHE), along with several other methodologies to 

ensure a robust, scalable, and privacy-centric framework. 

The proposed model consists of the following key 

components.  
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Encrypted Federated Learning with Homomorphic 

Encryption (EFLHE): This method allows for the 

training of machine learning models on encrypted data, 

ensuring that patient privacy is maintained without 

compromising the ability to perform complex 

computational tasks across distributed networks. By 

utilizing HE, EFLHE facilitates local updates at nodes on 

encrypted data, which are then aggregated to refine the 

global model, thereby minimizing exposure of sensitive 

information and reducing bandwidth requirements 

compared to conventional FL. 

• Reinforcement Learning-Driven Access Control 

(RLAC): Adaptive access control mechanisms are crucial 

for maintaining the security of IoT Healthcare databases. 

RLAC employs reinforcement learning to dynamically 

adjust access permissions based on real-time data 

interactions and system feedback, optimizing both security 

measures and user experience. This approach allows the 

system to evolve its access protocols proactively, 

addressing the limitations of static policy frameworks that 

fail to react to new threats and usage patterns.  

• AI-Driven Anomaly Detection with Autoencoder 

Fusion (AIDA): Anomaly detection is critical in 

preempting fraudulent activities and potential data 

breaches. AIDA combines deep learning autoencoders with 

supplementary AI-driven models to monitor and analyze 

deviations from normal transaction patterns. This dual-

layered approach enhances the system’s ability to detect 

and respond to anomalies in real time, thereby significantly 

strengthening the network's security. 

• Time Series-Based IoT Healthcare Forecasting with 

Grey Wolf Optimizer (TS-GWO): Accurate forecasting 

in IoT Healthcare can drastically improve patient outcomes 

and optimize resource allocation. TS-GWO incorporates 

the Grey Wolf Optimizer to enhance the performance of 

timestamp series forecasting models, such as ARIMA and 

LSTM, tailored for IoT Healthcare data samples. This 

method efficiently handles the variability and complexity 

of medical datasets, yielding more precise predictions for 

disease progression and treatment efficacy.  

The integration of these methodologies into a unified 

model not only addresses the privacy and security concerns 

associated with traditional IoT Healthcare data systems but 

also introduces a level of computational efficiency and 

adaptability required for modern IoT Healthcare 

infrastructures & scenarios. This paper elaborates on the 

design, implementation, and potential impacts of this 

innovative framework, setting a new standard for the 

secure and efficient management of IoT Healthcare 

information sets. 

1.1. Motivation & Contributions 

The burgeoning demand for advanced IoT Healthcare data 

management systems is driven by the increasing need for 

security, privacy, and efficiency in processing sensitive 

medical information. Traditional IoT Healthcare systems 

often struggle with these challenges due to outdated 

infrastructure, lack of flexibility, and vulnerabilities to data 

breaches. The integration of security technology has been 

identified as a potent solution to these issues, offering a 

decentralized framework that inherently supports 

immutability and auditability. However, the direct 

application of security technology in IoT Healthcare is not 

devoid of limitations, particularly concerning scalability, 

privacy, and the real-time processing of large datasets. 

Motivation 

The primary motivation behind this research is twofold: to 

enhance the privacy and security of patient data and to 

improve the scalability and efficiency of IoT Healthcare 

data systems. Existing systems frequently compromise 

patient privacy during data processing and are typically 

static, lacking the capability to adapt to evolving access 

patterns and potential security threats dynamically. 

Moreover, the computational inefficiency of processing 

encrypted data on security networks underscores a critical 

need for optimized solutions that can handle encrypted 

operations at scales. These challenges necessitate a re-

evaluation of traditional models and the development of a 

more robust framework that can accommodate the complex 

requirements of modern IoT Healthcare data management 

process. 

Contributions 

This study makes several significant contributions to the 

field of IoT Healthcare data management through the 

development and integration of four advanced 

methodologies within a security-based model.  

• Enhanced Privacy through EFLHE: The Encrypted 

Federated Learning with Homomorphic Encryption 

(EFLHE) technique addresses the core issue of privacy. It 

enables machine learning models to be trained directly on 

encrypted data, ensuring that sensitive patient information 

remains secure from unauthorized access throughout the 

computation process. This method not only preserves 

privacy but also mitigates the risk of data exposure during 

transmission between nodes in a federated network.  

• Dynamic Access Control via RLAC: The 

Reinforcement Learning-Driven Access Control (RLAC) 

mechanism introduces a dynamic and adaptive approach to 

managing user permissions and access controls. Utilizing 

reinforcement learning algorithms, RLAC continuously 

learns and optimizes access policies based on user 

behavior and threat levels, significantly enhancing the 

security and usability of the system compared to static, 

rule-based access controls. 
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 • Robust Anomaly Detection with AIDA: The AI-

Driven Anomaly Detection with Autoencoder Fusion 

(AIDA) provides a comprehensive solution for detecting 

and mitigating potential fraud and data breaches. By 

integrating autoencoders with additional AI-driven 

techniques, AIDA effectively identifies unusual patterns 

and suspicious activities within the network, offering a 

proactive security measure that adapts to new threats as 

they arise in real-time scenarios. 

• Accurate Predictive Analytics using TS-GWO: The 

timestamp Series-Based IoT Healthcare Forecasting with 

Grey Wolf Optimizer (TS-GWO) exploits advanced 

optimization algorithms to enhance the accuracy of 

predictive models used in IoT Healthcare. This approach 

significantly improves disease forecasting, treatment 

outcomes, and resource allocation strategies, thereby 

aiding in better IoT Healthcare management and planning. 

These contributions collectively address the critical 

challenges faced by traditional IoT Healthcare data 

systems, offering a scalable, secure, and efficient 

alternative that leverages the strengths of security 

technology, machine learning, and modern optimization 

techniques. The proposed model not only enhances data 

security and privacy but also provides a flexible and 

adaptive system that can meet the demands of 

contemporary IoT Healthcare environments. This research 

paves the way for future innovations in IoT Healthcare 

data management and sets a benchmark for the integration 

of technological advancements in medical informatics in 

different scenarios. 

2. Literature Review 

The landscape of healthcare services has undergone a 

paradigm shift with the advent of the Internet of Things 

(IoT), offering unprecedented opportunities for 

personalized, efficient, and remote healthcare delivery. 

However, the integration of IoT in healthcare systems 

introduces numerous security challenges that must be 

addressed to ensure the confidentiality, integrity, and 

availability of sensitive medical data samples. This 

literature review critically examines the state-of-the-art 

research in securing IoT-based healthcare systems, 

encompassing authentication protocols, privacy 

preservation techniques, anomaly detection mechanisms, 

and resilience strategies against cyberattacks. 

Wang et al. [1] conducted a security analysis of a user 

authentication scheme tailored for IoT-based healthcare, 

uncovering vulnerabilities such as session key disclosure 

and traceability attacks. Alladi et al. [2] proposed HARCI, 

a two-way authentication protocol designed for three-entity 

healthcare IoT networks, emphasizing physical security 

and privacy using physically unclonable functions (PUFs). 

Taimoor and Rehman [3] surveyed reliable and resilient AI 

and IoT-based personalized healthcare services, 

highlighting the importance of reliability, resilience, and 

sustainability in the era of healthcare 5.0. In the realm of 

distributed security, Zaman et al. [4] explored the 

application of Holochain for ensuring security in IoT 

healthcare, leveraging blockchain technology to protect 

medical data in real-time systems. Khatun et al. [5] 

reviewed machine learning techniques for healthcare IoT 

security, addressing security and privacy challenges 

through anomaly detection and mitigation strategies in 5G-

IoT environments. Wang et al. [6] proposed a forward 

privacy preservation mechanism in IoT-enabled healthcare 

systems, focusing on encryption and privacy preservation 

to safeguard medical data samples. Masud et al. [7] 

introduced a lightweight and anonymity-preserving user 

authentication scheme for IoT-based healthcare, aiming to 

enhance digital security and user privacy, particularly in 

the context of the COVID-19 pandemic. Thapliyal et al. [8] 

designed a robust blockchain-envisaged authenticated key 

management mechanism for smart healthcare applications, 

ensuring secure authentication and key agreement in 

Internet of Medical Things (IoMT) environments. 

Intrusion detection and prevention mechanisms play a 

pivotal role in safeguarding IoT-based healthcare systems. 

Agiollo et al. [9] proposed DETONAR for detecting 

routing attacks in RPL-based IoT networks, enhancing 

network security and reliability against intrusions. Halman 

and Alenazi [10] developed MCAD, a machine learning-

based cyberattacks detector in software-defined 

networking (SDN), enhancing network resilience and 

security in healthcare systems. Esher et al. [11] addressed 

IoT sensor-initiated healthcare data security, emphasizing 

encryption and end-to-end privacy to protect medical data 

transmitted over networks. Ahamad et al. [12] introduced a 

secure and resilient scheme for telecare medical 

information systems, employing threat modeling and 

formal verification techniques to mitigate various attacks, 

including reverse-engineering and blue borne attacks. 

Preserving data integrity and confidentiality is crucial in 

industrial healthcare IoT environments. Adil et al. [13] 

proposed HOPCTP, a robust channel categorization data 

preservation scheme for Industrial Healthcare IoT, 

ensuring data integrity and security in transmission 

channels. Navaz et al. [14] discussed trends, technologies, 

and key challenges in smart and connected healthcare, 

addressing issues such as edge computing, robotics, and 

big data analytics in combating pandemics like COVID-19.  

Authentication schemes tailored for cloud-assisted 

healthcare IoT systems are essential for ensuring data 

privacy and security. Liu et al. [15] proposed a lightweight 

authentication scheme for data dissemination in cloud-

assisted healthcare IoT, preserving privacy while 

facilitating secure data sharing. Shihab and AlTawy [16] 

introduced a lightweight authentication scheme for 

healthcare with robustness to desynchronization attacks, 
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ensuring secure key agreement and forward secrecy in IoT 

environments. 

Advancements in artificial intelligence (AI) and federated 

learning have profound implications for privacy 

preservation in smart healthcare systems. Alshehri and 

Muhammad [17] conducted a comprehensive survey of IoT 

and AI-based smart healthcare, emphasizing edge 

computing and intelligent sensors in improving healthcare 

delivery. Ghourabi [18] proposed a security model based 

on LightGBM and Transformer to protect healthcare 

systems from cyberattacks, leveraging machine learning 

algorithms for intrusion and malware detection. Fault-

tolerant decision-making processes are crucial for ensuring 

the reliability and resilience of IoT-based healthcare 

systems. Gope et al. [19] designed a secure IoT-based 

modern healthcare system with fault-tolerant decision-

making processes, enhancing machine learning-based fault 

tolerance and sensor fusion mechanisms. Privacy-

preserving techniques such as federated learning and edge 

intelligence are instrumental in protecting sensitive 

medical data in IoT environments. Ali et al. [20] surveyed 

federated learning for privacy preservation in smart 

healthcare systems, addressing challenges such as data 

privacy and security in IoT-enabled healthcare. Akter et al. 

[21] proposed an edge intelligence framework for 

federated learning-based privacy protection in smart 

healthcare systems, leveraging convolutional neural 

networks and edge computing to preserve data privacy and 

confidentiality. Edge intelligence has emerged as a critical 

paradigm for preserving privacy in IoT-based healthcare 

systems. Akter et al. [23] proposed an edge intelligence 

framework for federated learning-based privacy protection 

in smart healthcare systems. By leveraging convolutional 

neural networks and edge computing, their framework 

aims to preserve data privacy and confidentiality while 

enabling collaborative model training across distributed 

healthcare devices and sensors. This approach enhances 

privacy by minimizing data transmission to centralized 

servers, thereby reducing the risk of data breaches and 

unauthorized access. 

Mishra and Pandya [24] conducted a systematic review of 

internet of things (IoT) applications, security challenges, 

attacks, intrusion detection, and future visions. Their 

review provides insights into the diverse applications of 

IoT in healthcare and identifies key security challenges 

such as denial-of-service attacks and intrusion detection. 

By leveraging deep learning and machine vision 

techniques, they discussed approaches for mitigating 

cybersecurity threats in IoT-based healthcare systems, 

emphasizing the importance of robust security measures to 

safeguard sensitive medical data samples. Guesmi et al. 

[25] investigated physical adversarial attacks for camera-

based smart systems, analyzing current trends, 

categorization, applications, research challenges, and 

future outlook. Their study underscores the vulnerabilities 

of camera-based vision systems to physical adversarial 

attacks, such as sticker-based attacks and camouflage 

techniques. By exploring techniques for adversarial 

robustness and trustworthy AI, they aim to enhance the 

security and reliability of camera-based smart systems in 

healthcare applications, ensuring the integrity and 

authenticity of visual data used for medical diagnostics and 

monitoring. 

In conclusion, the literature on securing IoT-based 

healthcare systems spans a wide array of topics, including 

authentication, privacy preservation, anomaly detection, 

and fault tolerance mechanisms. Advancements in 

blockchain, machine learning, and federated learning offer 

promising avenues for addressing security challenges in 

healthcare IoT, ensuring the confidentiality, integrity, and 

availability of sensitive medical data in an increasingly 

interconnected healthcare landscape. 

3. Proposed Methodology  

To overcome issues of low efficiency and high complexity 

which are present with existing IoT based healthcare 

security mechanisms, this section Design of an Iterative 

Method for Secure and Private IoT Healthcare Data 

Management Using Encrypted Federated Learning and AI-

Driven Anomaly Detection Process. Initially, as per figure 

1, the Encrypted Federated Learning with Homomorphic 

Encryption (EFLHE) process is meticulously designed to 

address the quintessential challenges of data privacy and 

computational overhead that beleaguer traditional 

federated learning systems. In the context of IoT healthcare 

data management, where patient confidentiality and data 

integrity are paramount, EFLHE emerges as a pivotal 

innovation. This method leverages homomorphic 

encryption (HE) to train machine learning models on 

encrypted data distributed across multiple nodes, 

facilitating a decentralized computation paradigm that 

inherently preserves the privacy of sensitive healthcare 

data samples. Homomorphic encryption allows operations 

to be performed on ciphertexts that, when decrypted, yield 

the result of operations as if they had been performed on 

the plaintext. This property is exploited in EFLHE to 

perform federated learning without ever exposing the raw 

data samples. The process begins with each participating 

node encrypting its local dataset using a homomorphic 

encryption scheme before training commences. Each data 

point xi in the local dataset Di is encrypted using a public 

key pk associated with the chosen homomorphic 

encryption system using BGV Process via equation 1, 

           (1) 

Where, Enc represents the encryption function. A local 

model fi is trained on the encrypted data x’i samples. 

Assuming a linear model for simplicity, the training 
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process involves calculating the encrypted gradient descent 

via equation 2, 

                    
(2) 

 

Fig 1. Model Architecture of the Proposed Healthcare 

Deployment Process 

Where, Loss is the loss function, and y’ are the encrypted 

labels. The encrypted models f’i are sent to a central 

aggregator which computes the average model using 

homomorphic addition, which is represented via equation 

3, 

 

Where, N is the number of participating nodes. The 

aggregated model f’ is then decrypted using the secret key 

sk via equation 4, 

 

Where, Dec represents the decryption function. Each node 

updates its local model to the newly decrypted global 

model f and repeats the training process for the next 

iteration via equation 5, 

 

Where, η is the learning rate for this process. The process 

iterates until the model converges, checked by evaluating 

the change in loss function integral via equation 6, 

 

Where, ϵ is a small threshold for this process. EFLHE was 

selected due to its potent capability to preserve data 

privacy while enabling computational tasks to be 

distributed across various nodes without the need to share 

the actual data samples. This methodology not only secures 

patient information against potential breaches but also 

significantly reduces the bandwidth needed for 

transmitting large datasets, a common bottleneck in 

traditional federated learning frameworks. The 

homomorphic encryption component ensures that data 

remains encrypted throughout the process, providing a 

secure envelope that protects against both external attacks 

and insider threats. Moreover, the decentralized nature of 

EFLHE complements other security measures within the 

framework, such as dynamic access control and anomaly 

detection, by ensuring that the foundational data handling 

layer enforces privacy and integrity. This synergy 

enhances the overall security posture of the IoT healthcare 

data management system, making it robust against a 

diverse array of cybersecurity threats. In conclusion, the 

EFLHE model sets a profound benchmark for privacy-

preserving computations in IoT healthcare frameworks, 

integrating seamlessly with complementary methods to 

fortify data security and operational efficiency. This 

innovative approach not only addresses the critical needs 

of modern IoT healthcare infrastructures but also provides 

a scalable and efficient solution that is adaptable to the 

evolving landscape of digital healthcare services. 

Next, the Integration of Reinforcement Learning-Driven 

Access Control (RLAC) model represents a paradigm shift 

from traditional static access control systems to an 

adaptive framework that utilizes reinforcement learning 

(RL) to optimize policies dynamically. This approach 

addresses the complexities of modern IoT healthcare 

environments, which are characterized by frequently 

changing user roles, varying access needs, and evolving 

security threats. RLAC's capacity to continuously learn and 

adapt from system interactions makes it an invaluable 

component of a robust healthcare data management 

system. RLAC employs a reinforcement learning agent 

that interacts with the environment to learn the optimal 

access control policies through trials and feedback. The 

agent's learning process is structured around the 

formulation of the state space, action space, and the reward 

mechanism, which together facilitate the dynamic 

optimization of access control decisions based on real-time 

data and interactions for different scenarios. The state st at 

any timestamp t is defined as a vector of user attributes, 

resource attributes, and environmental conditions, 

represented via equation 7, 

 

Where, ut represents the current user attributes, rt 

represents resource attributes, and et captures the 

environmental conditions. The action at represents the 

decision made by the access control system, typically 

whether to grant or deny access, represented via equation 

8, 

 

Actions are determined based on the current policy π 

dictated by the policy network. The reward R(st,at) is 

defined to reinforce actions that lead to secure and efficient 

access control via equation 9, 
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The optimal policy hπ∗ is derived using the Bellman 

equation as part of the Q-learning algorithm, represented 

via equation 10, 

 

Where, γ is the discount factor and Q∗ is the optimal state-

action value function. The policy network parameters θ are 

updated through gradient descent to minimize the loss 

function, which is based on the temporal difference error, 

represented via equation 11 

 

Fig 2. Overall Flow of the Proposed Deployment Process 

 

Where, α is the learning rate for this process. The learning 

process continues until the policy converges, which is 

evaluated using the integral of the policy stability measure, 

via equation 12, 

 

Where, ϵ is a small threshold indicating convergence of the 

process. The selection of RLAC over static models is 

justified by its inherent adaptability and proactive learning 

capabilities, which are critical in the dynamic landscape of 

IoT healthcare systems. Unlike static systems that rely on 

predefined rules and conditions, RLAC's learning-based 

approach allows it to evolve in response to changes in user 

behavior, threat vectors, and system requirements. This not 

only enhances security by allowing for the anticipation and 

mitigation of potential threats but also improves the user 

experience by accommodating legitimate access needs in 

real-time scenarios. Moreover, RLAC's integration with 

other components such as Encrypted Federated Learning 

(EFLHE) and AI-Driven Anomaly Detection (AIDA) 

creates a comprehensive security framework. While 

EFLHE ensures the privacy of data during processing, 

RLAC dynamically secures access points and decision-

making processes, effectively reducing the overall 

vulnerability of the system. This RLAC stands as a 

cornerstone of modern access control systems within IoT 

healthcare frameworks, offering unmatched responsiveness 

and adaptability. Its sophisticated design and operational 

efficiency not only meet the stringent requirements of 

contemporary healthcare data security but also set new 

standards for future advancements in the field. This 

dynamic and intelligent control mechanism, supported by 

rigorous mathematical foundations, provides a scalable and 

robust solution that significantly outperforms traditional 

static access control systems. 

Next, as per figure 2, the AI-Driven Anomaly Detection 

(AIDA) framework employs autoencoders as the 

foundation to identify and evaluate deviations from 

standard transaction patterns within IoT healthcare 

networks. This approach is particularly effective in 

environments where high-dimensional data and complex 

interaction patterns necessitate sophisticated mechanisms 

for detecting anomalous behavior that could indicate 

potential security threats or fraudulent activities. AIDA 

utilizes a layered architecture where autoencoders learn to 

compress and decompress the transaction data, effectively 

capturing the intrinsic patterns and correlations. Anomalies 

are detected by evaluating the reconstruction error, which 

signals deviations from the learned norms. This process is 

structured to operate continuously, adapting to new data 

and evolving transaction patterns without requiring 

predefined thresholds or rules. The autoencoder is trained 

on a dataset X consisting of normal transaction patterns. 

The training objective is to minimize the reconstruction 

loss between the input x∈X and the reconstructed output x’ 

via equation 13, 

 

Where, ϕ and θ are the parameters of the encoder and 

decoder, respectively. Post training, the reconstruction 

error for a new transaction x′ is calculated via equation 14, 

 

Where, Enc and Dec represent the encoder and decoder 

functions of the autoencoder. Anomalies are identified if 

the reconstruction error exceeds a dynamically calculated 

threshold τ, which is adjusted to accommodate typical 

variations in the data via equation 15, 

 

The threshold τ is updated using a moving average of the 

recent reconstruction errors to adapt to new normal 

behaviors in the data via equation 16, 
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Where, β is a smoothing factor. To fine-tune the 

autoencoder parameters, the gradient of the reconstruction 

error with respect to the parameters is computed using 

backpropagation via equation 17, 

 

The parameters are updated over timestamp through 

gradient descent, and the integral of the updates provides a 

measure of the total adjustment performed on the model, 

via equation 18, 

 

Where, α is the learning rate for this process. The choice of 

AIDA is justified by its robustness in detecting subtle and 

complex anomalies which are typical in high-dimensional 

datasets like those encountered in IoT healthcare 

applications. Traditional anomaly detection methods often 

fail to capture the intricate relationships within such data, 

making them unsuitable for environments where security 

breaches can have catastrophic implications in real-time 

scenarios. Furthermore, the integration of AIDA with other 

components such as Encrypted Federated Learning 

(EFLHE) and Reinforcement Learning-Driven Access 

Control (RLAC) creates a multi-faceted defense strategy. 

While EFLHE ensures that data remains encrypted during 

collaborative learning, minimizing the risk of data 

exposure, RLAC dynamically adapts access controls based 

on real-time assessments. AIDA complements these by 

providing a sensitive detection mechanism that flags 

anomalies at the data interaction level, thereby offering an 

early warning system against potential breaches. This 

AIDA provides a sophisticated and adaptive anomaly 

detection framework that significantly enhances the 

security capabilities of IoT healthcare systems. Through 

continuous learning and adjustment, AIDA not only 

responds to emerging threats but also evolves with them, 

ensuring that the system's integrity is maintained over time. 

This strategic deployment of advanced machine learning 

techniques, particularly autoencoders, establishes AIDA as 

a critical component in the next generation of secure IoT 

healthcare infrastructures & scenarios. 

Finally, timestamp Series-Based IoT Healthcare 

Forecasting with Grey Wolf Optimizer (TS-GWO) 

integrates advanced optimization techniques to refine the 

parameters of timestamp series forecasting models, 

specifically tailored for IoT healthcare applications. This 

methodology capitalizes on the Grey Wolf Optimizer 

(GWO), an algorithm inspired by the social hierarchy and 

hunting techniques of grey wolves, to enhance the 

accuracy of predictions regarding disease progression, 

treatment outcomes, and resource allocations. TS-GWO 

employs the GWO to systematically adjust the parameters 

of a timestamp series model, ensuring optimal predictions. 

The process begins with the initialization of a population 

of grey wolf candidates, each representing a potential 

solution to the parameter optimization problem in 

forecasting models. A population of grey wolves 

(solutions) Xi is initialized stochastically within the 

parameter space via equation 19, 

 

Where, a and b are the bounds of the parameter values for 

this process. Each wolf Xi is evaluated based on a fitness 

function f(X), typically the inverse of the forecasting error, 

represented via equation 20, 

 

Where, MSE represents the mean squared error between 

the model predictions and the actual data points. Wolves 

are sorted based on their fitness, and the top three are 

designated as alpha (α), beta (β), and delta (δ), 

respectively, via equation 21, 

 

The position of each wolf is updated towards the alpha, 

beta, and delta via equation 22, 

 

Where, A is a coefficient vector and  

represents the distance from the current wolf to the alpha, 

beta, and delta wolves. The coefficient A is adjusted via 

equation 23, 

 

Where, a linearly increases from 0 to 2 over the course of 

iterations, and r is a stochastic vector in [0,1] range sets. 

The optimization process is repeated until the change in the 

alpha's position is below a small threshold ϵ, estimated via 

equation 24, 

 

TS-GWO was chosen for its robustness in handling non-

linear, non-stationary data commonly found in IoT 

healthcare applications. Traditional timestamp series 

methods often struggle with parameter selection, especially 

in the context of rapidly evolving healthcare data, which 

can vary significantly over timestamp due to external 

factors such as disease outbreaks or technological 

advancements. GWO provides a powerful mechanism to 

dynamically adapt and find the optimal parameters without 

human intervention process. Moreover, the integration of 

TS-GWO with other components such as Encrypted 

Federated Learning (EFLHE), Reinforcement Learning-
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Driven Access Control (RLAC), and AI-Driven Anomaly 

Detection (AIDA) creates a holistic framework that not 

only predicts but also secures and manages IoT healthcare 

data effectively. TS-GWO enhances the predictive 

accuracy, which is crucial for proactive management and 

timely decision-making in healthcare settings, thereby 

complementing the security and privacy mechanisms 

implemented through other components. In conclusion, 

TS-GWO stands as a critical enhancement to traditional 

forecasting methodologies in the IoT healthcare sector. By 

employing the Grey Wolf Optimizer, this model not only 

advances the precision of forecasting outcomes but also 

adapts seamlessly to the evolving dynamics of healthcare 

data, ensuring optimal resource allocation and improved 

patient outcomes. This integration of bio-inspired 

optimization algorithms within IoT healthcare forecasting 

models represents a significant stride towards achieving a 

responsive and efficient healthcare management systems. 

Next, we discuss efficiency of the proposed models in 

terms of different metrics, and compare it with existing 

methods for different scenarios. 

4. Result Analysis & Comparison Techniques 

To evaluate the efficacy of the proposed framework 

incorporating Encrypted Federated Learning with 

Homomorphic Encryption (EFLHE), Reinforcement 

Learning-Driven Access Control (RLAC), AI-Driven 

Anomaly Detection with Autoencoder Fusion (AIDA), and 

timestamp Series-Based IoT Healthcare Forecasting with 

Grey Wolf Optimizer (TS-GWO), a comprehensive 

experimental setup was meticulously designed. This 

section describes the setup in detail, including the dataset 

characteristics, preprocessing methods, model parameters, 

and evaluation metrics used to validate the effectiveness of 

the integrated system. 

4.1. Dataset Description 

The experiments were conducted using a synthesized 

dataset that closely mimics real-world IoT healthcare data, 

capturing diverse scenarios ranging from routine patient 

monitoring to emergency situations. The dataset comprises 

the following features: 

• Patient Vitals: Heart rate, blood pressure, respiratory rate, 

and body temperature sampled every minute. 

• Medical Treatments: Records of medication 

administrations and other treatments, timestamped and 

categorized by type. 

• Device Interactions: Timestamped logs of device usage 

and patient-device interactions. 

• Anomaly Indicators: Injected anomalies representing 

potentially fraudulent activities or malfunctioning 

devices. 

4.1.1. Sample Size and Composition: 

• Total Samples: 500,000 instances 

• Training Set: 70% of the total data 

• Validation Set: 15% of the total data 

• Test Set: 15% of the total data Color/Grayscale figures 

4.2. Data Preprocessing 

Prior to training, the data underwent several preprocessing 

steps: 

• Normalization: All numerical features were normalized 

to have zero mean and unit variance. 

• Encoding: Categorical variables such as treatment types 

were encoded using one-hot encoding. 

• Sequencing: Time-series data were windowed into 

sequences of 60 minutes each, overlapping by 10 

minutes. 

4.3. Model Parameters and Setup 

4.3.1. Encrypted Federated Learning with Homomorphic 

Encryption (EFLHE) 

• Encryption Scheme: CKKS encryption scheme with a 

polynomial degree of 8192 and a coefficient modulus of 

60 bits. 

• Learning Rate: 0.01 

• Batch Size: 128 

• Number of Nodes: 5 independent nodes simulating 

different healthcare institutions. 

• Epochs per Node: Up to 50, depending on convergence 

criteria. 

4.3.2. Reinforcement Learning-Driven Access Control 

(RLAC) 

• State Space: Includes user roles, resource types, and 

access history. 

• Action Space: Binary decision {grant, deny}. 

• Reward Function: +1 for correct decisions, -1 for 

incorrect. 

• Discount Factor �γ: 0.95 

• Learning Rate �α: 0.05 

4.3.3. AI-Driven Anomaly Detection with Autoencoder 

Fusion (AIDA) 

• Autoencoder Architecture: Three-layer encoder and 

decoder (100-50-100 neurons). 

• Activation: ReLU for hidden layers and Sigmoid for 

output layer. 

• Loss Function: Mean squared error (MSE). 

• Learning Rate: 0.01 
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• Batch Size: 256 

4.3.4. Time Series-Based IoT Healthcare Forecasting with 

Grey Wolf Optimizer (TS-GWO) 

• Forecast Model: LSTM-based model with 50 units in one 

hidden layer. 

• Optimizer: Grey Wolf Optimizer with 20 wolves. 

• Iterations: 100 

• Learning Rate: Adaptive, starting from 0.05. 

4.4. Evaluation Metrics 

The performance of each model component was assessed 

using several metrics: 

• Accuracy and F1 Score: For RLAC access decisions. 

• Mean Squared Error (MSE): For the reconstruction error 

in AIDA and forecasting error in TS-GWO. 

• Detection Rate: For the anomaly detection capability of 

AIDA. 

4.5. Hardware and Software Configuration 

The experiments were carried out on a computing cluster 

equipped with: 

• CPUs: Intel Xeon E5-2670 v3, 2.30GHz, 12 cores 

• GPUs: NVIDIA Tesla K80, 4992 CUDA cores 

• RAM: 64GB 

• Software: Python 3.8, PyTorch 1.7, Microsoft SEAL for 

homomorphic encryption, and custom implementations for 

RLAC and GWO. 

This experimental setup ensures a rigorous evaluation of 

the proposed methods, facilitating detailed insights into 

their performance and scalability in realistic IoT healthcare 

environments. The chosen parameters and configurations 

were selected to balance computational demands with the 

necessity for high fidelity in security and performance 

outcomes. This structured approach not only tests the 

viability of individual components but also demonstrates 

the cohesiveness and efficiency of the integrated system as 

a whole. The performance of the proposed integrated 

model was evaluated using a comprehensive set of 

experiments designed to assess its effectiveness in IoT 

healthcare data management and anomaly detection. The 

results are presented in a series of tables that compare the 

proposed model (referred to as the "Proposed Model") with 

three other established methods, represent as [2], [5], and 

[18]. These methods represent conventional approaches in 

encrypted federated learning, access control, and anomaly 

detection, respectively. 

 

 

Table 1: Accuracy of Access Control Decisions 

Method Accuracy (%) 

Proposed Model 97.5 

[2] 91.2 

[5] 88.6 

[18] 84.3 

 

Table 1 illustrates the accuracy of access control decisions 

across the four methods. The Proposed Model significantly 

outperforms the other methods due to its dynamic policy 

adaptation using reinforcement learning, which allows for 

more responsive and precise access control decisions. 

Table 2: Mean Squared Error in Anomaly Detection 

Method MSE 

Proposed Model 0.008 

[2] 0.022 

[5] 0.035 

[18] 0.030 

 

Table 2 presents the mean squared error (MSE) for the 

anomaly detection task. The Proposed Model achieves a 

lower MSE compared to the other methods, indicating a 

more effective capability in reconstructing normal 

behavior and identifying deviations, thanks to its integrated 

autoencoder architecture. 

Table 3: Forecasting Accuracy for Disease Progression 

Method Accuracy (%) 

Proposed Model 93.8 

[2] 85.7 

[5] 81.5 

[18] 78.9 

 

Table 3 compares the forecasting accuracy for disease 

progression. The Proposed Model utilizes the Grey Wolf 

Optimizer to refine forecasting models, which helps in 

achieving higher accuracy by optimally tuning the model 

parameters to the dynamics of the disease progression data 

samples. 

Table 4: Resource Allocation Efficiency 

Method Efficiency (%) 

Proposed Model 95.4 

[2] 89.2 

[5] 87.1 
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[18] 85.5 

 

Table 4 evaluates the efficiency of resource allocation. The 

Proposed Model's superior performance is attributed to its 

precise and proactive forecasting capabilities, which ensure 

optimal resource allocation based on the predicted needs 

and progression of patient conditions. 

Table 5: Response timestamp to Anomaly Detection 

Method Response timestamp (s) 

Proposed Model 0.3 

[2] 1.2 

[5] 1.5 

[18] 1.4 

Table 5 shows the response timestamp in seconds for 

detecting anomalies. The Proposed Model's integration of 

real-time data processing and anomaly detection through 

autoencoders provides a faster response compared to the 

other methods, which is critical in healthcare settings 

where timely intervention is essential. 

Table 6: Overall System Scalability 

Method Scalability Score (1-10) 

Proposed Model 9.3 

[2] 7.2 

[5] 6.8 

[18] 6.5 

Table 6 assesses the overall scalability of the system. The 

Proposed Model, with its decentralized federated learning 

architecture and efficient data handling mechanisms 

(including encryption and optimization), scores higher in 

scalability. This makes it particularly suitable for large-

scale IoT healthcare applications, where data volume and 

system demand can escalate rapidly. The results across 

these evaluations robustly affirm that the Proposed Model 

not only excels in individual aspects such as accuracy, 

efficiency, and response timestamp but also demonstrates 

superior scalability and adaptability compared to 

conventional methods [2], [5], and [18]. This 

comprehensive performance enhancement underscores the 

effectiveness of integrating advanced techniques such as 

homomorphic encryption, reinforcement learning, 

autoencoders, and optimization algorithms within the IoT 

healthcare domain. Next, we discuss an example use case 

of the proposed model, which will assist readers to 

understand the entire process. 

Practical Use Case 

To elucidate the operational efficacy and the outcomes of 

the integrated model designed for IoT healthcare data 

management, a practical example involving a simulated 

dataset reflective of typical IoT healthcare scenarios is 

considered. This dataset includes variables such as patient 

vitals, treatment records, device interactions, and injected 

anomalies indicative of potential fraudulent activities or 

device malfunctions. The structured evaluation is 

segmented into various processes integral to the model, 

namely: Encrypted Federated Learning with Homomorphic 

Encryption (EFLHE), Reinforcement Learning-Driven 

Access Control (RLAC), AI-Driven Anomaly Detection 

with Autoencoder Fusion (AIDA), timestamp Series-Based 

IoT Healthcare Forecasting with Grey Wolf Optimizer 

(TS-GWO), and the consolidated Final Outputs. The 

results from these processes are showcased in sequential 

tables to provide clear, quantifiable insights into the 

model's performance across different operational modules. 

Table 7: Results from Encrypted Federated Learning with 

Homomorphic Encryption (EFLHE) 

 

Table 7 provides a detailed overview of the parameter 

updates during the EFLHE process across five nodes 

participating in the federated learning network. Each node 

starts with distinct initial parameters for the model, which 

are then encrypted using homomorphic encryption to 

ensure data privacy. The table illustrates the encrypted 

form of these parameters, the subsequent updated 

parameters after several epochs of training, and the 

learning rate employed. The rapid convergence of model 

parameters across nodes demonstrates the efficiency of 

EFLHE in maintaining data confidentiality while enabling 

collaborative learning. 

Table 8: Results from Reinforcement Learning-Driven 

Access Control (RLAC) 

Tri

al 

 

State 

 

Actio

n 

Rewar

d 

New 

Policy  
Commen

ts 
Paramete

rs 

1 
(1,0,

1) 

 

Grant 
1 

(0.8, 0.1, 

0.1) 

Correct 

Access 

Node 

ID 

Initial 

Model 

Parameters 

Encrypted 

Parameters 

Updated 

Parameters 

Learning 

Rate 

Epochs 

1 (0.45, 

0.30) 

(Enc(0.45), 

Enc(0.30)) 

(0.40, 

0.35) 

0.01 50 

2 (0.50, 

0.25) 

(Enc(0.50), 

Enc(0.25)) 

(0.45, 

0.30) 

0.01 50 

3 (0.55, 

0.20) 

(Enc(0.55), 

Enc(0.20)) 

(0.50, 

0.25) 

0.01 50 

4 (0.60, 

0.15) 

(Enc(0.60), 

Enc(0.15)) 

(0.55, 

0.20) 

0.01 50 

5 (0.65, 

0.10) 

(Enc(0.65), 

Enc(0.10)) 

(0.60, 

0.15) 

0.01 50 
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2 
(0,1,

0) 
Deny 1 

(0.8, 0.2, 

0.0) 

Correct 

Access 

3 
(1,1,

1) 
Grant -1 

(0.7, 0.2, 

0.1) 

Access 

Denied 

4 
(0,0,

1) 
Deny 1 

(0.7, 0.3, 

0.0) 

Correct 

Access 

5 
(1,0,

0) 
Grant 1 

(0.8, 0.2, 

0.0) 

Correct 

Access 

 

Table 8 captures the dynamics of the RLAC process across 

five trials. Each trial records the state of the system, the 

action taken (Grant or Deny), the reward received based on 

the action's appropriateness, and the updated parameters of 

the RL policy. Positive rewards indicate correct access 

decisions aligning with system security protocols, while 

negative rewards reflect decisions that compromised 

system security. The adjustments in policy parameters after 

each trial reflect the RL algorithm's learning and 

adaptation process, enhancing decision accuracy over 

temporal instance sets. 

Table 9: Results from AI-Driven Anomaly Detection with 

Autoencoder Fusion (AIDA) 

 

Table 9 details the results from the AIDA component, 

highlighting the normalized input features for each sample, 

the calculated reconstruction errors, and the anomaly 

detection outcomes. Samples with higher reconstruction 

errors exceed the set threshold, thereby flagging them as 

anomalies. This indicates the model's sensitivity to 

deviations from normal patterns, providing a reliable 

mechanism for early detection of potential issues & 

scenarios. 

 

 

 

 

 

Table 10: Results from timestamp Series-Based IoT 

Healthcare Forecasting with Grey Wolf Optimizer (TS-

GWO) 

Forecast 

ID 

Input 

Parameters 

Predicted 

Outcomes 
MSE Comments 

1 
(0.2, 0.3, 

0.4) 

(0.3, 0.4, 

0.5) 
0.002 

Accurate 

Forecast 

2 
(0.6, 0.7, 

0.8) 

(0.7, 0.8, 

0.9) 
0.003 

Accurate 

Forecast 

3 
(0.4, 0.5, 

0.4) 

(0.5, 0.6, 

0.5) 
0.004 

Moderate 

Accuracy 

4 
(0.1, 0.0, 

0.1) 

(0.2, 0.1, 

0.2) 
0.005 

Low 

Accuracy 

5 
(0.9, 1.0, 

0.9) 

(1.0, 1.1, 

1.0) 
0.001 

Highly 

Accurate 

 

Table 10 illustrates the forecasting accuracy of the TS-

GWO process. Each forecast instance shows the input 

parameters, the predicted outcomes based on these inputs, 

the mean squared error (MSE) indicating the prediction 

accuracy, and comments on the forecast quality. Lower 

MSE values correspond to higher accuracy, demonstrating 

the model's effectiveness in predicting future states 

accurately under varying conditions. 

Table 11: Final Outputs Across All Processes 

Process 

ID 

Output Metric Value Impact on System 

EFLHE Model Sync 

Error 

0.005 High Efficiency 

RLAC Policy Accuracy 97.5% Enhanced Security 

AIDA Detection Rate 95% Reduced Risk 

TS-GWO Forecasting 

Accuracy 

92% Optimized Resource 

Use 

 

Table 11 consolidates the final outputs from each 

component of the integrated model, showcasing critical 

metrics such as model synchronization error, policy 

accuracy, anomaly detection rate, and forecasting 

accuracy. These results underline the comprehensive 

benefits of the proposed system, highlighting its capability 

to enhance operational efficiency, security, and proactive 

management within IoT healthcare environments. 

5. Conclusion Observations and Future Scopes 

This study presented an integrated model designed for the 

secure and efficient management of IoT healthcare data, 

incorporating Encrypted Federated Learning with 

Homomorphic Encryption (EFLHE), Reinforcement 

Learning-Driven Access Control (RLAC), AI-Driven 

Sample 

ID 

Input Features 

(Normalized) 

Reconstruction 

Error 

Anomaly 

Detected? 

1 (0.1, 0.2, 0.3) 0.004 No 

2 (0.4, 0.5, 0.6) 0.006 No 

3 (0.7, 0.8, 0.9) 0.015 Yes 

4 (0.2, 0.1, 0.0) 0.007 No 

5 (0.8, 0.9, 1.0) 0.020 Yes 
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Anomaly Detection with Autoencoder Fusion (AIDA), and 

timestamp Series-Based IoT Healthcare Forecasting with 

Grey Wolf Optimizer (TS-GWO). The experimental results 

demonstrate the substantial benefits of this holistic 

approach, particularly in enhancing data privacy, accuracy 

of access decisions, anomaly detection, and forecasting 

disease progression and resource needs. The Proposed 

Model exhibited an outstanding accuracy of 97.5% in 

making access control decisions, a significant 

improvement over the comparative methods [2] at 91.2%, 

[5] at 88.6%, and [18] at 84.3%. This underscores the 

effectiveness of the RLAC component in dynamically 

optimizing access policies based on real-time data, which 

crucially outperforms static systems. In anomaly detection 

tasks, the model achieved a mean squared error (MSE) of 

0.008, indicating a superior ability to reconstruct normal 

patterns and detect deviations compared to MSEs of 0.022, 

0.035, and 0.030 for methods [2], [5], and [18] 

respectively. This precision highlights AIDA's robustness 

in safeguarding the network against potential security 

breaches. 

Moreover, the model's forecasting accuracy for disease 

progression stood at 93.8%, significantly higher than the 

85.7%, 81.5%, and 78.9% recorded by methods [2], [5], 

and [18]. This advantage is attributed to the Grey Wolf 

Optimizer, which effectively refines the forecasting model 

parameters to adapt to the complex dynamics of IoT 

healthcare data samples. The efficiency in resource 

allocation was also notable at 95.4%, demonstrating the 

model's capability to predict and manage healthcare 

resources efficiently, surpassing the efficiencies of 89.2%, 

87.1%, and 85.5% from the other methods. Furthermore, 

the system's response timestamp to anomalies was rapid at 

0.3 seconds, compared to more than four times slower 

responses by comparative models, emphasizing the 

operational readiness and reliability of the AIDA 

component. The overall scalability of the system was rated 

at 9.3 out of 10, illustrating its suitability for expansive IoT 

healthcare environments where data and user interaction 

complexities scale significantly. 

Future Scope 

While the current integrated model provides a robust 

framework for IoT healthcare data management, the future 

scope includes several avenues for enhancement and 

expansion.  

Algorithm Optimization: Further refining the algorithms 

used in EFLHE and RLAC could reduce computational 

overheads and improve real-time processing capabilities. 

Optimizing encryption and learning algorithms to support 

faster model convergence without sacrificing accuracy 

could enhance system responsiveness. Broader Data 

Integration: Expanding the model to integrate more 

diverse data types, including genomics data and real-time 

biofeedback, could provide a more comprehensive view of 

patient health and improve predictive analytics. Advanced 

Anomaly Detection Techniques: Implementing newer 

machine learning models such as deep reinforcement 

learning in anomaly detection could uncover subtler 

irregularities in data patterns, offering earlier warnings of 

issues. Cross-Domain Application: Adapting the 

framework for use in other domains, such as smart cities or 

industrial IoT, where security and efficiency are also 

critical, could broaden the impact of this research. 

Edge Computing: Incorporating edge computing into the 

framework to process data locally on devices can decrease 

latency, reduce the burden on central servers, and enhance 

data security by limiting data transmission over networks. 

Regulatory Compliance and Ethical Standards: As IoT 

devices become more embedded in healthcare, ongoing 

research will also need to address evolving legal and 

ethical considerations, ensuring the model adheres to 

international standards and regulations. In conclusion, the 

proposed model not only sets a new benchmark in privacy-

preserving, real-time IoT healthcare systems but also 

highlights the potential for scalable, secure, and efficient 

frameworks crucial for the future of healthcare technology. 

Through continuous innovation and adaptation, this model 

can significantly enhance patient care and resource 

management in IoT healthcare environments. 
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