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Abstract: More and more, healthcare facilities and academic institutions are relying on technological solutions to securely share patient 

information. Technical solutions such as distributed ledger technology and homomorphic encryption are available. It is possible to 

compute data without ever needing to decode it using homomorphic encryption. Cloud data is still a target for attackers due to the 

inherent instability and fast progress of technology. Consequently, homomorphic encryption offers a practical way to test the durability 

of collections of sensitive patient data kept in different regions. As a result, a homomorphic encryption method based on matrix 

transformations was used to shift, rotate, and transpose each letter in the converted Binary ASCII value of the original text. Symmetric 

cryptography encrypts and decrypts using the same secret key. One advantage of symmetric encryption is the "avalanche efect," which 

occurs when two different keys generate different cypher texts for the same communication. The key's varied circumstances are the 

source of this effect. The cryptanalysis of the proposed technique shows that it is more secure than current encryption approaches against 

a wide variety of attacks. a way that malicious actors' statistical analyses can't simply deduce the plaintext. 
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1 Introduction: 

Over the last several years, there has been a tremendous 

advancement in information technology. Cloud 

computing has seen an increase in applications, and 

homomorphic encryption methods are used extensively 

in cloud storage and cloud computing [1]. The need to 

protect users' personal information has grown in tandem 

with the popularity of cloud computing and must be 

handled as an urgent matter of security. However, there 

isn't a trustworthy cloud centre for the public key 

cryptosystem-based homomorphic encryption method, 

and the method's more complicated calculation process 

means it can't handle lots of users or lots of calculations 

[2-3]. Consequently, both user and data privacy are 

safeguarded throughout the aggregation process by using 

the homomorphic encryption technique. The aggregated 

result is sent to the cloud centre, and no personally 

identifiable information about users is revealed, 

guaranteeing data security. When compared to the RSA 

encryption technique, the homomorphic encryption 

approach clearly excels in processing speed and data 

privacy protection, demonstrating its ability to securely 

safeguard users' data.  

1.1 Motivation 

Cloud computing's primary issue is security. One of the 

major problems is the data transmission to third-party 

service providers for processing and automation. The 

private and sensitive information of its customers is 

valuable to every company or organisation. Research, 

new marketing campaigns, laws, and creative product 

launches are all made possible with data, which is why 

all organizations—public, corporate, healthcare, and 

academic alike—need it. Acumen Research and 

Consulting predicts that the healthcare cloud computing 

industry will reach $40 billion by 2026, therefore 

protecting patients' personal health information is our top 

priority [4]. The healthcare business may benefit from 

cloud computing in two ways: increased productivity and 

reduced expenses. Despite its speed, protecting sensitive 

healthcare information is essential for boosting patient 

trust and driving economic growth. Saving money and 

making healthcare more efficient are two goals of 

digitising patient medical records. However, patient 

records include a great deal of personal information. 

Consequently, patients must be able to promptly and 

reliably provide access to their personal information to 

several medical associations in a safe environment. It is 

critical to study the healthcare industry's usage of 

homomorphic encryption and evaluate many 
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homomorphic methods to ensure patient privacy during 

data searches and disease prediction.  

Here is how the remainder of the article is structured: 

Methods, planning, criteria for inclusion and exclusion, 

and research questions accompanied by rationale will be 

covered in the following section. Partially and 

moderately homomorphic approaches, as well as 

completely homomorphic methods, are compared and 

examined in the next section. We classified fully 

homomorphic encryption methods into four categories 

and compared the most important tactics from each. 

Homomorphic encryption's applications in healthcare 

will be covered in the next section. Homomorphic 

encryption methods were evaluated for security based on 

computation and transmission costs. 

2 Related Work 

To facilitate the development of web applications and to 

serve as a reliable firewall between the client and the 

server, Martin Johns et al. [13] assembled Crypto 

Membranes, a set of native client-side components. On 

the client side, data encryption protects against 

untrustworthy third parties. While continuing to be 

totally compatible with the approaches employed in 

current client-side programming. To provide consumers 

a real experience, he also shows how Crypto Membranes 

may be integrated with existing web browsers by using a 

conventional browser during the extension's transition 

period.  

 

The most current assaults on efficient encrypted cloud 

data search enabled by SSE or OPE/ORE were outlined 

in an orderly fashion by Yao et al. [14]. They have 

classified the rival model using many criteria in order to 

be more specific. Under ten different sorts of attackers, 

they examined the current attacks on OPE/ORE and SSE 

and the security holes that these frameworks allow. 

A pattern outlining its design, identifying its issues, and 

proposing remedies was published by Eduardo B. 

Fernandez et al. [15]. The pattern safeguards data assets 

and communication paths to avoid attacks on IoT devices 

and to make security management easier. A few 

examples of security methods include auditing and 

security loggers, firewalls and intrusion detection 

systems, secure channels, and permission-based 

authentication. The team is building a library of patterns 

to ensure the safety of the Internet of Things ecosystem, 

and this is one of their contributions.  

 

One method that was suggested by Shruthi Ramesh et al. 

[16] is known as proxy re-ciphering as a service. 

Encrypted data remains private even after a device-key 

breach because to the integration of dispersed servers, 

chameleon hash functions, FHE, and secret sharing, 

which form a robust and durable system. In order to 

evaluate the system, they set up a testbed and tracked the 

latencies using real ECG records taken from the TELE 

ECG database.  

Consistent with what has been found by Kanchanadevi 

and colleagues [17] Protecting sensitive information in a 

hybrid cloud requires encryption. There are a lot of 

encryption methods at our disposal, but they all bring up 

valid points about the safety of our data. The attribute-

based encryption system that supports dynamic attributes 

(ABE-DAS) has overcome these problems. Combining a 

dynamic attribute strategy with an attribute-based 

encryption method improves the security of data stored 

in a hybrid cloud. Whether your data is structured or not, 

the ABE-DAS encryption technique can handle it when 

you use an attribute approach. It turns regular text into 

cypher text by combining static and dynamic properties.  

 

K. Naregal et al. [18] state that the dramatic increase in 

cloud computing and IoT devices has led to easy, 

efficient, and secure data access. It has been concluded 

that a method based on lightweight attributes is 

necessary for the cloud-based Internet of Things (IoT).  

 

Simple methods may be sufficient to meet the proposed 

and achieved communication security needs of Zeesha 

Mishra et al. [19]. Utilising and modelling the best 

lightweight cyphers is essential. It is necessary to mimic 

the design in order to include the cypher into hardware 

that may be used to track different parameters. All three 

cyphers—TEA, XTEA, and XXTEA—were used to 

accomplish the desired objective. Developing, 

implementing, and optimising these cyphers required the 

utilisation of FPGA and ASIC technology. There are a 

lot of things that have been considered, such as block 

sizes, implementation rounds, and important scheduling 

components.  

 

To encrypt RGB images, Dina Ibrahim et al. [20] came 

up with a novel approach. Each pixel in an RGB picture 

is encrypted using a technique that involves 16 rounds of 

DNA encoding, transpositions, replacements, and chaotic 

systems. Round keys are generated at random using a 

logistic chaotic function, which also randomly creates a 

16x16 nonlinear matrix. Over the course of several 

rounds, these keys are used in conjunction with the DNA 

Playfair matrix to alter specific pixels. Data encryption 

and decryption using the proposed approach is faster and 

more secure than existing methods, according to 

experiments. The numerical measurements show that the 

proposed method may protect reference evaluation 

values against statistical and differential attacks while 

keeping them intact.  

 

A machine learning strategy that addresses data privacy 

protection and multi-party cooperative learning, 
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federated learning was introduced by Google in 2016 [6]. 

A growing number of institutions and businesses are 

beginning to embrace federated learning, a cooperative 

machine learning strategy involving several parties [7, 

8]. Federated learning initially aimed to assist Android 

users in resolving the issue of model localisation. 

Federated learning might be used to other areas of 

machine learning as well. It was stated in 2019 [13] that 

Google scientists used Tensorflow to build a scalable 

production system for mobile device-related 

collaborative learning. Furthermore, for 2019, additional 

relevant assignments have been suggested. Without 

providing raw data to a centralised node, Wang 

highlighted the issue of learning model parameters when 

data is spread across numerous edge nodes [12]. 

Additionally, federated transfer learning has been the 

subject of some research. It is possible to apply the 

architecture described in [11] with various types of safe 

multi-party machine learning because of its adaptability. 

Concerning efficiency, [7] presented a framework called 

SecureBoost that achieved almost same accuracy as the 

five privacy protection solutions.  

 

Federated learning has found widespread application 

across many domains. To illustrate, one example is 

Google's Gboard technology, which enables keyboard 

input prediction and enhances input efficiency while 

protecting user privacy [8,9]. The ability to securely 

manage sensitive patient data makes federated learning 

an ideal tool for the medical industry [10,11]. Federated 

learning also has applications in recommendation 

systems [23] and natural language processing [12].  

 

Furthermore, there has been a great deal of recent 

substantial work on machine learning to safeguard 

privacy. Using SMC to mitigate differential privacy-

induced noise was in line with the recommendations 

made by Zhou et al.[24,25] for protecting machine 

learning privacy. In 2020, Zhang et al. suggested an 

optimization-based batchcrypt method using the FATE 

framework [26]. By minimising the amount of 

mathematics required, encryption and decryption speed 

is improved when a batch of quantised gradients is 

encrypted as a long integer all at once. To improve 

Bayesian machine learning, Wei Ou et al. developed a 

vertical federated learning system that uses 

homomorphic encryption. Their model outperforms a 

single union server training model by 90% [27].  

3 METHODOLOGY: 

 

Fig 1: Workflow model 

3.1 HOMOMORPHIC ENCRYPTION: 

An example of a public key cryptography technique is 

homotopy encryption (HE). After the user generates a 

pair of public and private keys, she encrypts her data 

using the public key before sending it to an outside party 

for processing. Due to the fact that encryption and 

decryption are synonymous, the user may see the 

outcome of the calculation performed on her data by 

decrypting it using her own key. So long as the user 

never gives out their personal details, they may see the 

results of the calculation in this way. Once encryption is 

finished, almost all computing may be outsourced to the 

server utilising HE. Homomorphic properties enable the 

user to decode the output and do calculations on 

encrypted data securely, without compromising privacy. 

It may take more time to do certain computations with 

HE since it is limited to addition and multiplication and 

cannot efficiently handle arbitrary big multiplications.  

 

Processing data in its unencrypted form is the norm due 

to the fact that encryption techniques prohibit handling 

encrypted data. Homomorphic encryption, in contrast, 

lets the user decrypt findings after computing on 

encrypted material. Not only does homomorphic 

encryption permit processing of encrypted data, but it 

also guarantees privacy continuously. The three 

algorithms that make up traditional public-key 

encryption are key creation, encryption, and decryption. 

On the other hand, homomorphic encryption is an 

essential characteristic. 
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3.2 FULLY HOMOMORPHIC ENCRYPTION 

(FHE): 

Classical encryption allows you to encrypt data in an 

encrypted "box," or safe, and then secure it with a key. 

Important data operations, including searches or 

computations, need the key to "unlock" or decrypt the 

data. Encryption makes your data more susceptible to 

hackers, who might potentially steal your personal 

information. For its part, FHE enhances encryption by 

removing the need to disclose the underlying data in 

order to work directly with encrypted data. Envision 

your data kept in a locked "box." Using FHE, you can 

manipulate the data even when it's still in the box. Data 

privacy is maintained at every stage by further 

encrypting the output of these procedures. When it 

comes to safe data exchange and analysis, Fully 

Homomorphic Encryption provides a revolutionary 

answer to the healthcare industry's data privacy 

challenges. Medical organisations may work together or 

talk about research, diagnoses, and treatment plans 

securely using FHE to do computations on encrypted 

data, eliminating the danger of exposing sensitive patient 

information. With FHE, you can do any maths you want 

on encrypted data. The fact that all functions may be 

defined as Boolean circuits means that any encryption 

technique capable of adding and multiplying can 

potentially evaluate any function. Levelled homomorphic 

encryption (LHE) are methods that can execute 

homomorphic operations over a circuit of a certain 

depth. The practical range of functions that can be 

calculated with FHE/LHE is limited by factors such as 

ciphertext noise building, key sizes, ciphertext sizes, 

execution time, and circuit depth. 

3.3 IMPLEMENTING FULLY HOMOMORPHIC 

ENCRYPTION: 

New, open-source FHE libraries and apps have emerged 

as a result of recent FHE research. The most current 

community standards for homomorphic encryption and 

state-of-the-art FHE research are continually being 

considered as these libraries evolve [9]. Even while FHE 

is becoming more effective, non-experts still struggle to 

use it in practical settings. A great deal of programming 

and cryptographic knowledge is needed for the custom 

implementations that are necessary. Some examples 

include the difficulty of translating calculations from 

plaintext to ciphertext, the need to manually configure 

security settings, and the careful management of noise to 

ensure accurate decryption [7]. Several preliminary 

compilers and tools have been released to aid in making 

FHE more accessible and usable.  

 

The PYthon For Homomorphic Encryption Libraries 

(Tenseal & Pyfhel) use PALISADE, HElib, and SEAL as 

backends to provide homomorphic encryption methods 

in Cython [3]. The Python library PySyft offers many 

methods for ensuring privacy, including homomorphic 

encryption [8]. Encryption that is semi-homomorphic or 

somewhat-homomorphic is available in some libraries. 

For Python 3, the partly homomorphic Paillier method 

may be used with the help of the PythonPaillier package 

[9]. To implement the moderately homomorphic DHS 

method on a GPU, one needs the CUDA Homomorphic 

Encryption Library (cuHE) [5]. The Awesome 

Homomorphic Encryption website is a good place to find 

newly developed FHE libraries. 

 

Several different frameworks fall under the umbrella 

term "private-preserving machine learning," and they 

may all be used to train and categorise sensitive data. 

These techniques could include a lot of people, including 

the owner(s) of the data, the model(s), and the server(s) 

on the cloud. One option is to have the client's encrypted 

data processed by a server in the cloud. The client 

receives the result (encrypted) and uses it for private 

evaluation after decrypting it. Implementing privacy-

preserving machine learning has many potential 

applications, including personalised medicine, diagnostic 

tools, and DNA sequence analysis [11, 12].  

3.4 LOGISTIC REGRESSION 

The posterior probability of the classes is expressed 

using linear functions in logistic regression methods. The 

model has the following form when given a set of points 

{1, x1, x2,..., xn}, where xi is a binary variable and {−1, 

1} are binary classes. 

xe
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regression model. Make a Logistic Regression Model. 

Finding the parameters of a logistic regression model is 
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where is the sigmoid function, (x) = 1/(1 + exp(x)). 

A change to the optimisation function that is HE-friendly 

is necessary to train logistic regression techniques 

utilising encrypted input. Due to the price of 

homomorphic computing, the training approach should 

need the fewest repetitions for convergence. Because it 

converges more quickly than conventional gradient 

descent, Kim et al.'s efficient technique learns its 

parameter set using Nesterov's accelerated gradient [16].  

 

A neural network's architecture consists of several layers, 

the most common of which are the activation, 

convolution, pooling, and dense (or completely coupled) 

layers. Direct usage of homomorphic encryption is not 

possible since certain of the functions of these layers are 

not polynomial. Picking the right precision bits for inputs 

and network weights and utilising polynomial functions 

to approximate non-linear layers is essential for keeping 

network accuracy low during homomorphic assessment. 

Nonlinear layers have been approximated using a wide 

variety of methods in homomorphic evaluation. 

 

 

Convolutional layers retrieve characteristics using 

discrete convolution. This takes a vector g as input, uses 

it to calculate the weighted sums of a vector of input 

values f, and then passes that vector on to the next 

network layer. In the context of image processing, if f 

and g are matrices, then  


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−=



−=

−−=
i j
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Picture classification networks often include 

convolutional layers, where f is a picture subregion 

centred at index m and g is a kernel matrix [12]. It is 

possible to encrypt the kernel g weights after training is 

complete. The use of FHE allows for the computation of 

discrete convolution as a polynomial function.  

 

several levels of activation! To make the neural network 

model non-linear, activation layers are used. Activation 

layers often follow convolution layers. A few popular 

activation functions include the sigmoid, hyperbolic 

tangent, and REctified Linear Unit (ReLU) functions. 

Max(0, x) is the ReLU function, and the sigmoid is given 

by 

)exp(1

1
)(

z
z
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Special issues arise when training privacy-preserving 

models on encrypted data. It is common practice to 

evaluate the network's accuracy while training it in order 

to include training improvements when dealing with 

difficult classification problems. Having said that, the 

network must demonstrate strong performance during its 

first training session using encrypted data [25]. In 

addition, training on homomorphically encrypted data 

requires assessing multiple homomorphic methods, 

which may be a major processing burden. 

4 Experiments & Results 

 

The models' assessment times varied by 0.19 seconds 

when comparing encrypted and non-encrypted data. 

Because of this, the encypted works outperform the 

palin-data. 

Training an Encrypted Logistic Regression Model on 

Encrypted Data 

In order to train the encrypted logistic regression model, 

we will need to create a model similar to PyTorch that 

can forward and backpropagate encrypted input. This 

will allow us to update the weights using the encrypted 

data. Further information on the training may be found 

here. 

Loss Function 

Specifically, we use the regularised binary cross entropy 

loss function (the rationale for regularisation will be 

discussed at a later point). The i'th predicted label is 

denoted by y(i), and Θ represents the n-sized weight 

vector. Y^(i) stands for the output of the i'th logistic 

regression model. 

Loss(θ)=−1m∑i=1m[y(i)log(y^(i))+(1−y(i))log(1−y^(i))]

+λ2m∑j=1nθ2j 

Parameters Update 

Typically, while updating a parameter, the following 

steps are taken, with x(i) standing for the i-th input data 

point:  

The equation θj=θj−α[1m∑i=1m(y^(i)−y(i))x(i)+λmθj] 

can be paraphrased as; it is a functional equation. 

 
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We choose to utilise λm=0.05 and α=1 to decrease a 

multiplication due to the homomorphic encryption 

requirement. As a consequence, the modification that 

follows the  

 rule:θj=θj−[1m∑i=1m(y^(i)−y(i))x(i)+0.05θj] 

 

Fig 2: Data distribution on both data 

 

Fig 3: The data accuracy is 68%, which is higher than 

previous models. 

There has long been a consensus among statisticians that 

PHI should not be stored in statistical databases. Instead 

of disturbing the data using data masking techniques to 

provide basic summary statistics, official statistics efforts 

have primarily focused on accurate statistical inference 

for more complex statistical models.  

Here we take a look at the issue of multiple regression 

computation in a scenario where the data are spread out 

across several sources, and none of them are willing to 

share their data. This issue arises, for instance, when data 

comprises billing and record information from health 

insurance plans and the parties involved are health 

insurance companies. Despite the fact that the data 

cannot be delivered due to legal obstacles, a regression 

using the combined sets of data from both parties may 

have better features than using each (incomplete) set. 

Such issues emerge whenever two or more parties 

conduct repeated polls of the same group of people. 

Following that, they want to do regressions using the 

aggregated survey variables; nevertheless, they are 

hesitant to provide the data. 

 

This research delves into a distinct but connected privacy 

protection issue within the framework of regression 

analysis, which pertains to statistical computations 

conducted on several datasets. In this case, the two 

primary parties concerned with privacy are the database 

owners and the people whose data is stored in various 

databases. With respect to the former, the privacy 

safeguards afforded to data inside individual sources are 

insufficient to cover the connected individual files when 

data is merged across sources. Database owners may not 

want to or be able to share their data directly with other 

parties, even if safeguarding individual privacy is not a 

problem.  

 

A technique for secure matrix products provides a 

comparable foundation for the secure regression due 

process. On the other hand, after the writers have safely 

computed the whole data covariance matrix and 

disseminated it to all users (along with the response 

vector), they cease writing. This reduces data privacy but 

makes the protocol computationally interesting by 

allowing parties to calculate a broad range of diagnostics 

locally. The disclosure of more personal information 

than is absolutely necessary occurs due to the fact that 

the data covariance matrix is not required in order to 

produce the coefficient vector.  

 

The majority of prior work on privacy-preserving data 

mining has been on situations where the parties' data 

distributions are predictable. The two most typical kinds 

are "vertical partitioning," in which each side has a 

subset of the attributes, and "horizontal partitioning," in 

which each side has a subset of the instances. We 

provide a procedure that may be used in any case where 

the parties involved have interdependent database 

components, independent of the partitioning method. 

When data warehouses are involved, this might happen.  

 

We construct a computation protocol. The protocol is a 
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series of steps that allow users to connect with one other 

and execute calculations locally. To implement the 

concept of security, we want to use a "semi-honest" 

method of cryptography. The underlying assumption of 

this security model is that not only will all participants 

adhere to the rules and disclose their actual input values, 

but they will also be interested in discovering the hidden 

inputs of their peers. If the messages sent between the 

parties while the protocol is running do not reveal any 

information about the private inputs that each party 

possesses, then the protocol is considered secure. When 

it comes to security, the only thing needed to "simulate" 

a party's message transcript is their knowledge of the 

protocol's output and input. To do this, a formal 

specification of a probabilistic polynomial time approach 

(the simulator) is necessary. A party, their output, and a 

randomly selected seed are the three inputs. After that, it 

creates a transcript of the message that is 

computationally identical to the one that would be 

created during the execution of the protocol.  

5. Conclusion 

From Gentry's original proposal to the efficient 

implementations now on the market, research has led to a 

rapid improvement in completely homomorphic 

encryption. Several open-source libraries that support 

FHE are now accessible. A thorough familiarity with the 

theory behind the scheme or schemes is usually 

necessary for implementing these FHE libraries. The 

present efforts will result in the availability of more 

advanced, user-friendly technologies in the future, but 

even with these implementations, non-experts still have a 

hard time navigating. This would open the door for 

researchers from many walks of life to use FHE. These 

enhancements would have the greatest impact on the 

healthcare industry, which handles a great volume of 

sensitive patient information. A doctor could be able to 

anonymously access a prediction model using privacy-

preserving classification methods, all without disclosing 

any patient health information. Among FHE's many uses 

in statistics and ML is its incorporation into private 

logistic regression evaluations.There will be more uses 

for FHE as it becomes faster and more useful. 
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