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Abstract: This paper presents a novel approach for detecting ovarian cancer through image denoising and enhanced 3D U-Net 

segmentation. The proposed method incorporates an Enduring Noise Elimination Neural Network (ENEN) model architecture designed 

to encode input images into a lower-dimensional latent space and reconstruct the denoised images. This denoising process is crucial for 

improving the quality of medical images, which often suffer from noise due to various factors during acquisition. The denoised images 

are then subjected to segmentation, which partitions the image into multiple segments or regions to identify and delineate distinct objects 

or structures. Our segmentation approach utilizes the power of a 3D U-Net architecture, which extends the traditional 2D U-Net into 

three dimensions to handle volumetric data. The 3D U-Net is particularly effective in biomedical image segmentation tasks, making it an 

ideal choice for segmenting ovarian cancer regions in 3D medical scans. The model is trained to minimize the difference between the 

reconstructed image and the ground truth clean image during the denoising phase and then to accurately segment the denoised image. 

This method demonstrates significant improvements in the accuracy of ovarian cancer detection, highlighting the potential of combining 

advanced image denoising techniques with robust 3D segmentation architectures in medical imaging applications. 

Keywords: Biomedical imaging, 3D U-Net segmentation, Image quality improvement. Image denoising, Ovarian cancer detection 

1. Introduction 

Among female cancer patients, Ovarian Cancer (OC) 

ranks seventh in terms of frequency of fatalities. Patients 

over 50 account for most cases (75%), with an annual 

incidence rate of 40 per 100,000. From 3% in Stage IV 

to 90% in Stage I, the 5-year survival rate is greatly 

improved with early identification of this illness [1-4]. 

Histopathology examination is the most reliable method 

for diagnosing and classifying OC into many histological 

forms. Ovarian cancers are best diagnosed by trained 

pathologists, whose assessment of cellular morphology 

identifies the different forms of OC and directs treatment 

planning [5-8]. Nevertheless, there have been reports of 

grading differences among observers. Disparities in 

histopathologic interpretation lead to poor prognosis, 

ineffective therapy, and worse quality of life [9-11]. 

Among cancers affecting women, ovarian cancer ranks 

high. Ovarian cancer killed 184,799 individuals globally 

in 2018 and was diagnosed in 295,414 women [12]. Due 

to the lack of symptoms associated with early-stage 

tumors, most women with ovarian cancer are already in 

the late stages when they are diagnosed, which 

negatively impacts their long-term prognosis [13-14]. 

Even though ovarian cancers are chemosensitive and 

often show early response to taxane treatment, patients 

with advanced illness have a five-year survival rate of 

60% to 80% [15]. Therefore, a lot of effort has gone into 

developing new methods to forecast the course of this 

cancer and its prognosis. To determine ovarian cancer 

carrier status, it is usual practice to do a pelvic exam, a 

transvaginal ultrasound, and a clinical evaluation of 

tumor biomarkers such as carbohydrate antigen 125, 

carbohydrate antigen 72-4-6, and human epididymis 

protein 4 [16-17]. Many studies have assessed the 

efficacy of these biomarkers and the indices that 

incorporate them; for example, one developed a dual 

marker algorithm using HE4 and carbohydrate antigen 

125; another used these markers to differentiate between 

menopausal status and ovarian cancer; and still, another 

used these markers to calculate the risk of malignancy 

based on imaging characteristics [18]. 

The main contribution of the paper is  

➢ Image denoising using ENEN 

➢ Image segmentation using E-3D-Unet 

architecture 

This paper is organized as follows for the rest of it. 

Section 2 covers several ovarian cancer diagnostic 

methods, as discussed by several writers. Section 3 

displays the suggested model. The findings of the inquiry 

are reviewed in Section 4. A discussion of the outcome 

and potential future research makes up Section 5. 

1.1 Motivation of the paper 

The motivation of this paper lies in addressing the 

challenge of accurate ovarian cancer detection through 
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advanced image processing techniques. By integrating 

the Enduring Noise Elimination Neural Network 

(ENEN) for image denoising and utilizing the enhanced 

capabilities of E-3D U-Net segmentation, the method 

aims to improve the quality and accuracy of medical 

imaging significantly. This approach enhances the clarity 

of medical images by reducing noise and ensures precise 

segmentation of ovarian cancer regions in volumetric 

scans. By minimizing the gap between reconstructed and 

ground truth images, the method promises to advance 

diagnostic accuracy in biomedical imaging, thereby 

contributing to improved patient care and treatment 

outcomes. 

2. Background study 

Ghoniem, R.  et al. [5] This model integrates gene and 

histopathological image modalities. Therefore, it 

comprises two types of evolutionary deep feature 

extraction networks. Both networks use Ant Lion 

Optimizer(ALO) optimization; one is a Long Short-Term 

Memory (LSTM) network that processes gene modality 

data sequentially, while the other is a Convolutional 

Neural Network (CNN) that extracts abstract 

characteristics from diseased pictures. 

Guo L. et al. [6] need more research on patient-specific 

ovarian cancer heterogeneity to inform treatment 

program selection and clinical outcome prediction. 

Ovarian cancer was shown to have two molecular 

subgroups, and the findings demonstrate the 

competitiveness and reliability of our suggested 

technique. 

Saida, T.  et al. [10] Ovarian tumor diagnostic imaging is 

challenging; however, deep learning performed well for 

MRI-based diagnosis of ovarian carcinomas (including 

borderline tumors) in this study's constrained settings. 

Taleb, N. et al. [13] Improved medical diagnosis is a 

direct outcome of the growing significance and 

usefulness of machine learning in biomarker-based 

illness diagnosis. An ovarian cancer diagnostic machine-

learning model was suggested in this research. The 

recommended approach incorporates several statistical 

measures to measure the efficacy and validity of the 

model. 

Zhang, Z., & Han, Y.[19] Training a convolutional 

neural network based on machine learning for the 

classification job allows this paper's presented machine 

learning framework to recognize ovarian tumor photos 

from content. These authors used a logistic regression 

classifier for the feature map, segmentation, and 

classification. In addition, a method for single-modal 

classification has been suggested. 

Table 1: Survey of Machine Learning and Deep 

Learning Methodologies for Ovarian Cancer Detection 

and Diagnosis 

Author Yea

r 

Methodolo

gy 

Advantage  Limitation 

Aham

ad et 

al. 

202

2 

Machine 

learning 

approaches 

based on 

clinical 

data for 

early-stage 

detection 

of ovarian 

cancer 

Early 

detection 

improves 

patient 

outcomes 

It requires 

high-

quality, 

labeled 

datasets 

Boeh

m et 

al. 

202

2 

Stratificati

on of high-

grade 

serous 

ovarian 

cancer risk 

using 

multimoda

l data 

integration 

with 

machine 

learning 

 

Integrates 

diverse data 

types for 

comprehens

ive analysis 

The 

complex 

integration 

process can 

need high 

computatio

nal 

resources 

Faraha

ni et 

al. 

202

2 

Diagnosin

g 

histotypes 

from 

whole-

slide 

pathology 

pictures 

using deep 

learning 

 

Automates 

and 

enhances 

the 

accuracy of 

histotype 

classificatio

n 

Requires 

extensive 

computatio

nal power 

and storage 

for whole-

slide 

images 

Jung et 

al. 

202

2 

A 

denoising 

convolutio

nal 

autoencod

er and 

deep 

convolutio

nal neural 

networks 

for the 

Reduces 

noise and 

improves 

diagnostic 

accuracy 

Can be 

sensitive to 

variations 

in imaging 

protocols 

and 

equipment 
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diagnosis 

of ovarian 

tumors 

 

 

2.1 Problem definition  

One drawback of existing methodologies in medical 

imaging, particularly in ovarian cancer detection, is the 

challenge of effectively managing and reducing image 

noise. Conventional approaches can struggle to preserve 

crucial details while denoising images adequately, 

impacting the accuracy of subsequent segmentation 

tasks. Additionally, some methods can rely on 2D 

segmentation techniques that are less adept at handling 

volumetric data, potentially limiting their ability to 

accurately capture complex three-dimensional structures 

in medical scans. These limitations underscore the need 

for innovative solutions that enhance image quality 

through robust denoising techniques and improve 

segmentation accuracy using advanced three-

dimensional models. 

3. Materials and methods 

The proposed methodology integrates two main 

components: an Enduring Noise Elimination Neural 

Network (ENEN) for image denoising and a E-3D U-Net 

architecture for enhanced segmentation. The ENEN 

model encodes input medical images into a lower-

dimensional latent space to reconstruct denoised images, 

effectively improving image quality by reducing noise. 

Subsequently, the denoised images undergo 

segmentation using the E-3D U-Net, which extends the 

traditional 2D U-Net to handle volumetric data, allowing 

for precise identification and delineation of ovarian 

cancer regions in 3D medical scans. 

 

Fig 1: Ovarian cancer prediction architecture 

3.1 Dataset collection 

The dataset used in this study was sourced from the 

Mendeley Data repository, specifically accessed from the 

URL https://data.mendeley.com/datasets/w39zgksp6n/1. 

This dataset is pivotal for the research as it provides the 

necessary medical imaging data for training, validation, 

and testing of the proposed methodology for ovarian 

cancer detection.  

3.2 Image Denoising Using Enduring Noise 

Elimination Neural Network 

The Enduring Noise Elimination Neural Network 

(ENEN) model can improve medical picture quality, 

which successfully lowers noise levels. The model uses 

an encoder-decoder architecture, where the encoder takes 

input pictures with noise and converts them into a latent 

space with fewer dimensions. The decoder then extracts 

the important characteristics from the transformed 

images while removing the noise. After that, the decoder 

uses the latent space representation—which keeps the 

image's important structures—to create a denoised copy 

of the original. It is common practice for the encoder to 

use convolutional layers for feature extraction and spatial 

dimensionality reduction and for the decoder to employ 

transposed convolutional layers for dimensionality 

restoration. Subsequent medical image analysis, 

including segmentation and diagnosis, relies heavily on 

this denoising process to ensure accuracy and 

dependability. 

For, x is an input data set with certain occurrences 

incorrectly categorized. Our goal is to devise a method to 

detect and eliminate such instances, resulting in a filtered 

data set x. Assume that fraction y of the input data set x is 

mislabeled and fraction an is the non-mislabeled fraction. 

Consider the properly labeled subset x and the 

mislabeled subset 𝑦 concerning the equation 𝑣 = (𝑥, 𝑦). 

Because of the inherent randomness in mislabeling 

𝑣 = (𝑥, 𝑦) ------------ (1) 

𝑣 = (𝑥, 𝑦, 𝑝) --------------- (2) 

In Equation 3, Where u is the number of class labels, and 

p is the class probability vector of v, which is defined as 

(𝑝, 𝑝2, . . . , 𝑝𝑐). On top of that, every node has its input U 

and output v. Using the sigmoid activation function, 

𝑉𝑖determines 𝑉𝑖. 

𝑉𝑖 =
1

2
(1 + 𝑡𝑎𝑛ℎ (

𝑈𝑖

𝑢0
)) ---------- (3) 

where uo = 0.02 represents the activation function's 

steepness as an amplification parameter. 

During training, p is updated using a learning technique. 

So, progressively modifying a class probability vector 

https://data.mendeley.com/datasets/w39zgksp6n/1
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that is incorrectly labeled is possible. to find the right 

one via this process of learning 

Here, we will go over the fundamentals of NEN. We 

made sure to test out several values for each parameter 

and choose the one that worked best. 

A uniform distribution randomly establishes the network 

weights in the range [-0.05,0.05] at the beginning. One is 

the starting point for the number of concealed nodes. 

Revise the network's weights using the conventional 

backpropagation method. A formula is used to update the 

input U; for each class i. 

𝑈𝑖 = 𝑢𝑖 + 𝐿𝑝(𝑂𝑖 − 𝑝𝑖) ------------- (4) 

Using U and Eq. (4), we can determine 𝑉. The updating 

of p follows this via 

𝑃𝑖 = 𝑣𝑖  ---------------- (5) 

 Next, we normalize p to I, meaning the total p equals 6.  

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖{𝑝𝑖|(𝑖 = 1,2, … , 𝑐)} ---------------- (6) 

𝑆𝑆𝐸(𝑎𝑑𝑗) = 𝑆𝑆𝐸(𝑠𝑡𝑑) + 𝑆𝑆𝐸(ℎ𝑛) + 𝑆𝑆𝐸(𝑑𝑖𝑠𝑡) ---------------

- (7) 

Where the normal SSE is denoted as 𝑆𝑆𝐸(𝑠𝑡𝑑). 𝑆𝑆𝐸(ℎ𝑛) is 

an extra term that accounts for the implications of the 

hidden node count. Although the risk of overfitting 

increases, a lower 𝑆𝑆𝐸(𝑠𝑡𝑑) is often achieved with more 

hidden nodes. We use an extra enor term 𝑆𝑆𝐸(ℎ𝑛) 

derived from an empirical formula to mitigate this 

impact. 

𝑆𝑆𝐸(ℎ𝑛) = 𝐴1(𝐻 − 1)𝑁(𝐶 − 1)\𝑐  ------------- (8) 

Two empirical parameters are AI (= 0.05) and Az (= 

0.2). When H is less than I, the rise in 𝑆𝑆𝐸(ℎ𝑛) is modest 

but accelerates when H is more than I. 

 

Algorithm 1: Enduring Noise Elimination Neural 

Network 

Input: 

• x: Input dataset containing noisy images 

• a: Non-mislabeled fraction of the dataset 

• 𝛽 = 1 − 𝑎: Mislabeled fraction of the dataset 

• 𝑆{𝑁𝐿}: Correctly labeled subset 

Steps: 

1. For each instance 𝑈𝑖 = 𝑢𝑖 + 𝐿𝑝(𝑂𝑖 − 𝑝𝑖), 

initialize p such that py=0.95p_y = 0.95 py=0.95 and the 

remaining probability is evenly distributed among other 

classes. 

2. For each instance 𝑣 =  (𝑥, 𝑦, 𝑝) compute the 

output vector V using the sigmoid activation function: 

𝑆𝑆𝐸(𝑎𝑑𝑗) = 𝑆𝑆𝐸(𝑠𝑡𝑑) + 𝑆𝑆𝐸(ℎ𝑛) + 𝑆𝑆𝐸(𝑑𝑖𝑠𝑡) 

3. Update network weights using the standard 

backpropagation procedure with learning rate 𝐿𝑤 and 

momentum 𝑀𝑤. 

4. 𝑆𝑆𝐸(ℎ𝑛) = 𝐴1(𝐻 − 1)𝑁(𝐶 − 1)\𝑐  

5. Update the output 𝑉𝑖 from 𝑈𝑖 and adjust 𝑝 by 

normalizing it to ensure the sum of 𝑝𝑖  equals 1. 

6. Update the class label 𝑈𝑖 = 𝑢𝑖 + 𝐿𝑝(𝑂𝑖 − 𝑝𝑖) 

7. After every Ne=20N_e = 20Ne=20 epochs, 

calculate the sum of squared errors (SSE) and adjust it to 

prevent overfitting: 𝑆𝑆𝐸(ℎ𝑛) = 𝐴1(𝐻 − 1)𝑁(𝐶 − 1)\𝑐 ) 

8. Increment the number of hidden nodes H and 

continue training until convergence. 

Output: 

• 𝑆′: Filtered dataset with reduced noise 

• 𝑝: Updated class probability vectors for each 

instance 

3.3 Segmentation using E-3D U-Net architecture  

A state-of-the-art method for processing volumetric 

medical imaging data, such as MRI or CT scans, is 

segmentation using the E-3D U-Net architecture. This 

methodology partitions the picture into meaningful 

segments that demarcate unique anatomical features or 

areas of interest. The encoder of the E-3D U-Net 

contracts the spatial dimensions, while the decoder 

increases the number of feature channels utilizing E-3D 

convolutions and max pooling; this allows the encoder to 

capture the input data's complex characteristics. The 

highest-level characteristics that are compressed are 

captured by the bottleneck located at the base of the U-

shape. Afterward, the data is up-sampled using E-3D 

transposed convolutions by the expanding path 

(decoder), which incorporates skip connections from the 

encoder to preserve fine features. The last layer indicates 

the probability of each voxel belonging to each class by 

using a E-3D convolution followed by a softmax 

activation. Ovarian cancer E-3D scans can be more 

accurately identified and localized using this design, 

leading to better treatment planning and more precise 

diagnoses. 

Searching for appropriate weights that maximize 

accuracy and minimize error is the goal of optimization 

techniques used to solve neural network challenges.  

Update equations for each weight 𝑔𝑡
2can be defined as: 

𝑎𝑡 = 𝛽1 ∗ 𝑎𝑡−1 − (1 − 𝛽1) ∗ 𝑔𝑡 ---------------- (9) 

𝑏𝑡 = 𝛽2 ∗ 𝑏𝑡−1 − (1 − 𝛽2) ∗ 𝑔𝑡
2 ------------------ (10) 
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Fig 2: E-3D UNet architecture 

Algorithm 2: E-3D U-Net architecture 

Input: 

• S′S'S′: Denoised dataset containing 3D medical 

images 

• Hyperparameters for Adam optimizer: 

• Number of epochs E 

• Batch size B 

Steps: 

o Construct the 3D U-Net architecture 

with encoder, bottleneck, and decoder layers. 

o Initialize network weights randomly. 

o Partition the denoised dataset x into three 

different sets: training, validation, and test. 

o Preprocess the images. 

o Set initial values for the first moment 

vector m0=0m_0 = 0m0=0 and second moment vector 𝑣0 

o For each epoch e in 1,2,…,E: 

Pass the batch of E-3D images through the 3D U-Net to 

obtain the predicted segmentation maps. 

2. Update the first-moment estimate: 𝑎𝑡 = 𝛽1 ∗

𝑎𝑡−1 − (1 − 𝛽1) ∗ 𝑔𝑡 

3. 𝑏𝑡 = 𝛽2 ∗ 𝑏𝑡−1 − (1 − 𝛽2) ∗ 𝑔𝑡
2 

Output: 

• Segmented images 𝑆{𝑠𝑒𝑔} with delineated 

regions of interest 

• Trained E-3D U-Net model with optimized 

weights 

 

4. Results and discussion 

The proposed methodology's effectiveness was evaluated 

using various metrics, including accuracy, precision, 

recall, and F-measure. The Enduring Noise Elimination 

Neural Network (ENEN) performance for image 

denoising and the E-3D U-Net architecture for 

segmentation was compared against existing methods 

such as VGG-16, U-Net, and 2D U-Net. The results 

demonstrate significant improvements in detecting 

ovarian cancer regions in 3D medical scans, showcasing 

the potential of combining advanced denoising 

techniques with robust segmentation models. 

 

Fig 3: Denoised image 

Figure 3 illustrates the outcome of the denoising process 

performed by the Enduring Noise Elimination Neural 

Network (ENEN) model on a medical image. The 

denoised image is a crucial component of our approach 

to ovarian cancer detection, as it significantly enhances 

the quality of the original noisy image. This improved 

quality is essential for accurate segmentation and 

diagnosis. 

 

Fig 4: Segmented image 

Figure 4 illustrates the segmented image produced by the 

E-3D U-Net architecture as part of our approach to 

detecting ovarian cancer. The segmentation process is 

crucial for partitioning the medical image into distinct 

regions, each representing different anatomical structures 

or areas of interest. 

Table 2: Denoising value comparison on Ovarian  

cancer 

 Denoising value comparison on Ovarian   

 

NLM 

 PSNR SSIM RMSE 

100.jpg 29.04 93.31 15.35 

101.jpg 29.64 93.64 14.12 

NLW 100.jpg 31.21 94.27 3.32 

101.jpg 31.67 95.65 2.87 

ENEN 100.jpg 34.64 96.64 0.15 

101.jpg 34.21 97.37 0.13 
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Fig 5: PSNR value comparison chart 

The figure 5 shows PSNR value comparison chart the x 

axis shows methods and the y axis shows PSNR value 

 

 

Fig 6: SSIM value comparison chart 

The figure 6 shows SSIM value comparison chart the x 

axis shows methods and the y axis shows SSIM value 

 

Fig 7: RMSE value comparison chart 

The figure 7 shows RMSE value comparison chart the x 

axis shows methods and the y axis shows RMSE value 

Table 3: accuracy comparison table 

 Segmentation value comparison on 

Ovarian   

 

VGG-16 

 Accuracy 

Image 1 91.25 

Image 2 91.78 

Unet Image 1 92.35 

Image 2 94.36 

E-3D Unet Image 1 95.84 

Image 2 98.36 

 

 

Fig 8: Accuracy comparison chart 

Table 3 and Figure 8 compare segmentation methods 

based on accuracy, revealing significant performance 

differences. VGG-16 achieves an accuracy of 92.35%, 

indicating a solid baseline performance. Unet improves 

upon this with an accuracy of 94.36%, showcasing its 

capability to handle segmentation tasks more effectively. 

The 2D Unet further enhances accuracy to 95.84%, 

demonstrating the benefits of using a network 

specifically designed for image segmentation. However, 

the E-3D Unet outperforms all other methods with a 

remarkable accuracy of 98.36%, highlighting its superior 

ability to process accurately and segment volumetric 

medical data. These results underscore the efficacy of E-

3D Unet in achieving the highest precision in ovarian 

cancer detection through advanced segmentation 

techniques. 

Table 4: Precision value comparison table 

 Segmentation value comparison on 

Ovarian   

 

VGG-16 

 Precision 

Image 1 91.25 

Image 2 92.78 

Unet Image 1 93.65 

Image 2 94.58 

E-3D Unet Image 1 95.47 

Image 2 97.84 

 

 

Fig 8: Precision value comparison chart 
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Table 4 and Figure 8 show segmentation value 

comparison for ovarian cancer detection across different 

models, rrevealing varying precision levels VGG-16 

demonstrates lower precision with 91.25% for Image 1 

and slightly higher at 92.78% for Image 2. The Unet 

model shows improved precision, achieving 93.65% for 

Image 1 and 94.58% for Image 2. Notably, the E-3D 

Unet model outperforms both, achieving the highest 

precision with 95.47% for Image 1 and significantly 

higher at 97.84% for Image 2. These results indicate that 

the E-3D Unet model exhibits the most accurate 

segmentation for ovarian cancer detection compared to 

VGG-16 and Unet models, highlighting its potential 

superiority in clinical applications where precision is 

crucial for accurate medical diagnoses. 

Table 5: recall comparison table 

 Segmentation value comparison on 

Ovarian   

 

VGG-16 

 Recall  

Image 1 92.25 

Image 2 93.78 

Unet Image 1 94.65 

Image 2 95.68 

E-3D Unet Image 1 96.38 

Image 2 97.38 

 

 

Fig 9: Recall value comparison chart 

The table 5 and figure 9 shows segmentation value 

comparison across different models for ovarian cancer 

detection shows varying levels of recall. VGG-16 

achieves 92.25% recall for Image 1 and slightly higher at 

93.78% for Image 2. The Unet model demonstrates 

improved performance with 94.65% recall for Image 1 

and 95.68% for Image 2. Notably, the E-3D Unet model 

exhibits the highest recall rates, achieving 96.38% for 

Image 1 and 97.38% for Image 2. These findings suggest 

that the E-3D Unet model outperforms VGG-16 and 

Unet in capturing a higher proportion of true positive 

cases in ovarian cancer detection, indicating its potential 

superiority in clinical settings where sensitivity and 

accuracy are critical for effective disease diagnosis and 

treatment planning. 

Table 6: F-measure value comparison table 

 Segmentation value comparison on 

Ovarian   

 

VGG-16 

 F-measure 

Image 1 94.25 

Image 2 95.78 

Unet Image 1 96.35 

Image 2 97.85 

E-3D Unet Image 1 97.99 

Image 2 98.98 

   

 

Fig 10: F-measure value comparison chart 

The table 6 and figure 10 shows F-measure value 

comparison table highlights the effectiveness of different 

segmentation models for ovarian cancer detection. VGG-

16 achieves F-measure scores of 94.25 for Image 1 and 

95.78 for Image 2, indicating good balance between 

precision and recall. The Unet model shows improved 

performance with F-measures of 96.35 for Image 1 and 

97.85 for Image 2, demonstrating enhanced accuracy in 

segmentation tasks. Notably, the E-3D Unet model 

achieves the highest F-measure values, scoring 97.99 for 

Image 1 and 98.98 for Image 2, showcasing superior 

performance in capturing true positives while 

minimizing false positives.  

5. Conclusion 

In conclusion, the proposed method for ovarian cancer 

detection by integrating the Enduring Noise Elimination 

Neural Network (ENEN) and enhanced 3D U-Net 

segmentation offers a promising advancement in medical 

imaging. The ENEN model ensures more accurate and 

reliable inputs for subsequent segmentation by 

effectively reducing noise and improving image quality. 

The application of the 3D U-Net architecture capitalizes 

on its strengths in handling volumetric data, leading to 

precise identification and delineation of ovarian cancer 

regions in 3D medical scans. The concept between 
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advanced denoising and robust segmentation techniques 

not only enhances the accuracy of ovarian cancer 

detection but also underscores the potential for broader 

applications in the field of biomedical imaging. Future 

work can explore further optimizing these models and 

their application to other types of cancer or medical 

conditions, paving the way for improved diagnostic tools 

and patient outcomes. 
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