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Abstract: With the escalating concerns surrounding information security in today’s digital landscape, the demand for covert 

communication channels that facilitate secure information exchange has witnessed an exponential surge. This research endeavors to design 

and implement a novel covert communication medium to address the challenges inherent in clandestine information transfer. The proposed 

medium harnesses a new age intelligent encryption technique to ensure not only the confidentiality but also the stealthiness of 

communication. The study commences with a comprehensive analysis and development of a concept that seamlessly integrates state-of-

the-art encryption algorithms along with ways to make the communication covert. The primary objective is to strike a delicate balance 

between data security and the covert nature of communication, enabling information to be exchanged undetected within various digital 

environments. The proposed system explores the potential of leveraging neural networks and deep learning principles to encrypt data 

traversing insecure communication mediums. The research findings contribute significantly to the advancement of covert communication 

technologies, offering a robust solution for secure information exchange in environments where traditional encryption methods may prove 

insufficient or where a more covert approach to encryption is necessitated. The research finding also does benchmarking tests to show the 

amount of efforts required to break into an intelligent cryptographic algorithm to obtain the keys in totality. The implementation is 

evaluated on the basis of the accuracy with with the same plaintext is generated and also its ability to withstand various attacks. 
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1 Introduction 

The inspiration for this research stems from the 

realization that current cryptographic approaches have 

been in use for a considerable time and could benefit from 

a reevaluation or refinement in terms of security. We all 

know that AES-256 is one of the most secure [1] 

cryptographic algorithms being used today for even the 

most highly sensitive information exchange. Because of 

its robustness against brute force attacks and other 

sophisticated network attacks [1], the AES Algorithm is 

the method of choice, but can we turn complacent and 

leave everything to the toughness of AES against these 

known attacks? The answer should be no, as we are still 

not aware of the hidden zero day vulnerabilities that may 

creep up one fine day without even any hint of its arrival. 

If anything like that happens, then the entire world could 

come to a complete standstill. Every basic financial 

transaction on the internet is secured using SSL over the 

HTTPS which in turn uses AES for its protection. If the 

AES itself collapses, the algorithm gets into the public 

domain and within no time, the entire financial backbone 

worldwide collapse. Billions and Zillions of money 

irrespective of the currency will be at stake. 

Some research suggests that although AES is considered 

to be the most secured, but few cryptanalysis attempts on 

AES were able to guess few bits of the key successfully 

using side channel attacks [2]. Such Power Analysis 

based Side Channel attacks on AES showed that although 

its virtually impossible to crack AES completely using the 

existing computational power, its not the case if an 

alternate or unconventional route is opted to break into 

the algorithm implementation rather than guessing the 

key. Currently AES is the reigning champion and yet to 

lose a match but what about ten to twenty years down the 

line. What if we invent a highly powerful quantum 

computer much powerful than the existing 

supercomputers come into existence? It could break the 

existing AES implementation in minutes if not in seconds 

[3] . What will happen then? We need to think out of the 

box and start thinking of developing some alternative 

approach to the existing ones, not with the intent of 

immediately replacing them but atleast provide a totally 

different approach of providing security to the data which 

could eventually be the method of choice. In this research 

work, a novel cryptographic approach is proposed, which 

would encrypt the plaintext using an intelligently 
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developed algorithm using adversarial networks, which 

could develop their own algorithm, generate keys and 

create the ciphertext and send it to the receiver for 

decryption. The receiver on the other hand will also be a 

neural network trained to retrieve the plaintext out of the 

cipher text. 

The entire scenario will be kept completely covert [4] in 

the following manner:  

a) The ciphertext generated will be used to generate an 

image intelligently and this image will be sent to the 

receiver as a cipher image instead of the ciphertext. 

b) This cipher image will not be a stego image as 

generally used in steganography.Stego Images consist of 

the encrypted text as part of the image itself. 

c) The ciphertext will not be hidden inside the image in 

any respect, which mightincrease the size of the image. 

d) The receiver upon receiving the cipherimage will try 

to retrieve the ciphertextfrom the cipherimage using the 

knowledge obtained through the training. 

This entire process is hidden from the attacker and gives 

rise to a completely covert communication. Even if the 

attacker gets access to the cipher image, until he/she gets 

the understanding of the reverse mapping process, the 

attacker might not be able to break the code. The article 

is systematically broken down into the following 

sections: Section 2 discusses about the background study 

and possible areas of research. Section 3 discusses the 

Proposed System in detail highlighting the various model 

architectures elaborately. Section 4 focuses on the actual 

training process where the idea behind training the sender, 

receiver and the attacker’s model is discussed elaborately. 

Section 5 discusses the results obtained and compares it 

with existing implementations. Section 6 and 7 sheds 

light on the possible attacks on such implementations 

along with the results obtained. Section 8 concludes the 

study followed by possible future work. 

2 Literature Survey 

Cryptographic techniques form the backbone of modern 

cybersecurity, providing essential mechanisms for 

securing digital communication and protecting sensitive 

information. Recent advancements in cryptographic 

research have explored innovative approaches leveraging 

emerging technologies such as neural networks, deep 

learning, steganography, chaos theory, and DNA 

encoding. This literature survey examines key 

contributions in these areas, highlighting their 

significance and potential implications for the field of 

cryptography. 

Dong and Huang[25] introduced a pioneering 

cryptographic method based on Complex-Valued Tree 

Parity Machine (CVTPM), which represents a departure 

from conventional techniques by incorporating complex-

valued weights. The authors demonstrated that CVTPM 

offers enhanced security compared to traditional 

approaches, owing to the increased complexity 

introduced by complex-valued weights. However, the 

shallow neural network architecture employed in 

CVTPM raises concerns about vulnerability to brute force 

attacks and potential limitations in cryptographic 

accuracy. Despite these challenges, CVTPM presents a 

promising avenue for further exploration in neural 

cryptography, with potential applications in secure 

communication and data protection. 

Li and Wang[26] proposed a groundbreaking symmetric 

encryption method known as SEDL, which harnesses the 

power of deep learning for encryption tasks. Unlike 

traditional encryption techniques, which rely on 

mathematical algorithms, SEDL utilizes hyperparameters 

of deep learning models as part of the secret key. This 

innovative approach takes advantage of the inherent 

uninterpretability and extensive training time associated 

with deep learning models, thereby enhancing the 

security of the encryption process. However, challenges 

such as lengthy training times and the dependence on 

secret hyperparameters may impact practical deployment, 

necessitating further research to optimize efficiency and 

robustness. 

Wang and Su [27] introduced an audio encryption 

algorithm that combines chaos theory and DNA encoding 

to achieve a heightened level of security. By integrating 

chaotic systems with DNA encoding techniques, the 

algorithm generates unpredictable encryption keys tied to 

the hash values of audio files. This innovative approach 

enhances resistance against potential attacks and offers 

robust protection for sensitive audio data. However, 

challenges such as increased encryption time with longer 

audio files and the potential for chaotic systems to behave 

unexpectedly underscore the need for further 

optimization and refinement. 

Abadi and Andersen [28] pioneered the concept of 

adversarial neural cryptography, introducing Generative 

Adversarial Networks (GANs) as a novel approach to 

encryption. Through iterative training of adversarial 

neural networks, the proposed method aims to minimize 

reconstruction errors and maximize the attacker’s 

difficulty in decrypting the communication. While 

achieving promising results in minimizing error rates, the 

practical applicability and robustness of adversarial 

neural cryptography require further investigation and 

enhancement. Future research efforts should focus on 

optimizing the efficiency and scalability of GAN-based 

encryption techniques for real-world deployment. 
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Meng et al. [29] proposed a steganography algorithm 

based on CycleGAN for covert communication in the 

Internet of Things (IoT) environment. By leveraging 

CycleGAN’s capabilities in image-to-image translation, 

the algorithm embeds secret messages seamlessly within 

carrier images, facilitating secure communication 

between IoT devices. However, concerns regarding 

increased carrier image size and potential detection pose 

challenges to the covert nature of the communication. 

Further research is needed to address these limitations and 

optimize the performance of CycleGAN based 

steganography for IoT applications. 

Sharma et al. [30] introduced a generative network based 

image encryption method that combines steganography 

and GANs for symmetric encryption. This innovative 

approach integrates steganography techniques for 

message embedding within a GAN-based encryption 

framework, offering enhanced security for image data. 

However, concerns about sequential processing and 

potential increases in output image size raise challenges 

in computational efficiency and covert communication. 

Future research endeavors should focus on mitigating 

these challenges and optimizing the performance of 

generative network-based encryption methods. 

Simonyan and Zisserman [36] proposed the VGG 

network, a very deep convolutional network for large-

scale image recognition. Their architecture, characterized 

by its simplicity and depth, achieved state-of-the-art 

performance on several image recognition benchmarks. 

The authors showed that increasing network depth using 

small convolutional filters significantly improves 

accuracy. However, the high computational cost and 

memory requirements of VGG networks pose practical 

limitations. Despite these challenges, VGG has become a 

foundational architecture in deep learning, inspiring 

subsequent advancements in both image recognition and 

related fields such as cryptography and security. 

He, Zhang, Ren, and Sun [35] introduced the concept of 

deep residual learning for image recognition, presenting 

the ResNet architecture. This innovative approach 

addresses the degradation problem in deep neural 

networks by using residual blocks, allowing for the 

training of extremely deep networks. The authors 

demonstrated that ResNet significantly improves image 

recognition performance, setting new benchmarks in 

various competitions. However, the increased model 

complexity and training requirements pose challenges for 

practical deployment. This research has had a profound 

impact on the development of deep learning models, 

influencing various applications beyond image 

recognition, including security and encryption. 

Papernot, McDaniel, Wu, Jha, and Swami [39] explored 

the use of distillation as a defense mechanism against 

adversarial perturbations in deep neural networks. Their 

approach involves training a distilled model that is more 

robust to adversarial attacks, improving the security and 

reliability of neural networks. The authors demonstrated 

that distillation could effectively reduce the impact of 

adversarial perturbations, enhancing the model’s 

resilience. However, the method’s effectiveness varies 

depending on the nature of the adversarial attacks and the 

complexity of the neural network. This study provides a 

valuable contribution to the field of adversarial machine 

learning, offering a potential defense strategy for secure 

neural network applications. 

Kurakin, Goodfellow, and Bengio [41] investigated 

adversarial machine learning at scale, focusing on the 

challenges of defending neural networks against 

adversarial attacks in large-scale applications. Their study 

demonstrated that adversarial attacks could be effectively 

scaled to target complex and large neural networks, 

posing significant security risks. The authors highlighted 

the need for robust and scalable defense mechanisms to 

protect neural networks from such attacks. This research 

contributes to the growing body of knowledge on 

adversarial machine learning, emphasizing the 

importance of security considerations in the development 

and deployment of largescale neural network models. 

Carlini and Wagner [40] proposed a method for 

evaluating the robustness of neural networks against 

adversarial attacks. Their approach involves creating 

targeted adversarial examples that can reliably bypass the 

defenses of neural networks. The authors demonstrated 

that their method could successfully generate adversarial 

examples for various neural network architectures, 

highlighting significant vulnerabilities. This research 

underscores the importance of developing robust defense 

mechanisms to protect neural networks from adversarial 

attacks. The findings have profound implications for the 

security and reliability of neural network-based systems, 

including those used in cryptographic applications. 

Tram`er, Kurakin, Papernot, Boneh, and McDaniel [42] 

explored ensemble adversarial training as a method to 

enhance the robustness of neural networks against 

adversarial attacks. Their approach involves training 

multiple neural networks with adversarial examples to 

improve overall resilience. The authors demonstrated that 

ensemble adversarial training could effectively reduce the 

success rate of adversarial attacks, providing a more 

secure neural network model. However, the increased 

training complexity and computational requirements pose 

challenges for practical implementation. This study offers 

a promising direction for improving the security of neural 

network-based systems through ensemble learning 

techniques. 
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Boukela and Akleylek [32] conducted a comprehensive 

survey on neural network-based cryptographic 

algorithms, offering an extensive overview of the current 

state and advancements in the field. The authors 

highlighted the potential of neural networks to enhance 

traditional cryptographic methods by introducing 

adaptive and intelligent encryption mechanisms. Despite 

the promising results, the survey also pointed out several 

challenges, including the need for rigorous security 

analysis and the potential vulnerability to novel attack 

vectors. This survey serves as a critical resource for 

researchers exploring the convergence of neural networks 

and cryptography. 

Bhowmik, Hazra, and Roy [33] proposed a symmetric 

key cryptography method utilizing deep learning 

techniques. Their approach involves training a neural 

network to generate and manage symmetric keys, 

providing a dynamic and adaptive encryption process. 

The authors demonstrated that their method could 

enhance security by continuously evolving the key 

generation process, making it difficult for attackers to 

predict or replicate. However, the reliance on deep 

learning models introduces concerns about the robustness 

of the encryption under various attack scenarios and the 

computational overhead. This research underscores the 

potential of deep learning to innovate traditional 

symmetric key cryptography. 

Gupta and Mehta [34] reviewed various symmetric key 

cryptography algorithms, focusing on their applicability 

and performance in contemporary security contexts. The 

authors provided a detailed comparison of different 

algorithms, highlighting their strengths and weaknesses. 

They emphasized the importance of choosing the 

appropriate cryptographic algorithm based on the specific 

security requirements and resource constraints of the 

application. Despite the comprehensive analysis, the 

review noted the need for continuous updates to address 

emerging threats and technological advancements. This 

review is a valuable guide for practitioners and 

researchers in selecting and implementing effective 

symmetric key cryptography solutions. 

El-Rabaie, Hadhoud, Abdel-Kader, and Zahran [37] 

developed a secure image encryption scheme using 

convolutional neural networks (CNNs). Their approach 

leverages the powerful feature extraction capabilities of 

CNNs to generate complex encryption keys and encrypt 

images effectively. The authors demonstrated that their 

method provides a high level of security against various 

attacks while maintaining computational efficiency. 

However, the dependence on CNNs introduces concerns 

about model robustness and the potential for adversarial 

attacks. This study highlights the potential of deep 

learning techniques to enhance traditional image 

encryption methods, offering new avenues for research 

and development. 

Wei, Zhao, and Liu [38] presented an image encryption 

algorithm based on MD5 and neural networks. This 

method combines the cryptographic strength of the MD5 

hash function with the adaptive learning capabilities of 

neural networks to achieve robust image encryption. The 

authors showed that their algorithm could generate highly 

secure and efficient encryption keys, providing strong 

protection against common attack vectors. However, the 

use of MD5, which has known vulnerabilities, raises 

concerns about the overall security of the encryption 

scheme. This research underscores the importance of 

combining traditional cryptographic techniques with 

modern neural network approaches to develop effective 

encryption solutions. 

Zhang, Wang, and Wang [31] introduced a secure and 

efficient image encryption method leveraging deep 

learning and chaos theory. This approach combines the 

strengths of deep neural networks and chaotic systems to 

achieve a high level of security. The authors demonstrated 

that their method can effectively protect images against 

various attacks by generating highly complex and 

unpredictable encryption patterns. However, the 

complexity of deep learning models and the need for 

substantial computational resources might limit the 

practical implementation in resource-constrained 

environments. Nonetheless, this study provides valuable 

insights into the integration of deep learning and chaos 

for robust image encryption. 

Overall, these studies underscore the importance of 

cryptographic research in addressing emerging security 

challenges and advancing the state-of-the-art in digital 

security. By leveraging innovative technologies and 

exploring novel approaches, researchers continue to push 

the boundaries of cryptographic innovation, paving the 

way for enhanced security and privacy in the digital age. 

2.1 Possible Attacks on the existing systems 

Creating an adversarial cryptographic encryption 

algorithm introduces a unique set of challenges, as 

attackers may leverage both traditional cryptographic 

attacks and machine learning-specific attacks. Here are 

some potential attacks in theory that could be targeted at 

such a network: 

Timing Attacks: It is shown in ”Remote Timing Attacks: 

Exploiting the Timing Side Channel on the Web” by 

Yoongu Kim et al. [18], the timing side-channel attacks 

can be carried out in the web context as well. Their 

research focused on timing attacks against web-based 

systems, where attackers can use timing differences in the 

execution of web pages to deduce sensitive information. 

The authors demonstrated that attackers who carefully 
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monitor the timing patterns of cryptographic 

computations can use small differences in execution time 

to infer properties about the secret key or the algorithm in 

use. Such timing side-channel usage can be used to 

violate the confidentiality of web applications and also to 

perform integrity violations. 

Cache-timing attacks: Cache-timing attacks on AES by 

Daniel J. Bernstein: In [19], the author explores cache-

timing attacks against AES (Advanced Encryption 

Standard). The publication year is not mentioned. The 

paper presents how an adversary can exploit timing 

variations in the cache memory of a processor to learn 

information about the AES encryption and decryption 

operations. The author provides detailed analysis and 

experimental results in the presence of cache-timing 

attacks against AES. Such practical findings demonstrate 

the existence of potential threats to real-world 

implementations of AES due to cache-timing attacks, and 

hence, necessitate efficient and effective defense 

mechanisms against cache-timing attacks. 

Differential Power Analysis:Differential Power 

Analysis: Paul Kocher, Joshua Jaffe, and Benjamin Jun, 

first edition 1999 [20]. This paper introduces differential 

power analysis (DPA) - a means for extracting secret 

information, such as cryptographic keys, through 

measurements of power consumption by analyzing the 

power consumption, after data has been masked into it 

during cryptographic operations. The authors discuss 

implementation of DPA in practice and highlight potential 

threats to cryptographic systems as a whole. The paper’s 

focus on proving DPA attacks viable affirms the necessity 

for broader strategies against power analysis-based 

weaknesses. 

Power Analysis Attacks:Analysis of Power Attacks on 

Smartcards Digs the Keys by Stefan Mangard, Elisabeth 

Oswald, and Thomas Popp This work by Mangard, 

Oswald, and Popp [21] is specifically on power attacks on 

smartcards. After introducing the power consumption 

attacks, the authors cover their major aspects and 

techniques. By analyzing power consumption means, 

smartcard systems can be insecure and the authors also 

demonstrate this through their work as they find out that 

attacker can extract critical sensitive information 

including the cryptographic keys from the smartcard 

systems. Various experiments and methodologies are 

shown to strengthen the power of security measures to 

stop the attackers and to assure the secrecy and integrity 

of the protocols of the cards. 

Model Extraction Attacks: The model extraction [22] 

attacks are a powerful class of attacks and the goal of an 

adversary is to recover the details of a model such as its 

architecture, parameters, or in many cases, the training 

data itself. Such attacks are disastrous for adversarial 

cryptographic algorithms as they can easily leak secure 

information in a system and are shown to be applicable in 

several real-world settings. 

Cryptanalysis: Traditional cryptanalysis techniques by 

finding out vulnerabilities in the Machine Learning 

models[24] might be employed to recover the 

cryptographic key or gain insights into the algorithm’s 

weaknesses. 

Backdoor Attacks: Maliciously Trained Models: 

Attackers may attempt to insert backdoors during the 

training phase, allowing them to exploit vulnerabilities 

and compromise the security of the system. 

In summary, integrating neural networks into 

cryptographic systems presents new security challenges, 

including both traditional and machine learning-specific 

attacks. Potential threats include timing attacks, cache-

timing attacks, and differential power analysis, which 

exploit side-channel information to deduce sensitive data. 

The proposed system tries to overcome these challenges 

by employing a novel intelligent approach that ensures 

the security remains robust even if the attack methods 

seem obvious and straightforward. The system leverages 

the complexity and unpredictability inherent in advanced 

neural networks, making the relationship between the 

ciphertext and its encrypted image highly non-linear and 

difficult to reverseengineer. This approach is akin to the 

discrete logarithm problem, where the process of finding 

the logarithm is computationally infeasible despite the 

apparent simplicity of the operations involved. By 

introducing such a high degree of complexity and non-

linearity, the system makes it exceedingly difficult for 

attackers to deduce the symmetric key, map cipher images 

to their corresponding ciphertexts, or decrypt the 

ciphertext into plaintext, thereby significantly enhancing 

security against a wide range of potential attacks. 

3 Proposed System 

The proposed system consists of complex neural 

networks, to be specific, 3 neural networks, each assigned 

different tasks. These 3 neural networks will be trained in 

proportions to give justice to the fact that the Sender and 

Receiver will have knowledge of the key whereas the 

attacker’s neural net will be totally unaware of the key. 

The Sender’s Neural network will be responsible of: 

a) Generating the Symmetric key to be used for 

encryption. 

b) Sharing the Symmetric key with the receiver. 

c) Encrypting the Plaintext using an initial seed 

symmetric key and the algorithmdeveloped by the neural 

network. 
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d) Converting the Ciphertext into a Cipher Image. 

The Receiver’s Neural network will be responsible of: 

a) Generating the same Symmetric key to be used for 

decryption. 

b) Mapping the received cipher image with a 

corresponding cipher text. c) Decryptingthe Ciphertext 

using the symmetric key and the algorithm developed by 

the neural network. 

d) Retrieving the Plaintext 

The Attacker’s Neural network will be responsible of: a) 

Guessing the Symmetric Key 

b) Trying to find the relationship between the Cipher 

Image and the Ciphertext 

c) Trying to guess the ciphertext 

d) Trying to decrypt the ciphertext into plaintext 

Let us understand each of the networks’ architecture one 

by one in detail. 

Encryptor and Decryptor: 

• 2 input layers: One for the message and one for the 

key. 

• 1 concatenate layer: Combines the message and key. 

• 2 Dense layers: Process the concatenated input 

• 1 Reshape layer: Reshapes the output of the Dense 

layers. 

• 4 Convolutional layers: Capture intricate patterns in 

the data. 

• 1 Flatten layer: Flattens the output of the 

convolutional layers. 

• 5 Activation layers: Apply activation functions to 

introduce non-linearity. 

Interceptor or Attacker: 

• 1 Input layer:For the ciphertext • 3 Dense layers: 

Process the input. 

• 1 Reshape and Flatten layer: Reshapes and flattens 

the output of the Dense layers. 

• 4 Convolutional layers: Capture patterns in the 

ciphertext 

• 6 Activation layers: Apply activation functions. 

The differences lies in the number of layers and the 

specific configuration of these layers for each model. The 

Sender’s Side as shown in Fig.1 and Receiver’s Side as 

shown in Fig.2 have the same architecture, while the 

Interceptor has its unique architectures as shown in Fig.3. 

 

3.1 The Sender’s Side Model 

The encryption process initiates by taking the m-bit 

plaintext and k-bit key. This key is generated through a 

randomizer function concurrently operating at both the 

sender’s and receiver’s ends, ensuring the creation of an 

identical key at both termini. These two inputs are then 

concatenated to form the initial input for the encryptor 

model. The encryption model as shown in Fig.4 

comprises a dense layer with n neurons, where n 

represents the total of m and k bits.  

The output of this neural network layer is transformed 

into a 1D tensor, which can change the shape of input data 

without its contents being modified. Such operation is 

often used to modify the dimensions of data so as to suit 

for expected input shape for another layer like 1D 

Convolutional Neural Network, making additional 

training easier. Then, TanH activation is performed on 

these layers resulting in non-linearity in the model and 

this helps to explore complex patterns within the data [5]. 

The detailed training process is explained in the section 

4.1. 

After convolutional layers, there is flattening where final 

feature maps or tensors are converted into one-

dimensional vector. This process occurs typically before 

feeding the data to fully connected layers. By 

implementing flattening, it makes spatial dimensions of 

data as single vector that can be processed by 

conventional neural network layers [6]. 

Towards the end of the network, there are fully connected 

layers that perform high level reasoning. Through these 

connections, every neuron in the current layer relates with 

all others in neighboring sections and hence assists the 

network when making predictions based on what it has 

learnt. The final output from these fully connected 

networks will pass through ReLU activation function [7], 

thus giving birth to ultimate ciphertexts. 

3.2 The Receiver’s Side Model 

At the decryption process illustrated in Fig.5, a c-bit 

ciphertext and a k-bits key are taken. This key is produced 

via randomizer function operating simultaneously on the 

sender’s end and receiver’s end, thereby ensuring an 

identical key at both ends. The initial input for the 

decryption model is formed by concatenating these two 

inputs. The decryption model also contains a dense layer 

with n neurons, where n is equal to the sum of c and k 

bits. The output from this neural network layer is 

transformed into a one-dimensional tensor which alters 

the shape of its input data without altering anything in it. 

It is often used when dealing with data whose dimensions 

have to be shaped as expected by another subsequent 
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layer such as a 1D Convolutional Neural Network to 

enable successful training again. After that, TanH 

activation comes next in the resulting layers introducing 

non linearity in the model hence enabling that complex 

relationships within data can be studied. Following the 

convolutional layers, the output undergoes flattening [8], 

a process that converts the final feature maps or tensors 

into a one-dimensional vector. This step is typically 

executed before forwarding the data to fully connected 

layers. Flattening effectively condenses the spatial 

dimensions of the data into a singular vector, preparing it 

for processing by conventional neural network layers. 

Towards the conclusion of the network, fully connected 

layers are employed for high-level reasoning. These 

layers establish connections between every neuron in the 

current and adjacent layers, facilitating the network in 

making predictions based on learned features. The output 

from the final fully connected layer undergoes a ReLU 

activation function, culminating in the generation of the 

ultimate plaintext. 

You can see, the Encryptor and the Decryptor models are 

almost identical to each other as they are supposed to be 

designed like that only. Additionally the plaintext 

obtained is further send to the decoder module to decode 

the obtained plaintext in the original form. 

 

Fig. 1 The Sender’s Model Architecture 
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Fig. 2 The Receiver’s Model Architecture 
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Fig. 3 The Interceptor’s Model Architecture

 

Fig. 4 Encryption Model 

 

Fig. 5 Decryption Model 
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3.3 Role of the Dense Layers 

In the described encryption framework, the dense layers 

serve as the foundational element in the neural network 

architecture, facilitating the fusion and transformation of 

the message and key inputs into a format suitable for 

subsequent processing. The initial step involves the 

concatenation of the message and the key, a critical 

operation that ensures both components are considered 

together, thus preserving the interdependency between 

the message content and the encryption key. This 

concatenated vector, representing the joint input space of 

the message and the key, is then fed into the dense layer. 

The dense layer, characterized by its fully connected 

structure, is pivotal in performing a series of 

computations that imbue the network with the capacity to 

learn and extract meaningful features from the input data. 

In each thick layer, every nerve cell counts the sum of its 

inputs, which are computed as a weighted sum by their 

weights that are determined through training. By so 

doing, these weights optimize the network’s ability to 

capture patterns and relationships that are relevant. 

Thereby, the network is able to assign different levels of 

importance to various elements in the input vector, and 

hence can pick up on significant properties and 

differentiate slight differences in the data. 

After calculating the weighted sums, we use an activation 

function to add some nonlinearity into the mix. This is 

very important because it helps our neural network 

capture the intricate and nonlinear relationships found in 

encryption processes. You might have heard of some 

popular activation functions like ReLU, sigmoid, or tanh. 

These are really effective because they turn our neural 

networks into non-linear wizards, capable of learning all 

sorts of tricky mappings between inputs and outputs. 

The 1-D tensor is a self-contained representation of all 

these neuron activations within this dense layer [13]. This 

tensor represents higher-level abstractions derived from 

concatenating input data and reflects learnt features and 

relationships generated by dense layers. At length 

reshaping operation is carried out on 

In essence, the dense layers play a multifaceted role in the 

encryption process, serving as the cornerstone for 

transforming the concatenated message and key inputs 

into a higher-dimensional representation that 

encapsulates the underlying structure and relationships 

essential for effective encryption. Through a series of 

weighted sum computations and nonlinear 

transformations, the dense layers empower the neural 

network to learn intricate patterns and extract meaningful 

features from the input data, thereby laying the 

groundwork for robust and secure encryption 

mechanisms. 

 

3.3.1 Working of Dense layers 

The dense layer within a neural network executes a linear 

operation, succeeded by the application of an activation 

function. This operation can be symbolically represented 

as: 

 

output = activation 

Where: 

• xi represents the input to the neuron, 

• wi represents the corresponding weight for the input 

 xi, 

• b represents the bias term, 

• n is the number of inputs to the neuron, 

•  represents the weighted sum of inputs and 

weights, 

• activation is the activation function applied to the 

weighted sum. 

 

3.3.2 Working of Dense Layers (An Example): 

Let’s consider an example with a dense layer containing 

3 neurons and 4 inputs. We’ll use random weights and 

biases for demonstration. 

Step 1: Initialization: Assume we have the following 

inputs: x1 = 2, x2 =3, x3 = 1, x4 = 4 

Step 2: Weighted Sum Calculation: For each neuron in 

the dense layer, we calculate the weighted sum of inputs 

and weights, plus the bias term: 

• Neuron 1 :  

weighted sum1 = (w11 · x1) + (w21 · x2) + (w31 · x3) + (w41 · 

x4) + b1 

• Neuron 2 :  

weighted sum2 = (w12 · x1) + (w22 · x2) + (w32 · x3) + (w42 · 

x4) + b2 

• Neuron 3 :  

weighted sum3 = (w13 · x1) + (w23 · x2) + (w33 · x3) + (w43 · 

x4) + b3 

Step 3: Activation Function: Apply an activation 

function to the weighted sum of each neuron to introduce 

non-linearity. Let’s use the ReLU activation function 

ReLU(x)=max(0,x) for demonstration. 

• Neuron 1 : output1=ReLU(weighted sum1) 

• Neuron 2 : output2=ReLU(weighted sum2)  
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• Neuron 3 : output3=ReLU(weighted sum3) 

Step 4: Example Calculation: Let’s assume the weights 

and biases are randomly initialized as follows: 

w11 = 0.1, w21 = 0.2, w31 = 0.3, w41 = 0.4, b1 = 0.5 

w12 = 0.2, w22 = 0.3, w32 = 0.4, w42 = 0.5, b2 = 0.6 

w13 = 0.3, w23 = 0.4, w33 = 0.5, w43 = 0.6, b3 = 0.7 

 

Step 5: Calculation: For x1 = 2, x2 = 3, x3 = 1, x4 = 4: 

Neuron 1: 

weighted sum1  

= (0.1 · 2) + (0.2 · 3) + (0.3 · 1) + (0.4 · 4) + 0.5 

= 0.2 + 0.6 + 0.3 + 1.6 + 0.5 

= 3.2 output1 = ReLU(3.2) 

= max(0,3.2) 

= 3.2  

Neuron 2: 

weighted sum2  

= (0.2 · 2) + (0.3 · 3) + (0.4 · 1) + (0.5 · 4) + 0.6 

= 0.4 + 0.9 + 0.4 + 2.0 + 0.6 

= 4.3 output2 = ReLU(4.3) 

= max(0,4.3) 

= 4.3  

Neuron 3: 

weighted sum3  

= (0.3 · 2) + (0.4 · 3) + (0.5 · 1) + (0.6 · 4) + 0.7 

= 0.6 + 1.2 + 0.5 + 2.4 + 0.7 

= 5.4 output3 = ReLU(5.4) 

= max(0,5.4) 

= 5.4 

Step 6: Output: 

The final output of the dense layer would be the output of 

each neuron: output1 = 3.2,output2 = 4.3, and output3 

= 5.4. 

The final output from the dense layer is passed through 

an output layer, which applies a suitable activation 

function depending on the task (e.g., softmax for 

classification, linear for regression) to generate the final 

predictions. 

 

3.4 Cryptanalysis Attempt at the Interceptor’s Side 

The Cryptanalysis attempt at the interceptor’s end as 

shown in Fig.6 is the trickiest phase among all the phases. 

It is trained for 2 minibatches as compared to 1 minibatch 

for the sender as well as the receiver’s model, to maintain 

an unbiased training process. The Interceptor’s neural 

network takes as input, the Ciphertext it intercepts during 

the communication process from the network. It doesn’t 

have any information about the key , its size, number of 

bits etc. It simply has access to the ciphertext. (It is 

assumed that the interceptor somehow guesses and 

converts the cipher image to a ciphertext, which is 

otherwise the most difficult phases to beat in this entire 

cryptosystem). So a benefit of doubt is given to the 

attacker.

 

Fig. 6 Cryptanalysis Attempt  

The output of the convolutional layers is subsequently 

subjected to another activation function and undergoes 

flattening for the final time. This flattening allows the 

inputs to be fed into the 3rd and final Dense Layer which 

further trains the model to achieve the final plaintext after 

applying a sigmoid function at the end. 
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This plaintext is assumed to be the finally guessed 

plaintext corresponding to the ciphertext fed as input. The 

reconstruction loss is calculated at the end and feedback 

is sent to the model as per the value obtained. We will 

discuss this in detail in the next section. 

4 Training and Implementation 

The objectives of the training process are simple: 

• For the Interceptor: The interceptor aims to 

accurately reconstruct or minimize the error between P 

and Pint, where P represents the original plaintext, and Pint 

is the plaintext guessed by the interceptor. 

• For the Sender and Receiver: The sender and the 

receiver aim to communicate clearly, i.e., to minimize the 

error between P and Prec, where Prec is the plaintext 

guessed by the receiver. 

4.1 Training and Implementing the Cryptosystem 

We train the sender and the receiver jointly to 

communicate successfully and to defeat the interceptor 

without having any knowledge of what cryptosystem they 

might develop to achieve this. 

The implementation of a secure communication system 

involves a Sender, a Receiver, and an Interceptor. These 

neural networks are carefully designed to establish secure 

communication channels through encryption and 

decryption processes. The architecture, loss functions, 

optimizers, and training procedures are meticulously 

crafted to enhance the robustness of security in the 

communication system. 

The Sender network’s architecture is the first component. 

The architecture as shown in the Fig.7 takes an input 

(ainput0) and a key (ainput1) as inputs. These 

concatenated inputs are processed by the dense layer, and 

the result is passed through a hyperbolic tangent (tanh) 

function (adense1a). Following this, the output goes 

through the reshape and each of the four 1D convolutional 

layers’ (aconv1 to aconv4) is activated by tanh activation. 

These convolutional layers are the backbone of the 

system, since they are able to distill the details and 

patterns in the data, which is of utmost relevance to secure 

communication. The last layer consists of a dense layer 

with tanh activation, then a final output encrypting the 

message (aoutput). This arrangement is effective for the 

encoder only to input both the message and the key into a 

form that is suitable to the transmission to the receiver. 

In contrast, the Receiver’s side (network) operates as the 

decrypter, which is responsible for decrypting the 

received ciphertext into the original message using shared 

key. The receiver’s input contains ciphertext(binput0) and 

the key (binput1). Similar to the Sender’s architecture, 

these inputs undergo concatenation and are sent in to the 

dense layer where they are processed through a tanh 

activation. The rest of the structural components of the 

Reciever are designed in the same way as Sender, namely 

the four 1D convolutional layers (bconv1 to bconv4) with 

tanh activation and the last dense layer with sigmoid 

activation, which finally produce the decrypted message 

(boutput). The symmetrical design between Sender and 

Receiver ensures that the secure and reverse 

communication process is maintained, where the Sender 

provides the encoding of the message, and the Receiver 

accomplishes the decoding of it. 

 

Fig. 7 Encryption Architecture Diagram 

 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 311–333  |  323 

In this communication system, the Interceptor, for 

instance Eve in traditional cryptography, endeavors to 

intercept and decrypt messages without having any access 

to the key. The Interceptor’s input mainly comprises the 

ciphertext (einput) obtained dusring any eavesdropping 

attempt. The network architecture consists of two dense 

layers with tanh activation, followed by reshaping and 

four 1D convolutional layers with tanh activation (econv1 

to econv4). The final layer is a dense layer with sigmoid 

activation, yielding an output (eoutput) representing the 

Interceptor’s decryption attempt. The presence of the 

Interceptor introduces an additional layer of complexity, 

posing the challenge of thwarting unauthorized 

decryption attempts and fortifying the security of the 

communication channel. 

Moving on to the loss and optimizer functions, three 

crucial loss functions are defined: eveloss, bobloss, and 

abeloss. The eveloss metric quantifies the mean absolute 

error between the original message (ainput0) and the 

Interceptor’s decryption attempt (eoutput). This 

underscores the necessity of preventing the Interceptor 

from accurately decrypting the message, safeguarding the 

confidentiality of communication. The bobloss evaluates 

the Receiver’s proficiency in decrypting messages 

accurately, measuring the mean absolute error between 

the original message and the Receiver’s decryption 

(boutput). The abeloss incorporates both bobloss and a 

penalty term based on eveloss, ensuring that the 

Interceptor does not surpass random guessing, thereby 

reinforcing the security of the communication channel. 

For optimization, Adam optimizers are selected for both 

Sender-Receiver communication and the Interceptor. 

Adam optimization is renowned for its efficacy in training 

neural networks, aligning with the complexity of the 

communication system and necessitating stable and 

efficient convergence during training. 

The training process happens over multiple epochs, each 

comprising three cycles: a) the Sender-Receiver and the 

Interceptor training cycle (abecycles), b) Receiver’s 

decryption evaluation cycle, and the 

c) Interceptor’s training cycle (evecycles). 

In the Sender-Receiver + Interceptor training cycle, 

random batches of messages and keys are generated, and 

the abemodel is trained on these batches. This cycle aims 

to optimize communication between Sender and Receiver 

while preventing unauthorized access by the Interceptor. 

Subsequently, the Receiver’s decryption evaluation cycle 

employs the trained sender and receiver models to assess 

the Receiver’s performance in decrypting messages, 

crucial for gauging the practical security of the system. 

Finally, in the Interceptor’s training cycle, the Sender’s 

weights are frozen, and random batches of messages and 

keys are generated to train the interceptor model, focusing 

on restricting the Interceptor’s ability to decrypt messages 

without access to the key. 

Throughout the training process, meticulous monitoring 

of losses serves as a quantitative gauge of the system’s 

performance. Losses pertaining to Sender-Receiver 

communication, Receiver’s decryption, and Interceptor’s 

decryption attempts are continuously calculated and 

tracked. This diligent tracking enables the identification 

of trends, convergence patterns, and potential avenues for 

enhancement. The transparency afforded by loss 

monitoring is pivotal for iteratively refining the models 

and ensuring that the communication system meets the 

desired security standards. 

The intricate details of the network architecture reflect 

careful consideration of various factors, encompassing 

the selection of activation functions, layer configurations, 

and the symmetrical design between Sender and Receiver. 

The inclusion of convolutional layers in both Sender and 

Receiver architectures empowers the models to capture 

intricate patterns within the data, thereby enhancing their 

efficacy in encoding and decoding messages effectively. 

Moreover, the integration of an Interceptor introduces an 

additional layer of complexity, mirroring real-world 

scenarios where unauthorized entities may seek to 

decrypt messages. 
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Fig. 8 Decryption Architecture Diagram 

 

The selection of loss functions is a very close relative to 

the security objectives of the communication system. The 

main focus of cipher loss is in ensuring that no one can 

decipher the message accurately, thus securing the 

authenticity of the message even if the ciphertext is 

intercepted in this way. While the bobloss is designed to 

test the Receiver’s capability to decode messages 

precisely, its overall contribution is part of the detailed 

security analysis of the system. This penalty term of 

abeloss integrates the notion that the Interceptor is not 

allowed to overperform random guessing by means of the 

decryption attempt made by the Interceptor. Hence, this 

balanced approach in the choice of losses has a 

comprehensive security undertone. Adam optimizers is 

adopted for the Sender-Receiver mechanism and the 

Interceptor as well, which improves the training process 

in its efficiency. Adam optimization is what is used for 

training neural networks, being a result of the design 

process that took into account the system’s complexity 

and the necessity for training that would proceed stable 

and effective. The training scheme progresses by using 

several epochs that consist of three cycles. The Sender-

Receiver + Interceptor training loop focuses on 

improving communication between the Sender and 

Receiver of the encrypted message to be transmission safe 

and secure. The Receiver’s decryption cycle is one of the 

most crucial stages where the Receiver’s decrypting skills 

are measured, thus, providing the Receiver with the 

information needed to understand the practical safety of 

the system. In addition, during the training period of the 

Interceptor, the training weights of the Sender are frozen 

in order to restrict the Interceptor’s ability to crack the 

code. This adversarial training strategy adds an extra 

protective layer for the system, which ensures that it will 

be resilient to any attack through decryption by 

unauthorized actors. 

The whole training process is accompanied with a 

quantitative assessment of the losses that provides the 

opportunity to see the system’s performance from a 

numbers point of view. The ongoing computation and 

monitoring of Sender-Receiver communication losses, 

Receiver’s decryption, and Interceptor’s decryption 

efforts allow the detection of trends, convergence in 

patterns, and the area that require further improvement. 

This systematic observation of losses is one of the major 

factors which facilitate repetitive fine tuning of models, 

guaranteeing that the communication system holds the 

state of the art security standards. 

Eventually, the code is a whole and intricately made 

system that works to safeguard communication. The 

network plans of Sender, Receiver, and Interceptor are 

very carefully designed to ensure the secrecy and safety 

of the message that is being transferred. The choice of loss 

functions and optimizers is done for the reason of making 

the models more secure by reinforcing the security 

objectives and the training process is designed for the 

purpose of repetitively improving the models. It is the 

holistic approach that underpins the design of neural 

networks technology to provide the foundation for 

training secure communication systems, through the 

combination of both theoretical and practical 

considerations. The overall Mathematical Expressions 

and Formulae could be summarised as follows: 

Eve’s Loss Calculation 

 EveLoss = K.mean        (1) 

Explanation: Eve’s loss is calculated as the mean 

absolute difference between the input plaintext ainput0 

and the output of Eve’s model eveout. It measures how 

well Eve is able to decrypt the message without having 

access to the key. 

Bob’s Loss Calculation 

 

 BobLoss = K.mean                                               (2) 

Explanation: Bob’s loss is calculated similarly to Eve’s 

loss, measuring the difference between the input plaintext 

ainput0 and Bob’s reconstruction Bobout. 

Alice-Bob Communication Loss 

abeloss = bobloss +   (3) 

Explanation: This loss function for Alice-Bob 

communication incorporates both Bob’s reconstruction 

loss and Eve’s decryption loss. It penalizes Eve’s 

performance by adding a term that measures how far 

Eve’s decryption loss deviates from the expected random 

guessing scenario. 

Bob’s Accuracy: We calculate Bob’s accuracy by 

comparing his output to the original plaintext message. If 

Bob’s output matches the original plaintext message, it’s 

considered correct. 

Eve’s Accuracy: Similarly, we calculate Eve’s accuracy 

by comparing her output to the original plaintext 

message. Since Eve’s goal is to eavesdrop on the 

communication, if her output matches the original 

plaintext message, it indicates that she successfully 

decrypted the message without access to the key. 
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4.2 Training and Implementing the Novel Intelligent 

Image Recognition Module 

The implementation of the Novel Image Recognition 

Module begins with the acquisition and exploration of a 

dataset. This dataset serves not only as a means to an 

implementation but also as the bedrock upon which a 

robust model is built. In this research, a dataset 

comprising of dog images was utilized, encompassing 

133 distinct breeds as image classes. 

This initial phase sets the groundwork for any subsequent 

machine learning tasks, providing the necessary training 

resource for the model to identify patterns and make 

accurate predictions. 

Following this, the implementation enters into a very 

important phase which is data preparation. This phase is 

often neglected and is indeed essential to the process of 

data being in appropriate format for the model to accept 

it. The role of the particular function is to provide the 

possibility of organizing the paths to the files along with 

the labels, thus obtaining a hierarchical structure which is 

indispensable for the supervised learning. In addition, the 

one-hot encoding technique points out a key shift that 

happened to the features. During this activity, the 

categorical labels (portraying dog breeds in this case) will 

be converted into the binary matrix format. This matrix 

with binary values acts as a more comprehensible 

representation to the model which, in turn, enables 

learning and comprehension of the entire data set. 

The dataset’s investigation is a key to understanding its 

features. This include the details such as number of 

categories (dog breeds), the number of images, and their 

distribution among the training, validation, and test sets. 

These statistics become a basis for the model 

development process; the model is shaped by making 

decisions based on these statistics. 

The distribution of data is a key aspect that allows the 

evaluation of the dataset diversity, detection of the 

possible biases and the estimation of the data sufficiency 

for the development of the resilient model. Analyzing 

these features enables developers to take the right 

decisions on data pre-processing, model architecture, and 

training strategies and in the end the results of the model 

will be accurate and robust. 

Next, the implementation elaborates on a strategy through 

which it carries out carry out data augmentation. This 

approach is quite sophisticated and unique. Data 

augmentation translates as applying various 

transformations to the images, for example, shifts, 

rotations, shearing, and zooming.[12] This technique 

increases the size of the dataset, and adds variability to 

the data. The goal is to enhance the model’s capacity to 

generalize well in the face of unseen data while also being 

able to cope with over fitting during training. The visual 

representation of selected images from the training set is 

highlighted as more than just a visual aid. It serves as a 

strategic component in understanding the nature of the 

data. Visualization provides a qualitative assessment of 

the dataset, offering insights into the distinct 

characteristics of various dog breeds. This understanding 

becomes crucial for making informed decisions regarding 

the architecture of the model, its complexity, and other 

architectural considerations. 

Transitioning to the model architecture, there are many 

State of the art pretrained models available, one of them 

being the Xception model[14].The mention of leveraging 

a pretrained model indicates a common practice in 

machine learning. Pretrained models, trained on large 

datasets like ImageNet, capture general features that can 

be valuable for a wide range of tasks. Xception is chosen 

for its efficiency and accuracy in capturing complex 

features based on the work done.[15]. A model designed 

from scratch could also do the same task but it would 

require a huge computation power and availability of 

huge refined image datasets always remain a major 

bottleneck. For smaller datasets involving less than 20000 

images, it is always advisable to go for a well suited pre-

trained model such as Xception or Resnet. 

Model compilation involves defining key aspects such as 

the optimizer, learning rate, and loss function [16][17]. 

The Adam optimizer is chosen for its adaptive learning 

rate properties, contributing to stable and efficient 

convergence. Categorical crossentropy is selected as the 

loss function, aligning with the nature of the multiclass 

classification task where the goal is to classify each image 

into one of multiple dog breeds.ReLU is chosen as an 

activation function and dropout is chosen as a 

regularization technique which indicates considerations 

for mitigating common challenges like the vanishing 

gradient problem and preventing overfitting. 

Callbacks are introduced as dynamic components 

influencing the training trajectory. The Checkpointing 

ensures that the best model weights are saved during 

training, providing a reliable backup in case of 

interruptions or crashes. The Early Stopping callback 

introduces a form of automated intervention, halting 

training if there is no improvement in validation accuracy 

after a specified number of epochs. This is a preventive 

measure against overfitting, aligning with the principle of 

efficiency in model development. The trained model and 

callback function then regularly provide feedback and 

help limit the number of model parameters to the optimal 

amount as the training process continues indefinitely. 

Testing the model on the test set is one of the most 

important steps, as it shows the model’s efficacy in real 

world. The test loss and accuracy values obtained from 
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test data sum up the entire deployment cycle mentioned. 

These two values tell us how well does the model 

perform, and whether it is ready for use in real world 

application. Everything we do, from dataset exploration 

to dataset augmentation to model building and training, 

we do in order to achieve better metric values. And the 

values we obtain in the end, tell us whether we have 

successfully built a model or not. 

4.3 Image Mapping and Ciphertext Generation: 

This is the step which is responsible for adding novelty to 

the entire implementation. Unlike steganography, where 

the Cipher Text is hidden inside the carrier image either 

after replacing the least significant bits or by using certain 

image properties and embedding the secret within the 

image, the proposed implementation intelligently 

generates an image corresponding to the ciphertext 

generated in the previous section. The generated image 

does not consist of any text characters hidden in the 

image. This creates a covert channel through which the 

sender could communicate with the receiver securely 

without leaking out any information publicly in the 

insecure communication medium. Lets see the various 

components involved in the Image Mapping process. 

Length of Ciphertext: 

The length of the ciphertext is a fundamental property in 

cryptography. In many encryption schemes, ciphertext 

length is considered public information, as it doesn’t 

reveal details about the actual content. However, in this 

scenario, we are proposing to use the length as a 

parameter for creating a cipher image, introducing a 

unique aspect to the encryption process. In this 

implementation as shown in Fig.9, a novel encryption is 

designed, which takes into consideration the length of the 

ciphertext and based on the length of the ciphertext , an 

image from the image repository is selected as the cipher 

image, which is then sent as the Final Cipher Image. 

 

Fig. 9 The Cipher Mapping Architecture 

Image Generation: 

Generating an image based on the length of the ciphertext 

implies a deterministic mapping. The process of 

converting a numerical value (ciphertext length) to a 

visual representation (image) is a form of encoding. This 

encoding scheme should be carefully designed to ensure 

that it’s not easily reverse-engineered, maintaining the 

secrecy of the mapping. To ensure this, the shared 

memory is accesible to only the sender and the receiver. 

The attacker doesn’t have access to the repository. 

Secrecy of Mapping: 

The most important part of such an approach is to hide the 

exact mapping between the length of the ciphertext and 

the specific image. This way, we also obtain a level of 

security. So, the mapping function, as well as all its 

parameters in general, must be only known to the trusted 

parties. Otherwise, the enemy would be able to find out 

some interesting things about the function and its specific 

parameters. . 

Implications: 

In this paper, we propose a novel method of deriving the 

Cipher image after knowing the length of the Ciphertext. 
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It is true that the mapping as mentioned in this paper is a 

hidden channel and is difficult to be decoded or attacked 

until the truth is actually revealed. We also need to test the 

complexity of the proposed system in order to evaluate its 

robustness. The security of such a system does not just 

depend on the encryption algorithm, but also on the 

Private key and its mapping function. 

The Private key and the mapping function are kept secret 

because they are used to encrypt plain text and to maintain 

the secrecy of the relation between the plain text and 

images. It should be noted that the shared repository does 

not contain any of the messages in clear text. We believe 

that if any interceptor has access to the shared repository, 

it will encounter only the encrypted content of the various 

tokens. At the point of interception as shown in Fig.6, the 

messages and all Images are encrypted using the same 

method known only to the original sender side. We also 

require the receiver to be trained on the hidden model in 

order to use it effectively before they can decode the 

Cipher image. By initially keeping the model hidden even 

from the receiver, we are confident that no interceptor can 

decode the message unless they have the secret model. 

Therefore, even if the shared repository is compromised, 

the existing messages are still secure. 

Considerations for Implementation: 

• Deterministic but Irreversible: The mapping 

function should be deterministic to ensure consistency in 

generating images for a given ciphertext length. However, 

it should also be designed to be irreversible, meaning that 

it should be challenging or practically impossible to 

reverse the process and deduce the original ciphertext 

length from the image. 

• Key Management: If your mapping function 

involves any parameters or keys, proper key management 

is crucial. Keys should be kept secure, and mechanisms 

for key exchange or distribution need to be considered. 

• Testing and Validation: Extensive testing and 

validation are necessary to ensure that the mapping 

function behaves as expected and that the generated 

images provide a sufficient level of unpredictability. 

• Adversarial Analysis: Consider potential attacks on 

the mapping function. Adversarial analysis should be 

performed to identify any vulnerabilities or patterns that 

attackers might exploit. 

• Documentation and Procedures: Clearly document 

the mapping function, its parameters, and the procedures 

for generating images from ciphertext lengths. This 

documentation is essential for maintaining and 

potentially updating the system in the future. 

The model architecture, strategically leveraging a 

pretrained Xception base, reflects a discerning selection 

process grounded in the efficiency of capturing intricate 

features. The training phase incorporates best practices, 

encompassing regularization techniques and dynamic 

callbacks, crucial for achieving a well-generalized model. 

The evaluation on the test set stands as the ultimate 

benchmark, quantifying the model’s prowess in extending 

its learnings to new, previously unseen data. This holistic 

and well-structured approach underscores the meticulous 

considerations essential for the triumphant development 

of a machine learning model tailored to a specific 

classification task. 

5 Results and Discussion 

The training process involved an iterative procedure over 

a specified number of epochs. Each epoch comprised 

multiple batches, and during each batch, the A-B+E 

network was trained to minimize the loss function. 

Additionally, Bob’s ability to decrypt a message and 

Eve’s attempts to break the code were evaluated and 

optimized independently. 

We observed the convergence of the system over epochs, 

with the average loss decreasing for both the A-B network 

and Eve. This indicates that the A-B network learned to 

encode and transmit messages effectively, while Eve 

struggled to decrypt the ciphertext accurately.
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5.1 Experimental Testbed 

 

Fig. 10 GPU Specification 

The experimentation was performed on a Google Colab 

Environment: CPU Cores: 1, Total CPU Threads: 2, RAM 

Available: 11.37 GB. The Implementation focussed on a 

hybrid encryption framework combining machine 

learning based encryption with a basic character 

substitution approach. 

5.2 Model Performance 

5.2.1 Sender-Receiver Network 

The Sender (Alice)-Receiver (Bob) network 

demonstrated remarkable performance, achieving a high 

level of accuracy in encoding and decoding messages. 

The loss function for Sender-Receiver consistently 

decreased over epochs, indicating successful 

communication between Alice and Bob as evident from 

Fig.11. 

5.2.2 Receiver’s Decryption Network 

Receiver(Bob) exhibited a high degree of accuracy in 

decrypting messages. The loss between the original 

message and the decrypted message consistently 

decreased, reaching near-optimal performance by the end 

of training as shown in Fig.11. 

5.2.3 Attacker’s Attempts 

The Attacker (Eve’s) attempts to break the code were less 

successful. The loss between the original message and 

Eve’s decryption remained relatively high, indicating that 

the system effectively resisted eavesdropping attempts as 

shown in Fig.11. 

 

5.3 Visualization 

The loss plots for Alice-Bob, Eve, and Bob illustrate the 

convergence and performance of each component over 

training iterations (see Fig.11). The steady decline in loss 

values for Alice-Bob and Bob, in contrast to the 

fluctuations in Eve’s loss, highlights the robustness of the 

communication system. 

5.4 Model Evaluation 

5.4.1 Quantitative Evaluation 

To quantitatively assess the performance of the system, 

we conducted model evaluations using a set of randomly 

generated messages and keys. Bob achieved an 

impressive correctness rate of 99.94%, indicating his 

ability to accurately decrypt messages. On the other hand, 

Eve’s correctness rate was substantially lower at 1.54%, 

underlining the system’s effectiveness in resisting 

unauthorized decryption attempts. 

5.4.2 Observations 

The observations from the model evaluation align with 

the training dynamics, reinforcing the success of the 

proposed communication system. The high correctness 

rate for Bob and the low correctness rate for Eve provide 

empirical evidence of the security and reliability of the 

communication protocol. 

5.5 Experimental Results 

Initially, random binary messages are generated along 

with corresponding binary keys. The machine learning 

models, represented by Alice for encryption, Bob for
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Fig. 11 Loss Plots 

 

decryption, and Eve as an adversary, are employed to 

evaluate the robustness of the encryption process. In 

addition to the machine learning model, a basic character 

substitution encryption scheme is introduced. A set of 

characters, including letters, punctuation, and spaces, is 

paired with predefined binary representations. The 

encoding process involves substituting each character in 

a given message with its corresponding binary 

representation. Block padding, which involves adding 

extra random bits to each binary representation, is 

incorporated to enhance security. 

Furthermore, the code includes parameters for defining 

block size, unpadded block size, and block padding 

values, allowing users to configure the encryption process 

based on specific requirements. The integration of a 

simple character substitution encryption method adds a 

customizable layer to the overall framework, showcasing 

its adaptability for exploring different encryption 

strategies. This dual approach demonstrates the versatility 

of the code in assessing and enhancing the security of 

sensitive information. 

The encryption process begins with the conversion of the 

plaintext message into a binary format, incorporating 

additional padding for each block. Subsequently, each 

block of the binary message undergoes processing 

through a neural network model. This neural network 

takes individual binary blocks and the key as inputs, 

producing a floating-point vector. This floating-point 

vector is then converted into a binary representation. The 

binary representations from all blocks are concatenated, 

forming the final encrypted binary message. The code 

concludes by printing this encrypted binary message 

along with its length. The entire process represents a basic 

encryption 

procedure, with the neural network serving as a critical 

element in transforming and securing the binary 

representations of the input message. 

The test cases for encryption and decryption taking 

multiple plaintexts of variable lenghts is shown in Fig.12 

and 13 respectively. 

Sample Plaintext : sridhar is a teacher 

Sample Binary Equivalent : 

00010010011100010100100011 

0000111010011110100000110100011011111111001000

01 

1100100011111101100000100111110010011011001000

00 00000100000101010011110000 

10010110001 

Length of Binary Plaintext : 160 

Length of Binary Ciphertext : 5120 

Modulus of Ciphertext = 5120 mod 133 = 66 

When we check the corresponding image at the 66th 

Index position in the Shared repository, it corresponds to 

an image. With respect to this implementation, there is an 

image of a dog corresponding to the 66th index position. 
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Fig. 12 Encryption Test Cases  

 

 

Fig. 13 Decryption Test Cases 

For example, The Dog representing the Plaintext in our 

Repository is: Finnish spitz.So according to our proposed 

system, the ciphertext replaces the value field 

corresponding to the index position 66 in the dictionary 

and sends a Cipher Image of the dog breed Finnish Spitz 

instead of the ciphertext, to the receiver. 

During the decryption, the receiver/attacker receives only 

the cipher image, so without the knowledge of the 

algorithm or the concept of shared mapping module, the 

attacker as well as the receiver wont be able to guesss the 

plaintext from the cipher image, which otherwise doesn’t 

have any relationship with the plaintext visibly. However, 

our receiver has the innate knowledge of the initial key 

which the attacker doesnt have access to. This gives an 

upper hand to the receiver, who/which after few initial 

hiccups, decipher the logic behind the process. 

5.6 Attacks performed on the Implementation 

The following 2 attacks were carried out on the 

implementation: 

1) Brute Force attack with no information about the key 

and the algorithm. 2) Known Plaintext-Ciphertext Attack 

with the intention to obtain the Encryption Key. 

5.6.1 Brute Force Attack 

The Brute Force Attack carried on the implementation 

gave an estimation of around 253 to 2180 years to crack the 

cipher using computational methods as shown on the 

Fig.14 and Fig.15 respectively. Various test cases were 

considered on different sized plaintexts and brute force 

methods were employed to crack their corresponding 

ciphertexts. In practical terms, such a duration is far 

beyond the age of the universe, indicating that breaking 

your cipher through brute force is effectively impossible 

with current technology. Therefore, from a security 
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standpoint, it is considered very good. However, it’s also 

important to stay vigilant as computational capabilities 

evolve over time, and what’s secure today might not be so 

in the future. Therefore, continual monitoring and 

updating of security measures are necessary to maintain 

the confidentiality of your data. 

 

Fig. 14 Brute Force Test Cases 

 

Fig. 15 A Sample Brute Force Attack  

5.6.2 Known Plaintext-Ciphertext Attack 

The known Plaintext-Ciphertext attack also gave really 

interesting insights into the implementation. Fig.16 

depicts the test case predicts the key using the Known 

Plaintext-Ciphertext attack.It can be seen clearly that the 

key obtained by the attacker is only guessing 6.25 bits out 

of every 100 bits of the key and hence the Hash Values 

are never going to be the same as compared to the 

plaintext. As a result, the attacker will never be able to 

guess the plaintext accurately. 

In summary, while these attacks are practically possible 

to be launched on the implementation but implementing 

effective countermeasures and maintaining a strong 

security posture can make them exceedingly difficult to 

execute in practice. Robust cryptographic algorithms are 

designed with the intention of withstanding a variety of 

attacks, and the combination of multiple defense 

mechanisms enhances the overall security of the system. 

However, continuous vigilance and updates are crucial to 

adapt to evolving threats and vulnerabilities.

 

Fig. 16 Known Plaintext-Ciphertext Attack  
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6 Conclusion and Future Work 

The research work proposes a novel cryptographic system 

capable of securely passing a secret message from the 

sender’s side to the receiver’s side keeping in mind that 

the confidentiality and integrity of the message remains 

intact. The proposed system endeavors have led to the 

development of a groundbreaking cryptographic system 

that introduces innovation and security to the process of 

transmitting confidential messages from the sender to the 

receiver. Focused on preserving the utmost 

confidentiality and integrity of the transmitted message, 

our proposed system harnesses the power of cutting-edge 

technologies, particularly leveraging advancements in 

Deep Learning. An essential part of our new cryptography 

model is the use of Deep Learning, a technology that has 

proven itself to be highly successful in a wide variety of 

domains. Deep Learning has allowed us to create a 

completely new, dynamic and adaptive method of 

securing communications. This is a break from the 

traditional static methods of cryptography, in which one 

must rely on a method or algorithm. Our approach instead 

leverages the adaptability of Deep Learning to learn, and 

get better, at protecting sensitive data. What is Deep 

Learning and how does Deep Learning make our 

cryptographical model superior? Deep Learning might 

seem to be very different from cryptography, but it is a 

very promising method to create a cryptographical model. 

It is almost perfect for our needs. Indeed, it shows 

significant advantages when used in the cryptographical 

model, such as the ability to self-learn and adapt to new 

threats. Moreover, unlike the traditional working method 

of cryptography, Deep Learning can learn and detect 

more complex patterns, allowing encryption and 

decryption at a higher level and thereby also maintaining 

efficiency. Finally, since Deep Learning lets us encrypt 

the message using a much more secure algorithm, we can 

ensure the confidentiality of the message. esteemed. We 

keep the message as secret as possible. We use very strong 

Deep Learning algorithms for encryption and decryption 

and these algorithms are the most secure. The algorithm 

adjusts itself dynamically as required according to the 

message and context, so it would be resistant enough to 

adversarial attacks. 

Besides, our cryptographic system also strengthens the 

integrity of the transmitted message. Using Deep 

Learning, the system does not only encrypt the message 

securely but also embeds a self-validating system to 

verify its received version. This characteristic is intrinsic 

to our system and ensures that the received information is 

received in exactly the same way as encrypted by the 

sender, and hence is authentic, leaving no chance for 

unauthorized tempering during transit. To summarize, our 

proposed cryptographic system is an important step in the 

direction of secure communication. It is future ready, 

because it combines the best of both worlds - the stalwart 

principles of cryptography, and the adaptive and learning 

abilities of Deep Learning, promising to not only thwart 

the current alleged attack but also prepare way for a new 

breed of cryptographic protocols that are dynamic in 

nature and invincible. As we stand on the crossroads of 

cryptography and Deep Learning, this research gives us 

an opportunity to bring about a new wave of 

confidentiality and integrity in secure message 

transmission. It is a strong and immersive solution to the 

continuously evolving threat landscape, and certainly an 

area that can be improved further. On the research track, 

the next area is to explore the research in detail. The 

proposed encryption model should be subjected to a 

rigorous cryptanalysis, specifically targeting the attacks 

found in our research. The goal of this analysis was to 

discover the weaknesses of the refined system by 

examining traditional cryptographic threats. However, in 

the future, the system will be improved by the addition of 

new, sophisticated scrambling and confusion methods. 

In particular, attempts will be made to investigate chaos-

based algorithms as alternative methods to RSA, as well 

as more complex neural network architectures for the 

scrambling and confusion of inputs and outputs, which in 

turn will make the encryption process more difficult to 

observe and thus increase the overall strength of the 

system. But in order to reach this high level of security, 

the system has to be practically applicative. 

Consequently, the next step will be designing protocols 

for this technique to work in real-world implementation 

and assessing performance, scalability, and efficiency in 

various environments. In addition, working with 

specialists in mathematics, physics, and computer science 

will be the next phase in the development of this project. 

With the invaluable support of experts in these closely 

related areas, it will be possible to handle the challenges 

as early as possible and incorporate their feedback into 

future versions of the system. As this approach involves 

more than one field, effort has to be put into tuning the 

design and implementation of the cryptographic system. 

Standardization, user studies, and interoperability with 

existing protocols will also be further investigated, taking 

into account user needs. Clearly, experts in related fields 

will assist in designing these research components, as 

well as guide us on which standards to adopt. 

Consequently, the potential of implementing and 

evaluating this system in real-life, including the 

scalability and performance of this technique, will also be 

further discussed to achieve superior performance to 

current systems. Finally, it is important to note that these 

efforts are the first stage in standardizing the next 

generation of cryptographic systems designed to thwart 

next-generation attacks. 
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