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Abstract: With the escalating concerns surrounding information security in today’s digital landscape, the demand for covert
communication channels that facilitate secure information exchange has witnessed an exponential surge. This research endeavors to design
and implement a novel covert communication medium to address the challenges inherent in clandestine information transfer. The proposed
medium harnesses a new age intelligent encryption technique to ensure not only the confidentiality but also the stealthiness of
communication. The study commences with a comprehensive analysis and development of a concept that seamlessly integrates state-of-
the-art encryption algorithms along with ways to make the communication covert. The primary objective is to strike a delicate balance
between data security and the covert nature of communication, enabling information to be exchanged undetected within various digital
environments. The proposed system explores the potential of leveraging neural networks and deep learning principles to encrypt data
traversing insecure communication mediums. The research findings contribute significantly to the advancement of covert communication
technologies, offering a robust solution for secure information exchange in environments where traditional encryption methods may prove
insufficient or where a more covert approach to encryption is necessitated. The research finding also does benchmarking tests to show the
amount of efforts required to break into an intelligent cryptographic algorithm to obtain the keys in totality. The implementation is
evaluated on the basis of the accuracy with with the same plaintext is generated and also its ability to withstand various attacks.
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AES itself collapses, the algorithm gets into the public
domain and within no time, the entire financial backbone
worldwide collapse. Billions and Zillions of money
irrespective of the currency will be at stake.

1 Introduction

The inspiration for this research stems from the
realization that current cryptographic approaches have

been in use for a considerable time and could benefit from
Some research suggests that although AES is considered

to be the most secured, but few cryptanalysis attempts on

a reevaluation or refinement in terms of security. We all
know that AES-256 is one of the most secure [1]

cryptographic algorithms being used today for even the
most highly sensitive information exchange. Because of
its robustness against brute force attacks and other
sophisticated network attacks [1], the AES Algorithm is
the method of choice, but can we turn complacent and
leave everything to the toughness of AES against these
known attacks? The answer should be no, as we are still
not aware of the hidden zero day vulnerabilities that may
creep up one fine day without even any hint of its arrival.

If anything like that happens, then the entire world could
come to a complete standstill. Every basic financial
transaction on the internet is secured using SSL over the
HTTPS which in turn uses AES for its protection. If the
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AES were able to guess few bits of the key successfully
using side channel attacks [2]. Such Power Analysis
based Side Channel attacks on AES showed that although
its virtually impossible to crack AES completely using the
existing computational power, its not the case if an
alternate or unconventional route is opted to break into
the algorithm implementation rather than guessing the
key. Currently AES is the reigning champion and yet to
lose a match but what about ten to twenty years down the
line. What if we invent a highly powerful quantum
computer much powerful than the existing
supercomputers come into existence? It could break the
existing AES implementation in minutes if not in seconds
[3] . What will happen then? We need to think out of the
box and start thinking of developing some alternative
approach to the existing ones, not with the intent of
immediately replacing them but atleast provide a totally
different approach of providing security to the data which
could eventually be the method of choice. In this research
work, a novel cryptographic approach is proposed, which
would encrypt the plaintext using an intelligently
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developed algorithm using adversarial networks, which
could develop their own algorithm, generate keys and
create the ciphertext and send it to the receiver for
decryption. The receiver on the other hand will also be a
neural network trained to retrieve the plaintext out of the
cipher text.

The entire scenario will be kept completely covert [4] in
the following manner:

a) The ciphertext generated will be used to generate an
image intelligently and this image will be sent to the
receiver as a cipher image instead of the ciphertext.

b) This cipher image will not be a stego image as
generally used in steganography.Stego Images consist of
the encrypted text as part of the image itself.

¢) The ciphertext will not be hidden inside the image in
any respect, which mightincrease the size of the image.

d) The receiver upon receiving the cipherimage will try
to retrieve the ciphertextfrom the cipherimage using the
knowledge obtained through the training.

This entire process is hidden from the attacker and gives
rise to a completely covert communication. Even if the
attacker gets access to the cipher image, until he/she gets
the understanding of the reverse mapping process, the
attacker might not be able to break the code. The article
is systematically broken down into the following
sections: Section 2 discusses about the background study
and possible areas of research. Section 3 discusses the
Proposed System in detail highlighting the various model
architectures elaborately. Section 4 focuses on the actual
training process where the idea behind training the sender,
receiver and the attacker’s model is discussed elaborately.
Section 5 discusses the results obtained and compares it
with existing implementations. Section 6 and 7 sheds
light on the possible attacks on such implementations
along with the results obtained. Section 8 concludes the
study followed by possible future work.

2 Literature Survey

Cryptographic techniques form the backbone of modern
cybersecurity, providing essential mechanisms for
securing digital communication and protecting sensitive
information. Recent advancements in cryptographic
research have explored innovative approaches leveraging
emerging technologies such as neural networks, deep
learning, steganography, chaos theory, and DNA
encoding. This literature survey examines key
contributions in these areas, highlighting their
significance and potential implications for the field of
cryptography.

Dong and Huang[25] introduced a pioneering
cryptographic method based on Complex-Valued Tree

Parity Machine (CVTPM), which represents a departure
from conventional techniques by incorporating complex-
valued weights. The authors demonstrated that CVTPM
offers enhanced security compared to traditional
approaches, owing to the increased complexity
introduced by complex-valued weights. However, the
shallow neural network architecture employed in
CVTPM raises concerns about vulnerability to brute force
attacks and potential limitations in cryptographic
accuracy. Despite these challenges, CVTPM presents a
promising avenue for further exploration in neural
cryptography, with potential applications in secure
communication and data protection.

Li and Wang[26] proposed a groundbreaking symmetric
encryption method known as SEDL, which harnesses the
power of deep learning for encryption tasks. Unlike
traditional encryption techniques, which rely on
mathematical algorithms, SEDL utilizes hyperparameters
of deep learning models as part of the secret key. This
innovative approach takes advantage of the inherent
uninterpretability and extensive training time associated
with deep learning models, thereby enhancing the
security of the encryption process. However, challenges
such as lengthy training times and the dependence on
secret hyperparameters may impact practical deployment,
necessitating further research to optimize efficiency and
robustness.

Wang and Su [27] introduced an audio encryption
algorithm that combines chaos theory and DNA encoding
to achieve a heightened level of security. By integrating
chaotic systems with DNA encoding techniques, the
algorithm generates unpredictable encryption keys tied to
the hash values of audio files. This innovative approach
enhances resistance against potential attacks and offers
robust protection for sensitive audio data. However,
challenges such as increased encryption time with longer
audio files and the potential for chaotic systems to behave
unexpectedly underscore the need for further
optimization and refinement.

Abadi and Andersen [28] pioneered the concept of
adversarial neural cryptography, introducing Generative
Adversarial Networks (GANSs) as a novel approach to
encryption. Through iterative training of adversarial
neural networks, the proposed method aims to minimize
reconstruction errors and maximize the attacker’s
difficulty in decrypting the communication. While
achieving promising results in minimizing error rates, the
practical applicability and robustness of adversarial
neural cryptography require further investigation and
enhancement. Future research efforts should focus on
optimizing the efficiency and scalability of GAN-based
encryption techniques for real-world deployment.
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Meng et al. [29] proposed a steganography algorithm
based on CycleGAN for covert communication in the
Internet of Things (IoT) environment. By leveraging
CycleGAN’s capabilities in image-to-image translation,
the algorithm embeds secret messages seamlessly within
carrier 1images, facilitating secure communication
between IoT devices. However, concerns regarding
increased carrier image size and potential detection pose
challenges to the covert nature of the communication.
Further research is needed to address these limitations and
optimize the performance of CycleGAN based
steganography for IoT applications.

Sharma et al. [30] introduced a generative network based
image encryption method that combines steganography
and GANs for symmetric encryption. This innovative
approach integrates steganography techniques for
message embedding within a GAN-based encryption
framework, offering enhanced security for image data.
However, concerns about sequential processing and
potential increases in output image size raise challenges
in computational efficiency and covert communication.
Future research endeavors should focus on mitigating
these challenges and optimizing the performance of
generative network-based encryption methods.

Simonyan and Zisserman [36] proposed the VGG
network, a very deep convolutional network for large-
scale image recognition. Their architecture, characterized
by its simplicity and depth, achieved state-of-the-art
performance on several image recognition benchmarks.
The authors showed that increasing network depth using
small convolutional filters significantly improves
accuracy. However, the high computational cost and
memory requirements of VGG networks pose practical
limitations. Despite these challenges, VGG has become a
foundational architecture in deep learning, inspiring
subsequent advancements in both image recognition and
related fields such as cryptography and security.

He, Zhang, Ren, and Sun [35] introduced the concept of
deep residual learning for image recognition, presenting
the ResNet architecture. This innovative approach
addresses the degradation problem in deep neural
networks by using residual blocks, allowing for the
training of extremely deep networks. The authors
demonstrated that ResNet significantly improves image
recognition performance, setting new benchmarks in
various competitions. However, the increased model
complexity and training requirements pose challenges for
practical deployment. This research has had a profound
impact on the development of deep learning models,
influencing various applications beyond image
recognition, including security and encryption.

Papernot, McDaniel, Wu, Jha, and Swami [39] explored
the use of distillation as a defense mechanism against

adversarial perturbations in deep neural networks. Their
approach involves training a distilled model that is more
robust to adversarial attacks, improving the security and
reliability of neural networks. The authors demonstrated
that distillation could effectively reduce the impact of
adversarial perturbations, enhancing the model’s
resilience. However, the method’s effectiveness varies
depending on the nature of the adversarial attacks and the
complexity of the neural network. This study provides a
valuable contribution to the field of adversarial machine
learning, offering a potential defense strategy for secure
neural network applications.

Kurakin, Goodfellow, and Bengio [41] investigated
adversarial machine learning at scale, focusing on the
challenges of defending neural networks against
adversarial attacks in large-scale applications. Their study
demonstrated that adversarial attacks could be effectively
scaled to target complex and large neural networks,
posing significant security risks. The authors highlighted
the need for robust and scalable defense mechanisms to
protect neural networks from such attacks. This research
contributes to the growing body of knowledge on
adversarial machine learning, emphasizing the
importance of security considerations in the development
and deployment of largescale neural network models.

Carlini and Wagner [40] proposed a method for
evaluating the robustness of neural networks against
adversarial attacks. Their approach involves creating
targeted adversarial examples that can reliably bypass the
defenses of neural networks. The authors demonstrated
that their method could successfully generate adversarial
examples for various neural network architectures,
highlighting significant vulnerabilities. This research
underscores the importance of developing robust defense
mechanisms to protect neural networks from adversarial
attacks. The findings have profound implications for the
security and reliability of neural network-based systems,
including those used in cryptographic applications.

Tram'er, Kurakin, Papernot, Boneh, and McDaniel [42]
explored ensemble adversarial training as a method to
enhance the robustness of neural networks against
adversarial attacks. Their approach involves training
multiple neural networks with adversarial examples to
improve overall resilience. The authors demonstrated that
ensemble adversarial training could effectively reduce the
success rate of adversarial attacks, providing a more
secure neural network model. However, the increased
training complexity and computational requirements pose
challenges for practical implementation. This study offers
a promising direction for improving the security of neural
network-based systems through ensemble learning
techniques.
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Boukela and Akleylek [32] conducted a comprehensive
survey on neural network-based cryptographic
algorithms, offering an extensive overview of the current
state and advancements in the field. The authors
highlighted the potential of neural networks to enhance
traditional cryptographic methods by introducing
adaptive and intelligent encryption mechanisms. Despite
the promising results, the survey also pointed out several
challenges, including the need for rigorous security
analysis and the potential vulnerability to novel attack
vectors. This survey serves as a critical resource for
researchers exploring the convergence of neural networks
and cryptography.

Bhowmik, Hazra, and Roy [33] proposed a symmetric
key cryptography method utilizing deep learning
techniques. Their approach involves training a neural
network to generate and manage symmetric keys,
providing a dynamic and adaptive encryption process.
The authors demonstrated that their method could
enhance security by continuously evolving the key
generation process, making it difficult for attackers to
predict or replicate. However, the reliance on deep
learning models introduces concerns about the robustness
of the encryption under various attack scenarios and the
computational overhead. This research underscores the
potential of deep learning to innovate traditional
symmetric key cryptography.

Gupta and Mehta [34] reviewed various symmetric key
cryptography algorithms, focusing on their applicability
and performance in contemporary security contexts. The
authors provided a detailed comparison of different
algorithms, highlighting their strengths and weaknesses.
They emphasized the importance of choosing the
appropriate cryptographic algorithm based on the specific
security requirements and resource constraints of the
application. Despite the comprehensive analysis, the
review noted the need for continuous updates to address
emerging threats and technological advancements. This
review is a valuable guide for practitioners and
researchers in selecting and implementing effective
symmetric key cryptography solutions.

El-Rabaie, Hadhoud, Abdel-Kader, and Zahran [37]
developed a secure image encryption scheme using
convolutional neural networks (CNNs). Their approach
leverages the powerful feature extraction capabilities of
CNNs to generate complex encryption keys and encrypt
images effectively. The authors demonstrated that their
method provides a high level of security against various
attacks while maintaining computational efficiency.
However, the dependence on CNNs introduces concerns
about model robustness and the potential for adversarial
attacks. This study highlights the potential of deep
learning techniques to enhance traditional image

encryption methods, offering new avenues for research
and development.

Wei, Zhao, and Liu [38] presented an image encryption
algorithm based on MDS5 and neural networks. This
method combines the cryptographic strength of the MD5
hash function with the adaptive learning capabilities of
neural networks to achieve robust image encryption. The
authors showed that their algorithm could generate highly
secure and efficient encryption keys, providing strong
protection against common attack vectors. However, the
use of MDS5, which has known vulnerabilities, raises
concerns about the overall security of the encryption
scheme. This research underscores the importance of
combining traditional cryptographic techniques with
modern neural network approaches to develop effective
encryption solutions.

Zhang, Wang, and Wang [31] introduced a secure and
efficient image encryption method leveraging deep
learning and chaos theory. This approach combines the
strengths of deep neural networks and chaotic systems to
achieve a high level of security. The authors demonstrated
that their method can effectively protect images against
various attacks by generating highly complex and
unpredictable encryption patterns. However, the
complexity of deep learning models and the need for
substantial computational resources might limit the
practical implementation in resource-constrained
environments. Nonetheless, this study provides valuable
insights into the integration of deep learning and chaos
for robust image encryption.

Overall, these studies underscore the importance of
cryptographic research in addressing emerging security
challenges and advancing the state-of-the-art in digital
security. By leveraging innovative technologies and
exploring novel approaches, researchers continue to push
the boundaries of cryptographic innovation, paving the
way for enhanced security and privacy in the digital age.

2.1 Possible Attacks on the existing systems

Creating an adversarial cryptographic encryption
algorithm introduces a unique set of challenges, as
attackers may leverage both traditional cryptographic
attacks and machine learning-specific attacks. Here are
some potential attacks in theory that could be targeted at
such a network:

Timing Attacks: It is shown in "Remote Timing Attacks:
Exploiting the Timing Side Channel on the Web” by
Yoongu Kim et al. [18], the timing side-channel attacks
can be carried out in the web context as well. Their
research focused on timing attacks against web-based
systems, where attackers can use timing differences in the
execution of web pages to deduce sensitive information.
The authors demonstrated that attackers who carefully
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monitor the timing patterns of cryptographic
computations can use small differences in execution time
to infer properties about the secret key or the algorithm in
use. Such timing side-channel usage can be used to
violate the confidentiality of web applications and also to
perform integrity violations.

Cache-timing attacks: Cache-timing attacks on AES by
Daniel J. Bernstein: In [19], the author explores cache-
timing attacks against AES (Advanced Encryption
Standard). The publication year is not mentioned. The
paper presents how an adversary can exploit timing
variations in the cache memory of a processor to learn
information about the AES encryption and decryption
operations. The author provides detailed analysis and
experimental results in the presence of cache-timing
attacks against AES. Such practical findings demonstrate
the existence of potential threats to real-world
implementations of AES due to cache-timing attacks, and
hence, necessitate efficient and effective defense
mechanisms against cache-timing attacks.

Differential Power Analysis:Differential Power
Analysis: Paul Kocher, Joshua Jaffe, and Benjamin Jun,
first edition 1999 [20]. This paper introduces differential
power analysis (DPA) - a means for extracting secret
information, such as cryptographic keys, through
measurements of power consumption by analyzing the
power consumption, after data has been masked into it
during cryptographic operations. The authors discuss
implementation of DPA in practice and highlight potential
threats to cryptographic systems as a whole. The paper’s
focus on proving DPA attacks viable affirms the necessity
for broader strategies against power analysis-based
weaknesses.

Power Analysis Attacks: Analysis of Power Attacks on
Smartcards Digs the Keys by Stefan Mangard, Elisabeth
Oswald, and Thomas Popp This work by Mangard,
Oswald, and Popp [21] is specifically on power attacks on
smartcards. After introducing the power consumption
attacks, the authors cover their major aspects and
techniques. By analyzing power consumption means,
smartcard systems can be insecure and the authors also
demonstrate this through their work as they find out that
attacker can extract critical sensitive information
including the cryptographic keys from the smartcard
systems. Various experiments and methodologies are
shown to strengthen the power of security measures to
stop the attackers and to assure the secrecy and integrity
of the protocols of the cards.

Model Extraction Attacks: The model extraction [22]
attacks are a powerful class of attacks and the goal of an
adversary is to recover the details of a model such as its
architecture, parameters, or in many cases, the training
data itself. Such attacks are disastrous for adversarial

cryptographic algorithms as they can easily leak secure
information in a system and are shown to be applicable in
several real-world settings.

Cryptanalysis: Traditional cryptanalysis techniques by
finding out vulnerabilities in the Machine Learning
models[24] might be employed to recover the
cryptographic key or gain insights into the algorithm’s
weaknesses.

Backdoor Attacks: Maliciously Trained Models:
Attackers may attempt to insert backdoors during the
training phase, allowing them to exploit vulnerabilities
and compromise the security of the system.

In summary, integrating neural networks into
cryptographic systems presents new security challenges,
including both traditional and machine learning-specific
attacks. Potential threats include timing attacks, cache-
timing attacks, and differential power analysis, which
exploit side-channel information to deduce sensitive data.

The proposed system tries to overcome these challenges
by employing a novel intelligent approach that ensures
the security remains robust even if the attack methods
seem obvious and straightforward. The system leverages
the complexity and unpredictability inherent in advanced
neural networks, making the relationship between the
ciphertext and its encrypted image highly non-linear and
difficult to reverseengineer. This approach is akin to the
discrete logarithm problem, where the process of finding
the logarithm is computationally infeasible despite the
apparent simplicity of the operations involved. By
introducing such a high degree of complexity and non-
linearity, the system makes it exceedingly difficult for
attackers to deduce the symmetric key, map cipher images
to their corresponding ciphertexts, or decrypt the
ciphertext into plaintext, thereby significantly enhancing
security against a wide range of potential attacks.

3 Proposed System

The proposed system consists of complex neural
networks, to be specific, 3 neural networks, each assigned
different tasks. These 3 neural networks will be trained in
proportions to give justice to the fact that the Sender and
Receiver will have knowledge of the key whereas the
attacker’s neural net will be totally unaware of the key.

The Sender’s Neural network will be responsible of:

a) Generating the Symmetric key to be used for
encryption.

b) Sharing the Symmetric key with the receiver.

c) Encrypting the Plaintext using an initial seed
symmetric key and the algorithmdeveloped by the neural
network.
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d) Converting the Ciphertext into a Cipher Image.
The Receiver’s Neural network will be responsible of:

a) Generating the same Symmetric key to be used for
decryption.

b) Mapping the received cipher image with a
corresponding cipher text. ¢) Decryptingthe Ciphertext
using the symmetric key and the algorithm developed by
the neural network.

d) Retrieving the Plaintext

The Attacker’s Neural network will be responsible of: a)
Guessing the Symmetric Key

b) Trying to find the relationship between the Cipher
Image and the Ciphertext

c) Trying to guess the ciphertext
d) Trying to decrypt the ciphertext into plaintext

Let us understand each of the networks’ architecture one
by one in detail.

Encryptor and Decryptor:

e 2 input layers: One for the message and one for the
key.

¢ 1 concatenate layer: Combines the message and key.
e 2 Dense layers: Process the concatenated input

¢ 1 Reshape layer: Reshapes the output of the Dense
layers.

¢ 4 Convolutional layers: Capture intricate patterns in
the data.

e 1 Flatten layer: Flattens the output of the
convolutional layers.

e 5 Activation layers: Apply activation functions to
introduce non-linearity.

Interceptor or Attacker:

e 1 Input layer:For the ciphertext * 3 Dense layers:
Process the input.

¢ 1 Reshape and Flatten layer: Reshapes and flattens
the output of the Dense layers.

¢ 4 Convolutional layers: Capture patterns in the
ciphertext

e 6 Activation layers: Apply activation functions.

The differences lies in the number of layers and the
specific configuration of these layers for each model. The
Sender’s Side as shown in Fig.1 and Receiver’s Side as
shown in Fig.2 have the same architecture, while the
Interceptor has its unique architectures as shown in Fig.3.

3.1 The Sender’s Side Model

The encryption process initiates by taking the m-bit
plaintext and k-bit key. This key is generated through a
randomizer function concurrently operating at both the
sender’s and receiver’s ends, ensuring the creation of an
identical key at both termini. These two inputs are then
concatenated to form the initial input for the encryptor
model. The encryption model as shown in Fig4
comprises a dense layer with n neurons, where n
represents the total of m and k bits.

The output of this neural network layer is transformed
into a 1D tensor, which can change the shape of input data
without its contents being modified. Such operation is
often used to modify the dimensions of data so as to suit
for expected input shape for another layer like 1D
Convolutional Neural Network, making additional
training easier. Then, TanH activation is performed on
these layers resulting in non-linearity in the model and
this helps to explore complex patterns within the data [5].
The detailed training process is explained in the section
4.1.

After convolutional layers, there is flattening where final
feature maps or tensors are converted into one-
dimensional vector. This process occurs typically before
feeding the data to fully connected layers. By
implementing flattening, it makes spatial dimensions of
data as single vector that can be processed by
conventional neural network layers [6].

Towards the end of the network, there are fully connected
layers that perform high level reasoning. Through these
connections, every neuron in the current layer relates with
all others in neighboring sections and hence assists the
network when making predictions based on what it has
learnt. The final output from these fully connected
networks will pass through ReLU activation function [7],
thus giving birth to ultimate ciphertexts.

3.2 The Receiver’s Side Model

At the decryption process illustrated in Fig.5, a c-bit
ciphertext and a k-bits key are taken. This key is produced
via randomizer function operating simultaneously on the
sender’s end and receiver’s end, thereby ensuring an
identical key at both ends. The initial input for the
decryption model is formed by concatenating these two
inputs. The decryption model also contains a dense layer
with n neurons, where n is equal to the sum of ¢ and k
bits. The output from this neural network layer is
transformed into a one-dimensional tensor which alters
the shape of its input data without altering anything in it.
It is often used when dealing with data whose dimensions
have to be shaped as expected by another subsequent
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input_2 | input:_| [(None, 8)] |

layer such as a 1D Convolutional Neural Network to [ ot T i T [None, 61 ]

o . | InputLayer | output: ‘ [(None, 8)] ‘ | InputLayer | output: ‘ [(None, 8)] ‘

enable successful training again. After that, TanH
activation comes next in the resulting layers introducing [[comentenate_1 ] input:_] [(None, 8), (Non, 8) |

| Concatenate \ output: | (None, 16) \
non linearity in the model hence enabling that complex
relationships within data can be studied. Following the Idf)‘:;‘ H‘;‘I‘I‘l‘i I e }zw
convolutional layers, the output undergoes flattening [8],
a process that converts the final feature maps or tensors [rctation 1 | i (None, 16 ]

[ Activation \ output: [ (None, 16) |

into a one-dimensional vector. This step is typically
executed before forwarding the data to fully connected
layers. Flattening effectively condenses the spatial
dimensions of the data into a singular vector, preparing it
for processing by conventional neural network layers.
Towards the conclusion of the network, fully connected
layers are employed for high-level reasoning. These
layers establish connections between every neuron in the
current and adjacent layers, facilitating the network in

making predictions based on learned features. The output } aevaion 2 I s J‘ o {
from the final fully connected layer undergoes a ReLU

activation function, culminating in the generation of the I Coin, } s {::Z:i o I
ultimate plaintext.

‘l'esllaptll input: | (None, 16) J

\ Reshape | output: | (None, 16, 1) J

| convld_1 \ input: [ (None, 16, 1) |
| ConvlD \ output: [ (None, 16, 4) |

‘ activation_2 | input: ‘ (None, 16, 4) |

\ Activation | output: J (None, 16, 4) ]

| convld 2 \ input: [ (None, 16, 4) |
| ConvlD \ output: [ (None, 16, 4) |

\ activation_d | input: J (None, 16, 4) ]

\ Activation | output: \ (None, 16, 4) |

You can see, the Encryptor and the Decryptor models are
almost identical to each other as they are supposed to be [[convid_a | input: | (Neve, 16, 4 |

| ConvlD J output: \ (None, 16, 4) |

designed like that only. Additionally the plaintext
obtained is further send to the decoder module to decode [(activation_5 | input. | (Nene, 16, 4 |
the obtained plaintext in the original form. [ Acivation | ovpot | (ove 16,9

\ flatten_1 | input: | (None, 16, 4) |
‘ Flatten | output: ‘ (None, 64) ‘

| dense_2 \ input: | (None, 64) \
| Dense [ompm:| (None, 8) \

Fig. 1 The Sender’s Model Architecture
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iput 3 | input: | [(Noe, 8)] inpuc 4 | input: | [(None, 8)] Fig. 2 The Receiver’s Model Architecture
InputLayer | output: | [(None, 8)] InputLayer | output: | [(None, 8)]

i

concatenate_2 | input: | [(None, 8), (None, 8)]

Concatenate | output: (None, 16)

dense 3 | input: | (None, 16)
Dense | output: | (None, 16)

activation 6 | input: | (None, 16)
Activation | output: | (None, 16)

reshape 2 | input: | (None, 16)
Reshape | output: | (None, 16, 1)

convld 5 | input: | (None, 16, 1)
(None, 16, 4)

ConvID | output:

activation_7 | input: | (None, 16, 4)
Activation | output: | (None, 16, 4)

convld 6 | input: | (None, 16, 4)
(None, 16, 4)

ConvID | output:

activation_8 | input: | (None, 16, 4)
Activation | output: | (None, 16, 4)

convld 7 | input: | (None, 16, 4)
(None, 16, 4)

ConviD | output:

activation_9 | input: | (None, 16, 4)
Activation | output: | (None, 16, 4)

convld 8 | input: | (None, 16, 4)
ConvID | output: | (None, 16, 4)

activation_10 | input: | (None, 16, 4)
Activation | output: | (None, 16, 4)

flatten_2 | input: | (None, 16, 4)
(None, 64)

Flatten | output:

dense 4 | input: | (None, 64)
Dense | output: | (None, 8)

International Journal of Intelligent Systems and Applications in Engineering JISAE, 2024, 12(23s), 311-333 | 318



| input_sS | inpuc: | [(None, 81 |
[ InputLayer loutpu(: l [(None, 8)] ]

3

| clenseisl input: [ (None, 8) |
| Dense | output: | (None, 16) |

| activation_11 [ input: | (None, 16) |
|  Activation | cutpur: | (None, 16) |

[ dense_6 | input: | (None, 16) |
| Dense | output: [ (None, 16 |

]

| activation_12 | input: | (None, 16) |
| Activation | ocutpur: | (None, 16) |

[ reshape 3 | input: | (None, 16)
| Reshape | output: | (None, 16, 1)

| convia o | input: | (None, 16, 1)
| ConviD | output: | (None, 16, 4)

[ activation_13 | input: [ (None, 16, 4) |
| Activation | cutput: | (None, 16, 4 |

[ convia 10 [ inpuc: | (None, 16, 4 |
| ConviD | output: | (None, 16. 4 |

| activation_14 [ input: | (None, 16, 0 |
I Activation l outrput: I (None, 16, 4) I

[ convia 11 | input: [ (None, 16, 4 |
| Convipn | output: | (Nome, 16, 4) |

| activation_15 | input: | (Nomne, 16, 4) |
|  Activation | output: | (None, 16. 4 |

!

| convia 12 | input: | (Neone, 16, 4 |
| Convip | ourput: | (Nomne, 16, 4 |

[ activation_16 | input: | (Nomne, 16, 4) |
|  Activation | output: | (Nome, 16, 4) |

[ flacten_3 | input: | (None, 16, 4 |
l Flatten [ output: l (None, 64) l

!

| dense 7 | input: | (None, 64) |
| Dense | outpuc: | (None, 8 |

Fig. 3 The Interceptor’s Model Architecture
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Fig. 5 Decryption Model
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3.3 Role of the Dense Layers

In the described encryption framework, the dense layers
serve as the foundational element in the neural network
architecture, facilitating the fusion and transformation of
the message and key inputs into a format suitable for
subsequent processing. The initial step involves the
concatenation of the message and the key, a critical
operation that ensures both components are considered
together, thus preserving the interdependency between
the message content and the encryption key. This
concatenated vector, representing the joint input space of
the message and the key, is then fed into the dense layer.

The dense layer, characterized by its fully connected
structure, is pivotal in performing a series of
computations that imbue the network with the capacity to
learn and extract meaningful features from the input data.
In each thick layer, every nerve cell counts the sum of its
inputs, which are computed as a weighted sum by their
weights that are determined through training. By so
doing, these weights optimize the network’s ability to
capture patterns and relationships that are relevant.
Thereby, the network is able to assign different levels of
importance to various elements in the input vector, and
hence can pick up on significant properties and
differentiate slight differences in the data.

After calculating the weighted sums, we use an activation
function to add some nonlinearity into the mix. This is
very important because it helps our neural network
capture the intricate and nonlinear relationships found in
encryption processes. You might have heard of some
popular activation functions like ReLU, sigmoid, or tanh.
These are really effective because they turn our neural
networks into non-linear wizards, capable of learning all
sorts of tricky mappings between inputs and outputs.

The 1-D tensor is a self-contained representation of all
these neuron activations within this dense layer [13]. This
tensor represents higher-level abstractions derived from
concatenating input data and reflects learnt features and
relationships generated by dense layers. At length
reshaping operation is carried out on

In essence, the dense layers play a multifaceted role in the
encryption process, serving as the cornerstone for
transforming the concatenated message and key inputs
into a higher-dimensional representation that
encapsulates the underlying structure and relationships
essential for effective encryption. Through a series of
weighted  sum  computations and  nonlinear
transformations, the dense layers empower the neural
network to learn intricate patterns and extract meaningful
features from the input data, thereby laying the
groundwork for robust and secure encryption
mechanisms.

3.3.1  Working of Dense layers

The dense layer within a neural network executes a linear
operation, succeeded by the application of an activation
function. This operation can be symbolically represented

as: n
(Z w; - T + b)
i=1

output = activation
Where:
e x;represents the input to the neuron,

e w;represents the corresponding weight for the input
Xi,

e b represents the bias term,

e nis the number of inputs to the neuron,

n
D i1 Wit T represents the weighted sum of inputs and
weights,

e activation is the activation function applied to the
weighted sum.

3.3.2 Working of Dense Layers (An Example):

Let’s consider an example with a dense layer containing
3 neurons and 4 inputs. We’ll use random weights and
biases for demonstration.

Step 1: Initialization: Assume we have the following
inputs: x1=2, x»=3, x3=1, x4=4

Step 2: Weighted Sum Calculation: For each neuron in
the dense layer, we calculate the weighted sum of inputs
and weights, plus the bias term:

e Neuronl:

weighted sum; = (w11 - x1) + (w21 * x2) + (W31 * x3) + (War -
X4) + by

e Neuron2:

weighted sumy = (wi2 - x1) + (W2 x2) + (W32 * x3) + (Waz
X4) + b2

e Neuron3:

weighted sums= (w13 - x1) + (W23 - x2) + (W33 - x3) + (Was -
x4) + b3

Step 3: Activation Function: Apply an activation
function to the weighted sum of each neuron to introduce
non-linearity. Let’s use the ReLU activation function
ReLU(x)=max(0,x) for demonstration.

e Neuron | : outputl=ReLU(weighted sum1)
e Neuron 2 : output2=ReLU(weighted sum2)
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¢ Neuron 3 : output3=ReLU(weighted sum3)

Step 4: Example Calculation: Let’s assume the weights
and biases are randomly initialized as follows:

W11:O.1, W21:O.2, W31=0.3, W41=0.4, b1=0.5
Wiz = 0.2, W = 0.3, W3 = 0.4, Wy = 0.5, bz= 0.6
Wiz = 0.3, W3 = 0.4, W33 = 0.5, W43 = 0.6, b3= 0.7

Step 5: Calculation: For x1=2, x2=3, x3=1, x4=4:
Neuron 1:

weighted sum;
=(0.1-2)+(0.2-3)+(0.3-1)+(0.4-4)+0.5
=02+0.6+03+1.6+0.5

= 3.2 output; = ReLU(3.2)

=max(0,3.2)

=32

Neuron 2:

weighted sum,
=(0.2-2)+(0.3-3)+(0.4-1)+(0.5-4)+0.6
=04+09+04+2.0+0.6

=4.3 output, = ReLU(4.3)

=max(0,4.3)

=43

Neuron 3:

weighted sum;

Ciphertext Reshane

(cbits) 1-D Tensor

=(0.3-2)+(0.4-3)+(0.5-1)+(0.6-4)+0.7
=06+12+05+24+0.7

= 5.4 outputz = ReLU(5.4)

= max(0,5.4)

=54

Step 6: Output:

The final output of the dense layer would be the output of
each neuron: output; = 3.2,output, = 4.3,and outputs

=5.4.

The final output from the dense layer is passed through
an output layer, which applies a suitable activation
function depending on the task (e.g., softmax for
classification, linear for regression) to generate the final
predictions.

3.4 Cryptanalysis Attempt at the Interceptor’s Side

The Cryptanalysis attempt at the interceptor’s end as
shown in Fig.6 is the trickiest phase among all the phases.
It is trained for 2 minibatches as compared to 1 minibatch
for the sender as well as the receiver’s model, to maintain
an unbiased training process. The Interceptor’s neural
network takes as input, the Ciphertext it intercepts during
the communication process from the network. It doesn’t
have any information about the key , its size, number of
bits etc. It simply has access to the ciphertext. (It is
assumed that the interceptor somehow guesses and
converts the cipher image to a ciphertext, which is
otherwise the most difficult phases to beat in this entire
cryptosystem). So a benefit of doubt is given to the
attacker.

Convolution Layer

\
1
i Guessed
‘l ‘ Flattening . Plaintext
1
\ ! (mbits)
\ !
\ i ‘ t | sigmoid
\" 1 I Activation
TanH I\ |I
Dense Layer 1 Dense Layer 2 Activation ‘\ :'
(cbits + kbits) (mbits + kbits) ]

Fig. 6 Cryptanalysis Attempt

The output of the convolutional layers is subsequently
subjected to another activation function and undergoes
flattening for the final time. This flattening allows the

inputs to be fed into the 3rd and final Dense Layer which
further trains the model to achieve the final plaintext after
applying a sigmoid function at the end.
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This plaintext is assumed to be the finally guessed
plaintext corresponding to the ciphertext fed as input. The
reconstruction loss is calculated at the end and feedback
is sent to the model as per the value obtained. We will
discuss this in detail in the next section.

4 Training and Implementation

The objectives of the training process are simple:

e For the Interceptor: The interceptor aims to

accurately reconstruct or minimize the error between P
and Pin, where P represents the original plaintext, and Pin
is the plaintext guessed by the interceptor.

For the Sender and Receiver: The sender and the
receiver aim to communicate clearly, i.e., to minimize the
error between P and Pr, where Pr is the plaintext
guessed by the receiver.

4.1 Training and Implementing the Cryptosystem

We train the sender and the receiver jointly to
communicate successfully and to defeat the interceptor
without having any knowledge of what cryptosystem they
might develop to achieve this.

The implementation of a secure communication system
involves a Sender, a Receiver, and an Interceptor. These
neural networks are carefully designed to establish secure
communication channels through and
decryption processes. The architecture, loss functions,
optimizers, and training procedures are meticulously
crafted to enhance the robustness of security in the

encryption

communication system.

The Sender network’s architecture is the first component.
The architecture as shown in the Fig.7 takes an input

(ainput0) and a key (ainputl) as inputs. These
concatenated inputs are processed by the dense layer, and
the result is passed through a hyperbolic tangent (tanh)
function (adensela). Following this, the output goes
through the reshape and each of the four 1D convolutional
layers’ (aconvl to aconv4) is activated by tanh activation.
These convolutional layers are the backbone of the
system, since they are able to distill the details and
patterns in the data, which is of utmost relevance to secure
communication. The last layer consists of a dense layer
with tanh activation, then a final output encrypting the
message (aoutput). This arrangement is effective for the
encoder only to input both the message and the key into a
form that is suitable to the transmission to the receiver.

In contrast, the Receiver’s side (network) operates as the
decrypter, which is responsible for decrypting the
received ciphertext into the original message using shared
key. The receiver’s input contains ciphertext(binput0) and
the key (binputl). Similar to the Sender’s architecture,
these inputs undergo concatenation and are sent in to the
dense layer where they are processed through a tanh
activation. The rest of the structural components of the
Reciever are designed in the same way as Sender, namely
the four 1D convolutional layers (bconv1 to bconv4) with
tanh activation and the last dense layer with sigmoid
activation, which finally produce the decrypted message
(boutput). The symmetrical design between Sender and
Receiver that the and
communication process is maintained, where the Sender
provides the encoding of the message, and the Receiver
accomplishes the decoding of it.

ensures secure reverse

Convolutien Layer

Message

(mbits) ’-.\‘-.
Input - \ Calculate Length of
:ﬁ / ,. | Ciphertext
= {Ercoer o
EE:F‘" ‘ Flattening { .". ; r
T <
\ "EDIDID] W v Calculate Modulus by
i H H the number of Classes
Moy Concacenste TanH \ i the model had trained
e \ Activation \ ] on
@
Dense Layer of n neurons.
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Encryption

Store the

Cipher Image

=

Shared Repository

Cipher Mapping

/‘ Ciphertext

Fig. 7 Encryption Architecture Diagram
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In this communication system, the Interceptor, for
instance Eve in traditional cryptography, endeavors to
intercept and decrypt messages without having any access
to the key. The Interceptor’s input mainly comprises the
ciphertext (einput) obtained dusring any eavesdropping
attempt. The network architecture consists of two dense
layers with tanh activation, followed by reshaping and
four 1D convolutional layers with tanh activation (econv1
to econv4). The final layer is a dense layer with sigmoid
activation, yielding an output (eoutput) representing the
Interceptor’s decryption attempt. The presence of the
Interceptor introduces an additional layer of complexity,
posing the challenge of thwarting unauthorized
decryption attempts and fortifying the security of the
communication channel.

Moving on to the loss and optimizer functions, three
crucial loss functions are defined: eveloss, bobloss, and
abeloss. The eveloss metric quantifies the mean absolute
error between the original message (ainput0) and the
Interceptor’s  decryption attempt (eoutput). This
underscores the necessity of preventing the Interceptor
from accurately decrypting the message, safeguarding the
confidentiality of communication. The bobloss evaluates
the Receiver’s proficiency in decrypting messages
accurately, measuring the mean absolute error between
the original message and the Receiver’s decryption
(boutput). The abeloss incorporates both bobloss and a
penalty term based on eveloss, ensuring that the
Interceptor does not surpass random guessing, thereby
reinforcing the security of the communication channel.

For optimization, Adam optimizers are selected for both
Sender-Receiver communication and the Interceptor.
Adam optimization is renowned for its efficacy in training
neural networks, aligning with the complexity of the
communication system and necessitating stable and
efficient convergence during training.

The training process happens over multiple epochs, each
comprising three cycles: a) the Sender-Receiver and the
Interceptor training cycle (abecycles), b) Receiver’s
decryption evaluation cycle, and the

o

Shared Repository

Fetch the
Ciphertext

¢) Interceptor’s training cycle (evecycles).

In the Sender-Receiver + Interceptor training cycle,
random batches of messages and keys are generated, and
the abemodel is trained on these batches. This cycle aims
to optimize communication between Sender and Receiver
while preventing unauthorized access by the Interceptor.
Subsequently, the Receiver’s decryption evaluation cycle
employs the trained sender and receiver models to assess
the Receiver’s performance in decrypting messages,
crucial for gauging the practical security of the system.
Finally, in the Interceptor’s training cycle, the Sender’s
weights are frozen, and random batches of messages and
keys are generated to train the interceptor model, focusing
on restricting the Interceptor’s ability to decrypt messages
without access to the key.

Throughout the training process, meticulous monitoring
of losses serves as a quantitative gauge of the system’s
performance. Losses pertaining to Sender-Receiver
communication, Receiver’s decryption, and Interceptor’s
decryption attempts are continuously calculated and
tracked. This diligent tracking enables the identification
of trends, convergence patterns, and potential avenues for
enhancement. The transparency afforded by loss
monitoring is pivotal for iteratively refining the models
and ensuring that the communication system meets the

desired security standards.

The intricate details of the network architecture reflect
careful consideration of various factors, encompassing
the selection of activation functions, layer configurations,
and the symmetrical design between Sender and Receiver.
The inclusion of convolutional layers in both Sender and
Receiver architectures empowers the models to capture
intricate patterns within the data, thereby enhancing their
efficacy in encoding and decoding messages effectively.
Moreover, the integration of an Interceptor introduces an
additional layer of complexity, mirroring real-world
scenarios where unauthorized entities may seek to
decrypt messages.

Seek
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Image Recognition Class d;‘ﬁ 3
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Fig. 8 Decryption Architecture Diagram

The selection of loss functions is a very close relative to
the security objectives of the communication system. The
main focus of cipher loss is in ensuring that no one can
decipher the message accurately, thus securing the
authenticity of the message even if the ciphertext is
intercepted in this way. While the bobloss is designed to
test the Receiver’s capability to decode messages
precisely, its overall contribution is part of the detailed
security analysis of the system. This penalty term of
abeloss integrates the notion that the Interceptor is not
allowed to overperform random guessing by means of the
decryption attempt made by the Interceptor. Hence, this
balanced approach in the choice of losses has a
comprehensive security undertone. Adam optimizers is
adopted for the Sender-Receiver mechanism and the
Interceptor as well, which improves the training process
in its efficiency. Adam optimization is what is used for
training neural networks, being a result of the design
process that took into account the system’s complexity
and the necessity for training that would proceed stable
and effective. The training scheme progresses by using
several epochs that consist of three cycles. The Sender-
Receiver + Interceptor training loop focuses on
improving communication between the Sender and
Receiver of the encrypted message to be transmission safe
and secure. The Receiver’s decryption cycle is one of the
most crucial stages where the Receiver’s decrypting skills
are measured, thus, providing the Receiver with the
information needed to understand the practical safety of
the system. In addition, during the training period of the
Interceptor, the training weights of the Sender are frozen
in order to restrict the Interceptor’s ability to crack the
code. This adversarial training strategy adds an extra
protective layer for the system, which ensures that it will
be resilient to any attack through decryption by
unauthorized actors.

The whole training process is accompanied with a
quantitative assessment of the losses that provides the
opportunity to see the system’s performance from a
numbers point of view. The ongoing computation and
monitoring of Sender-Receiver communication losses,
Receiver’s decryption, and Interceptor’s decryption
efforts allow the detection of trends, convergence in
patterns, and the area that require further improvement.
This systematic observation of losses is one of the major
factors which facilitate repetitive fine tuning of models,
guaranteeing that the communication system holds the
state of the art security standards.

Eventually, the code is a whole and intricately made
system that works to safeguard communication. The
network plans of Sender, Receiver, and Interceptor are

very carefully designed to ensure the secrecy and safety
of the message that is being transferred. The choice of loss
functions and optimizers is done for the reason of making
the models more secure by reinforcing the security
objectives and the training process is designed for the
purpose of repetitively improving the models. It is the
holistic approach that underpins the design of neural
networks technology to provide the foundation for
training secure communication systems, through the
combination of both theoretical and practical
considerations. The overall Mathematical Expressions
and Formulae could be summarised as follows:

Eve’s Loss Calculatior, ,,
Z |ainput0[i] — eveout|i] )
( (1

i=1

Eveloss = K.mean

Explanation: Eve’s loss is calculated as the mean
absolute difference between the input plaintext ainput0
and the output of Eve’s model eveout. It measures how
well Eve is able to decrypt the message without having
access to the key.

Bob’s Loss Calculation
(E |ainput0[i] — bobout[i”)
BobLoss = K.mean \i=1 2)

Explanation: Bob’s loss is calculated similarly to Eve’s
loss, measuring the difference between the input plaintext
ainput0 and Bob’s reconstruction Bobout.

Alice-Bob Communication Loss

Mhpits ) » 2 Mbits
— eveloss

abeloss = bobloss +( 2 2 ) 3)

Explanation: This loss function for Alice-Bob
communication incorporates both Bob’s reconstruction
loss and Eve’s decryption loss. It penalizes Eve’s
performance by adding a term that measures how far
Eve’s decryption loss deviates from the expected random
guessing scenario.

Bob’s Accuracy: We calculate Bob’s accuracy by
comparing his output to the original plaintext message. If
Bob’s output matches the original plaintext message, it’s
considered correct.

Eve’s Accuracy: Similarly, we calculate Eve’s accuracy
by comparing her output to the original plaintext
message. Since Eve’s goal is to eavesdrop on the
communication, if her output matches the original
plaintext message, it indicates that she successfully
decrypted the message without access to the key.
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4.2 Training and Implementing the Novel Intelligent
Image Recognition Module

The implementation of the Novel Image Recognition
Module begins with the acquisition and exploration of a
dataset. This dataset serves not only as a means to an
implementation but also as the bedrock upon which a
robust model is built. In this research, a dataset
comprising of dog images was utilized, encompassing
133 distinct breeds as image classes.

This initial phase sets the groundwork for any subsequent
machine learning tasks, providing the necessary training
resource for the model to identify patterns and make
accurate predictions.

Following this, the implementation enters into a very
important phase which is data preparation. This phase is
often neglected and is indeed essential to the process of
data being in appropriate format for the model to accept
it. The role of the particular function is to provide the
possibility of organizing the paths to the files along with
the labels, thus obtaining a hierarchical structure which is
indispensable for the supervised learning. In addition, the
one-hot encoding technique points out a key shift that
happened to the features. During this activity, the
categorical labels (portraying dog breeds in this case) will
be converted into the binary matrix format. This matrix
with binary values acts as a more comprehensible
representation to the model which, in turn, enables
learning and comprehension of the entire data set.

The dataset’s investigation is a key to understanding its
features. This include the details such as number of
categories (dog breeds), the number of images, and their
distribution among the training, validation, and test sets.
These statistics become a basis for the model
development process; the model is shaped by making
decisions based on these statistics.

The distribution of data is a key aspect that allows the
evaluation of the dataset diversity, detection of the
possible biases and the estimation of the data sufficiency
for the development of the resilient model. Analyzing
these features enables developers to take the right
decisions on data pre-processing, model architecture, and
training strategies and in the end the results of the model
will be accurate and robust.

Next, the implementation elaborates on a strategy through
which it carries out carry out data augmentation. This
approach is quite sophisticated and unique. Data
augmentation  translates as  applying  various
transformations to the images, for example, shifts,
rotations, shearing, and zooming.[12] This technique
increases the size of the dataset, and adds variability to
the data. The goal is to enhance the model’s capacity to
generalize well in the face of unseen data while also being

able to cope with over fitting during training. The visual
representation of selected images from the training set is
highlighted as more than just a visual aid. It serves as a
strategic component in understanding the nature of the
data. Visualization provides a qualitative assessment of
the dataset, offering insights into the distinct
characteristics of various dog breeds. This understanding
becomes crucial for making informed decisions regarding
the architecture of the model, its complexity, and other
architectural considerations.

Transitioning to the model architecture, there are many
State of the art pretrained models available, one of them
being the Xception model[14].The mention of leveraging
a pretrained model indicates a common practice in
machine learning. Pretrained models, trained on large
datasets like ImageNet, capture general features that can
be valuable for a wide range of tasks. Xception is chosen
for its efficiency and accuracy in capturing complex
features based on the work done.[15]. A model designed
from scratch could also do the same task but it would
require a huge computation power and availability of
huge refined image datasets always remain a major
bottleneck. For smaller datasets involving less than 20000
images, it is always advisable to go for a well suited pre-
trained model such as Xception or Resnet.

Model compilation involves defining key aspects such as
the optimizer, learning rate, and loss function [16][17].
The Adam optimizer is chosen for its adaptive learning
rate properties, contributing to stable and efficient
convergence. Categorical crossentropy is selected as the
loss function, aligning with the nature of the multiclass
classification task where the goal is to classify each image
into one of multiple dog breeds.ReLU is chosen as an
activation function and dropout is chosen as a
regularization technique which indicates considerations
for mitigating common challenges like the vanishing
gradient problem and preventing overfitting.

Callbacks are introduced as dynamic components
influencing the training trajectory. The Checkpointing
ensures that the best model weights are saved during
training, providing a reliable backup in case of
interruptions or crashes. The Early Stopping callback
introduces a form of automated intervention, halting
training if there is no improvement in validation accuracy
after a specified number of epochs. This is a preventive
measure against overfitting, aligning with the principle of
efficiency in model development. The trained model and
callback function then regularly provide feedback and
help limit the number of model parameters to the optimal
amount as the training process continues indefinitely.

Testing the model on the test set is one of the most
important steps, as it shows the model’s efficacy in real
world. The test loss and accuracy values obtained from
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test data sum up the entire deployment cycle mentioned.
These two values tell us how well does the model
perform, and whether it is ready for use in real world
application. Everything we do, from dataset exploration
to dataset augmentation to model building and training,
we do in order to achieve better metric values. And the
values we obtain in the end, tell us whether we have
successfully built a model or not.

4.3 Image Mapping and Ciphertext Generation:

This is the step which is responsible for adding novelty to
the entire implementation. Unlike steganography, where
the Cipher Text is hidden inside the carrier image either
after replacing the least significant bits or by using certain
image properties and embedding the secret within the
image, the proposed implementation intelligently
generates an image corresponding to the ciphertext
generated in the previous section. The generated image
does not consist of any text characters hidden in the

Ciphertext

\ 4

Calculate Length

Calculate Index Position for

image. This creates a covert channel through which the
sender could communicate with the receiver securely
without leaking out any information publicly in the
insecure communication medium. Lets see the various
components involved in the Image Mapping process.

Length of Ciphertext:

The length of the ciphertext is a fundamental property in
cryptography. In many encryption schemes, ciphertext
length is considered public information, as it doesn’t
reveal details about the actual content. However, in this
scenario, we are proposing to use the length as a
parameter for creating a cipher image, introducing a
unique aspect to the encryption process. In this
implementation as shown in Fig.9, a novel encryption is
designed, which takes into consideration the length of the
ciphertext and based on the length of the ciphertext , an
image from the image repository is selected as the cipher
image, which is then sent as the Final Cipher Image.

Shared Repository

v Save the Ciphertext at the Index
Position in the shared repository.

Image Mapping

Send this Cipher Imageto |

:~|

Fetch an Image corresponding to the index
position calculated.

the next phase.

For example, an image of a Finnish Spitz breed dog.

Fig. 9 The Cipher Mapping Architecture

Image Generation:

Generating an image based on the length of the ciphertext
implies a deterministic mapping. The process of
converting a numerical value (ciphertext length) to a
visual representation (image) is a form of encoding. This
encoding scheme should be carefully designed to ensure
that it’s not easily reverse-engineered, maintaining the
secrecy of the mapping. To ensure this, the shared
memory is accesible to only the sender and the receiver.
The attacker doesn’t have access to the repository.

Secrecy of Mapping:

The most important part of such an approach is to hide the
exact mapping between the length of the ciphertext and
the specific image. This way, we also obtain a level of
security. So, the mapping function, as well as all its
parameters in general, must be only known to the trusted
parties. Otherwise, the enemy would be able to find out
some interesting things about the function and its specific
parameters. .

Implications:

In this paper, we propose a novel method of deriving the
Cipher image after knowing the length of the Ciphertext.
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It is true that the mapping as mentioned in this paper is a
hidden channel and is difficult to be decoded or attacked
until the truth is actually revealed. We also need to test the
complexity of the proposed system in order to evaluate its
robustness. The security of such a system does not just
depend on the encryption algorithm, but also on the
Private key and its mapping function.

The Private key and the mapping function are kept secret
because they are used to encrypt plain text and to maintain
the secrecy of the relation between the plain text and
images. It should be noted that the shared repository does
not contain any of the messages in clear text. We believe
that if any interceptor has access to the shared repository,
it will encounter only the encrypted content of the various
tokens. At the point of interception as shown in Fig.6, the
messages and all Images are encrypted using the same
method known only to the original sender side. We also
require the receiver to be trained on the hidden model in
order to use it effectively before they can decode the
Cipher image. By initially keeping the model hidden even
from the receiver, we are confident that no interceptor can
decode the message unless they have the secret model.
Therefore, even if the shared repository is compromised,
the existing messages are still secure.

Considerations for Implementation:

¢ Deterministic but Irreversible: The mapping
function should be deterministic to ensure consistency in
generating images for a given ciphertext length. However,
it should also be designed to be irreversible, meaning that
it should be challenging or practically impossible to
reverse the process and deduce the original ciphertext
length from the image.

e Key Management: If your mapping function
involves any parameters or keys, proper key management
is crucial. Keys should be kept secure, and mechanisms
for key exchange or distribution need to be considered.

e Testing and Validation: Extensive testing and
validation are necessary to ensure that the mapping

function behaves as expected and that the generated
images provide a sufficient level of unpredictability.

e Adversarial Analysis: Consider potential attacks on
the mapping function. Adversarial analysis should be
performed to identify any vulnerabilities or patterns that
attackers might exploit.

¢ Documentation and Procedures: Clearly document
the mapping function, its parameters, and the procedures
for generating images from ciphertext lengths. This
documentation is essential for maintaining and
potentially updating the system in the future.

The model architecture, strategically leveraging a
pretrained Xception base, reflects a discerning selection
process grounded in the efficiency of capturing intricate
features. The training phase incorporates best practices,
encompassing regularization techniques and dynamic
callbacks, crucial for achieving a well-generalized model.
The evaluation on the test set stands as the ultimate
benchmark, quantifying the model’s prowess in extending
its learnings to new, previously unseen data. This holistic
and well-structured approach underscores the meticulous
considerations essential for the triumphant development
of a machine learning model tailored to a specific
classification task.

5 Results and Discussion

The training process involved an iterative procedure over
a specified number of epochs. Each epoch comprised
multiple batches, and during each batch, the A-B+E
network was trained to minimize the loss function.
Additionally, Bob’s ability to decrypt a message and
Eve’s attempts to break the code were evaluated and
optimized independently.

We observed the convergence of the system over epochs,
with the average loss decreasing for both the A-B network
and Eve. This indicates that the A-B network learned to
encode and transmit messages effectively, while Eve
struggled to decrypt the ciphertext accurately.
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5.1 Experimental Testbed

e e +
| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2

| m o e Fommm e +
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC

| Fan Temp  Perf Pur:Usage/Cap | Memory-Usage | GPU-Util Compute M.

| | | MIG M. |
[=========================================+======================+======================}
| 8 Tesla T4 Off | eecoeeee:00:04.0 Off 0 |
| N/A 61C P8 13W / 76w | eMiB / 1536eMiB | 0% Default |
l ] \ N/A |
e e e e e e +
e +
| Processes:

| GPU GI CI PID Type Process name GPU Memory |
| ID 1ID Usage

| No running processes found \
B e et +

Fig. 10 GPU Specification

The experimentation was performed on a Google Colab
Environment: CPU Cores: 1, Total CPU Threads: 2, RAM
Available: 11.37 GB. The Implementation focussed on a
hybrid encryption framework combining machine
learning based encryption with a basic character
substitution approach.

5.2 Model Performance

5.2.1 Sender-Receiver Network

The (Alice)-Receiver  (Bob)  network
demonstrated remarkable performance, achieving a high
level of accuracy in encoding and decoding messages.
The loss function for Sender-Receiver consistently
decreased epochs, indicating  successful
communication between Alice and Bob as evident from
Fig.11.

Sender

over

5.2.2  Receiver’s Decryption Network

Receiver(Bob) exhibited a high degree of accuracy in
decrypting messages. The loss between the original
message and the decrypted message consistently
decreased, reaching near-optimal performance by the end
of training as shown in Fig.11.

5.2.3  Attacker’s Attempts

The Attacker (Eve’s) attempts to break the code were less
successful. The loss between the original message and
Eve’s decryption remained relatively high, indicating that
the system effectively resisted eavesdropping attempts as
shown in Fig.11.

5.3 Visualization

The loss plots for Alice-Bob, Eve, and Bob illustrate the
convergence and performance of each component over
training iterations (see Fig.11). The steady decline in loss
values for Alice-Bob and Bob, in contrast to the
fluctuations in Eve’s loss, highlights the robustness of the
communication system.

5.4 Model Evaluation
5.4.1 Quantitative Evaluation

To quantitatively assess the performance of the system,
we conducted model evaluations using a set of randomly
generated messages and keys. Bob achieved an
impressive correctness rate of 99.94%, indicating his
ability to accurately decrypt messages. On the other hand,
Eve’s correctness rate was substantially lower at 1.54%,
underlining the system’s effectiveness in resisting
unauthorized decryption attempts.

5.4.2 Observations

The observations from the model evaluation align with
the training dynamics, reinforcing the success of the
proposed communication system. The high correctness
rate for Bob and the low correctness rate for Eve provide
empirical evidence of the security and reliability of the
communication protocol.

5.5 Experimental Results

Initially, random binary messages are generated along
with corresponding binary keys. The machine learning
models, represented by Alice for encryption, Bob for
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decryption, and Eve as an adversary, are employed to
evaluate the robustness of the encryption process. In
addition to the machine learning model, a basic character
substitution encryption scheme is introduced. A set of
characters, including letters, punctuation, and spaces, is
paired with predefined binary representations. The
encoding process involves substituting each character in
a given message with its corresponding binary
representation. Block padding, which involves adding
extra random bits to each binary representation, is
incorporated to enhance security.

Furthermore, the code includes parameters for defining
block size, unpadded block size, and block padding
values, allowing users to configure the encryption process
based on specific requirements. The integration of a
simple character substitution encryption method adds a
customizable layer to the overall framework, showcasing
its adaptability for exploring different encryption
strategies. This dual approach demonstrates the versatility
of the code in assessing and enhancing the security of
sensitive information.

The encryption process begins with the conversion of the
plaintext message into a binary format, incorporating
additional padding for each block. Subsequently, each
block of the binary message undergoes processing
through a neural network model. This neural network
takes individual binary blocks and the key as inputs,
producing a floating-point vector. This floating-point
vector is then converted into a binary representation. The
binary representations from all blocks are concatenated,

forming the final encrypted binary message. The code
concludes by printing this encrypted binary message
along with its length. The entire process represents a basic
encryption

procedure, with the neural network serving as a critical
element in transforming and securing the binary
representations of the input message.

The test cases for encryption and decryption taking
multiple plaintexts of variable lenghts is shown in Fig.12
and 13 respectively.

Sample Plaintext : sridhar is a teacher
Sample Binary Equivalent :

00010010011100010100100011
0000111010011110100000110100011011111111001000
01

1100100011111101100000100111110010011011001000
00 00000100000101010011110000

10010110001

Length of Binary Plaintext : 160

Length of Binary Ciphertext : 5120

Modulus of Ciphertext = 5120 mod 133 = 66

When we check the corresponding image at the 66th
Index position in the Shared repository, it corresponds to
an image. With respect to this implementation, there is an
image of a dog corresponding to the 66th index position.
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Test | Plaintext Plaintext | Ciphertext | Time Taken | Hash Value
Case | Message Length in | Length (sec)
Binary
1 | Cryptography 19 4608 1.40608764 | 3cee2abc7d2cc1d62db4893564
is fun c34ae553cc88623992d994e114
e344359b146¢
2 Python 18 4352 1.31563687 | ade54bc3a1224406268696feffb
programming ded14bce63737ca092b79c7b8
32994d8190d1
3 Machine 16 3840 1.14523172 | 701abbf0a06f402334289fa46f9
learning 882f97597e422fedce5107048e
baded47a8d3
4 Artificial 23 5632 1.64704919 | 35ceef9555daad83561bc06c14
intelligence 356¢52c6756e5de26a30fa8al9
d6d622c734fc
5 | Data science 12 2816 0.81817913 | 4be7b4716081fbf122622ee779
86b74760bd29eb32e1445a876
959235a30ed3f
Fig. 12 Encryption Test Cases
Test Plaintext Hash Obtained Original Hash Value Similarity
Case | Message
Obtained
1 xwghootkko | d94a3c91d900bc0c148e0ad | 3cee2abc7d2cc1d62db48 39.06%
swkw:hwk | 4fa0e32368b6354233fe585d | 93564c34ae553cc886239
b8df4f7d28bffch67 92d994e114e344359b146
c
2 swg:gwgtog | 9d102f1ca69f090782b59571 | ade54bc3a122440626869 50.39%
x0..kk: 712f4b88783e5b06c5d05269 | 6feffbded14bce63737cal
689688b112dd2685 92b79c7b832994d8190d1
3 hogkkgwow | d4cde752daad90dc51e230b1 | 701abbf0a06f402334289f 50.00%
khkkko ala7aabaffcf63f7041c31cbe | a46f9882f97597e422fedc
aa9cade1b2d4cabe e5107048ebaded47a8d3
4 xhkggokwo | 80f1e3fdffbd92e2088329455 | 35ceef9555daad83561bc 55.08%
wkkwgooko | c5c73a80dd7a284c8dbdff6f9 | 06c14356¢52c6756e5de2
okgw chba20ac8f93fet 6a30fa8a09d6d622c734fc
5 hwowwgkw | fef52af90045473a06d314780 | 4be7b4716081fbf122622 57.42%
kgg 9d5c44c65ae98f9486aa1004 | ee77986b74760bd29eb3
eb98fe8590d3853 2e1445a876959235a30e
d3f

Fig. 13 Decryption Test Cases

For example, The Dog representing the Plaintext in our
Repository is: Finnish spitz.So according to our proposed
system, the ciphertext replaces the value field
corresponding to the index position 66 in the dictionary
and sends a Cipher Image of the dog breed Finnish Spitz
instead of the ciphertext, to the receiver.

During the decryption, the receiver/attacker receives only
the cipher image, so without the knowledge of the
algorithm or the concept of shared mapping module, the
attacker as well as the receiver wont be able to guesss the
plaintext from the cipher image, which otherwise doesn’t
have any relationship with the plaintext visibly. However,
our receiver has the innate knowledge of the initial key
which the attacker doesnt have access to. This gives an
upper hand to the receiver, who/which after few initial
hiccups, decipher the logic behind the process.

5.6 Attacks performed on the Implementation

The following 2 attacks were carried out on the
implementation:

1) Brute Force attack with no information about the key
and the algorithm. 2) Known Plaintext-Ciphertext Attack
with the intention to obtain the Encryption Key.

5.6.1 Brute Force Attack

The Brute Force Attack carried on the implementation
gave an estimation of around 2% to 2'8 years to crack the
cipher using computational methods as shown on the
Fig.14 and Fig.15 respectively. Various test cases were
considered on different sized plaintexts and brute force
methods were employed to crack their corresponding
ciphertexts. In practical terms, such a duration is far
beyond the age of the universe, indicating that breaking
your cipher through brute force is effectively impossible
with current technology. Therefore, from a security
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standpoint, it is considered very good. However, it’s also
important to stay vigilant as computational capabilities
evolve over time, and what’s secure today might not be so

in the future. Therefore, continual monitoring and
updating of security measures are necessary to maintain
the confidentiality of your data.

S.No | Plaintext Ciphertext Length | Time to Crack the ciphertext

1 Cryptography is fun 4864 29318138546650643 years, 244 da
ys, 5 hours, 18 minutes, 16.00 seco
nds

2 Python Programming 4608 864841120338738 years, 251 days,
1 hours, 23 minutes, 47.00 seconds

3 Machine Learning 4096 763629792470 years, 108 days, 6
hours, 55 minutes, 38.00 seconds

4 Artificial Intelligence 5888 33118316063629953707412 years,
160 days, 20 hours, 5 minutes,
14.00 seconds

5 Data Science 3072 581645 years, 229 days, 16 hours,
31 minutes, 11.00 seconds

Fig. 14 Brute Force Test Cases

# brute force attack(ciphertext)

brute_force_attack("Cryptography is fun")

Time left:
Time left:
Time left:
Time left:

29318138546650643 years,
28605882215428676 years,
28320041805350258 years,
28208580984446199 years,

244 days, 5 hour
149 days, 17 hou
252 days, 19 hou
341 days, 16 hou

s, 18 minutes, 16.00 seconds
rs, 52 minutes, 25.00 seconds
rs, 5 minutes, 11.00 seconds
rs, 11 minutes, 16.00 seconds

Time left: 27803763580392950 years, 366 days, @ hours, 19 minutes, 16.00 seconds

Fig. 15 A Sample Brute Force Attack

5.6.2 Known Plaintext-Ciphertext Attack

The known Plaintext-Ciphertext attack also gave really
interesting insights into the implementation. Fig.16
depicts the test case predicts the key using the Known
Plaintext-Ciphertext attack.It can be seen clearly that the
key obtained by the attacker is only guessing 6.25 bits out
of every 100 bits of the key and hence the Hash Values
are never going to be the same as compared to the
plaintext. As a result, the attacker will never be able to
guess the plaintext accurately.

In summary, while these attacks are practically possible
to be launched on the implementation but implementing
effective countermeasures and maintaining a strong
security posture can make them exceedingly difficult to
execute in practice. Robust cryptographic algorithms are
designed with the intention of withstanding a variety of
attacks, and the combination of multiple defense
mechanisms enhances the overall security of the system.
However, continuous vigilance and updates are crucial to
adapt to evolving threats and vulnerabilities.

Known Known Ciphertext | Time Hash Value of Key derived | Hash Value of Percentage of | Remarks
Plaintext Taken Ciphertext by the Ciphertext derived Key bits
(sec) attacker using the original guessed
key
Cryptography 000000000101010 2.814 3cee2abc7d2cc1d62d [[66 49 88 - | cee841c1065d84fb1 6.25% The cipher
is Interesting 0010001110000110 b4893564c34ae553cc 17 19 78 6 | 08225829d31a41f5f3 texts do not
0001000001111001 88623992d994e114e3 | 49]] 1f9a601acc5b95b03 match. Hence
0001001100100001 44359b146¢c 37a3b8e27af0 the KEY
1100010000011011 obtained
0000100011010000 through the
0000001000011110 Cryptanalysis
0000000111001000 is incorrect
1100001001011110
101000010001000
0010010110010111
1001000001000111
0000110101000010
0111110000010000
1000100011100000
010010100010010
1010001001100100
0010000010000110
110000000110

Fig. 16 Known Plaintext-Ciphertext Attack
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6 Conclusion and Future Work

The research work proposes a novel cryptographic system
capable of securely passing a secret message from the
sender’s side to the receiver’s side keeping in mind that
the confidentiality and integrity of the message remains
intact. The proposed system endeavors have led to the
development of a groundbreaking cryptographic system
that introduces innovation and security to the process of
transmitting confidential messages from the sender to the
receiver. Focused on preserving the utmost
confidentiality and integrity of the transmitted message,
our proposed system harnesses the power of cutting-edge
technologies, particularly leveraging advancements in
Deep Learning. An essential part of our new cryptography
model is the use of Deep Learning, a technology that has
proven itself to be highly successful in a wide variety of
domains. Deep Learning has allowed us to create a
completely new, dynamic and adaptive method of
securing communications. This is a break from the
traditional static methods of cryptography, in which one
must rely on a method or algorithm. Our approach instead
leverages the adaptability of Deep Learning to learn, and
get better, at protecting sensitive data. What is Deep
Learning and how does Deep Learning make our
cryptographical model superior? Deep Learning might
seem to be very different from cryptography, but it is a
very promising method to create a cryptographical model.
It is almost perfect for our needs. Indeed, it shows
significant advantages when used in the cryptographical
model, such as the ability to self-learn and adapt to new
threats. Moreover, unlike the traditional working method
of cryptography, Deep Learning can learn and detect
more complex patterns, allowing encryption and
decryption at a higher level and thereby also maintaining
efficiency. Finally, since Deep Learning lets us encrypt
the message using a much more secure algorithm, we can
ensure the confidentiality of the message. esteemed. We
keep the message as secret as possible. We use very strong
Deep Learning algorithms for encryption and decryption
and these algorithms are the most secure. The algorithm
adjusts itself dynamically as required according to the
message and context, so it would be resistant enough to
adversarial attacks.

Besides, our cryptographic system also strengthens the
integrity of the transmitted message. Using Deep
Learning, the system does not only encrypt the message
securely but also embeds a self-validating system to
verify its received version. This characteristic is intrinsic
to our system and ensures that the received information is
received in exactly the same way as encrypted by the
sender, and hence is authentic, leaving no chance for
unauthorized tempering during transit. To summarize, our
proposed cryptographic system is an important step in the
direction of secure communication. It is future ready,

because it combines the best of both worlds - the stalwart
principles of cryptography, and the adaptive and learning
abilities of Deep Learning, promising to not only thwart
the current alleged attack but also prepare way for a new
breed of cryptographic protocols that are dynamic in
nature and invincible. As we stand on the crossroads of
cryptography and Deep Learning, this research gives us
an opportunity to bring about a new wave of
confidentiality and integrity in secure message
transmission. It is a strong and immersive solution to the
continuously evolving threat landscape, and certainly an
area that can be improved further. On the research track,
the next area is to explore the research in detail. The
proposed encryption model should be subjected to a
rigorous cryptanalysis, specifically targeting the attacks
found in our research. The goal of this analysis was to
discover the weaknesses of the refined system by
examining traditional cryptographic threats. However, in
the future, the system will be improved by the addition of
new, sophisticated scrambling and confusion methods.

In particular, attempts will be made to investigate chaos-
based algorithms as alternative methods to RSA, as well
as more complex neural network architectures for the
scrambling and confusion of inputs and outputs, which in
turn will make the encryption process more difficult to
observe and thus increase the overall strength of the
system. But in order to reach this high level of security,
the system has to be practically applicative.
Consequently, the next step will be designing protocols
for this technique to work in real-world implementation
and assessing performance, scalability, and efficiency in
various environments. In addition, working with
specialists in mathematics, physics, and computer science
will be the next phase in the development of this project.
With the invaluable support of experts in these closely
related areas, it will be possible to handle the challenges
as early as possible and incorporate their feedback into
future versions of the system. As this approach involves
more than one field, effort has to be put into tuning the
design and implementation of the cryptographic system.
Standardization, user studies, and interoperability with
existing protocols will also be further investigated, taking
into account user needs. Clearly, experts in related fields
will assist in designing these research components, as
well as guide us on which standards to adopt.
Consequently, the potential of implementing and
evaluating this system in real-life, including the
scalability and performance of this technique, will also be
further discussed to achieve superior performance to
current systems. Finally, it is important to note that these
efforts are the first stage in standardizing the next
generation of cryptographic systems designed to thwart
next-generation attacks.
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