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Abstract: In this study, the effect of feature selection methods on the performance of multi-layer perceptrons used for the dynamic security 
assessment of electric power systems is investigated. The existence of many measurable parameters (features) characterizing the power 
system security status complicates the use of multi-layer perceptron both in terms of prediction accuracy and training time. In this paper, 
the dynamic security of a power system subject to a number of critical contingencies is assessed as the critical clearing time of any credible 
fault is predicted by a multi-layer perceptron. In addition to the study of two different feature selection methods, which are Minimum 
Redundancy Maximum Relevance (mRMR), and Regressional ReliefF (RReliefF), a novel multi-layer perceptron based feature selection 
method is proposed to be applied in the prediction of security indices. The performance of the feature selection methods on the dynamic 
security assessment is investigated on a 16-generator, 68-bus test system. 
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1. Introduction 
Power systems are being operated under more and more stressed 
operating conditions with reduced security margins and unplanned 
power flow patterns within the network as the consumption of 
power, enforcement of economics and energy markets and the 
uncertainties in generation due to the utilization of renewable 
sources increase. In such cases, transient instabilities caused by 
credible contingencies could become an important factor in 
determining the security level of the system and in taking the 
necessary control actions when they are needed. Therefore, fast 
and accurate dynamic security assessment (DSA) methods 
involving the study of transient stability have always been 
important for a safe and reliable operation of power systems [1]. 
The proposed methods for DSA can be divided into a number of 
classes [2]. Using numerical integration methods [3] is an approach 
mostly followed for off-line applications, while it is considered as 
computationally intensive for on-line applications. Direct methods 
[4] utilize Lyapunov functions to assess the stability instead of 
using a numerical integration, but their efficiency depends on the 
simplicity of the models that are used. Probabilistic methods that 
determine the probability distributions for the stability of the 
system are suitable for system planning due computational 
requirements [5]. On the other hand, pattern recognition methods 
such as artificial neural networks (ANNs) assess the security of an 
operating point (OP) as they develop a mapping between the 
features representing the states of the system and its security 
through the use of a knowledge base (KB) generated off-line [6-
14]. 
As a specific implementation of ANNs, multi-layer perceptrons 
(MLPs) can be used for the prediction of security indices during 

the DSA of a large power system. However, in these applications, 
a large number of measurements (features) that characterize the 
power system and its security brings a complexity to the training 
process of MLPs. Using a large number of features has two 
potential adverse effects.  The time complexity of training a neural 
network increases dramatically with the increasing number of 
input features [15]. In addition, the existence of irrelevant features 
increases the number of inputs without providing new information. 
Thus, exponentially increasing number of training samples are 
required to train the ANN effectively [17]. To mitigate these 
adverse effects on the training of ANN and to increase its 
prediction performance, which directly affects the success in DSA, 
an effective feature selection must be applied.   
Various feature selection methods adopting the measures of feature 
quality such as sensitivity index [15], divergence [16] and Fisher 
discrimination [17] have been used for the DSA of power systems 
based on MLPs. In this study, the effect of using filter type feature 
selection methods, such as Minimum Redundancy Maximum 
Relevance (mRMR) [18] and Regressional ReliefF (RReliefF) 
[19], on the final performance of MLP for predicting the power 
system security indices is investigated. The security indices 
selected in this work are the critical clearing time (CCT) of the 
faults and the minimum damping ratio for the electromechanical 
oscillations occurring in the system.  
In addition to the use of mRMR and RReliefF, this paper proposes 
a new methodology for feature selection based on the MLP 
weights. The proposed MLP Weight Based Method (MLPW), uses 
training weights of MLP to draw conclusions on the correlations 
of input features and identify an optimal subset of features. Neural 
network based feature selection has been reported in [20], 
however, only the output of ANN is used for sensitivity analysis 
and feature selection, in contrast to MLPW that uses training 
information for feature selection. Performance of DSA using 
MLPW method is compared with the mRMR and RReliefF 
methods on the dynamic security assessment for a 16-generator, 
68-bus test system. 
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2. Feature Selection for Neural Networks 
Finding the optimal subset of features serves a central role in 
predicting the security index, fast and accurately, for a real power 
system whose dynamic performance can be characterized in 
various ways involving a large number of variables. Consider a set 
of N instances of operating points 𝑥𝑥𝑘𝑘 and the corresponding CCT 
value 𝑦𝑦𝑘𝑘 constituting the KB {𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘}, 𝑘𝑘 = 1, … ,𝑁𝑁. Each operating 
point is an instance itself, consisting of D features 𝐹𝐹𝑖𝑖 (𝑖𝑖 = 1, . . ,𝐷𝐷). 
The task of feature selection involves identifying an optimal subset 
of features 𝑆𝑆 = �𝐹𝐹𝑗𝑗: 𝑗𝑗 ∈ {1, … ,𝑚𝑚}� for the DSA. mRMR and 
RReliefF feature selection methods, which have been applied in 
many different types of problems, have also been used in this 
study. In addition to these methods, an MLP based method has 
been introduced and used. 
In all feature selection methods investigated in this study, m is a 
design parameter which represents the size of the optimal features 
subset S. In addition, none of these methods can compute the 
optimal m. For computing the optimal m, a parameter selection step 
is used and the details of this step are provided in Section 3. 

2.1. mRMR 

mRMR [18] is a filter type feature selection method. The candidate 
subset S provided by mRMR algorithm is independent of the 
prediction step and MLP is just used for predicting the security 
index of the system. The main criterion implemented in mRMR 
algorithm maximizes the relevance of features to the target output 
while minimizing the redundancy of selected features. By 
maximizing the relevance of features and the output, features that 
contain useful information about the target output are kept in S. In 
addition, minimizing the redundancy prevents the selection of 
features that depend on each other, hence does not add any new 
information about the target.  This two-step algorithm provides a 
candidate optimal subset of features S [18]. 

2.2. RReliefF 

RReliefF [19] is another filter type feature selection method. 
Similar to the previous approach, the MLP is used as a predictor in 
the mRMR method. However, here, the main criterion to select 
candidate feature subsets is different than the one in mRMR. The 
main idea is to rank features by their qualities in discriminating the 
values 𝑦𝑦𝑘𝑘  corresponding to instances 𝑥𝑥𝑘𝑘 that are close to each 
other, hence emphasizing on local information of instances. What 
makes RReliefF a viable option for feature selection is its ability 
to estimate the dependency between features, while most other 
methods, including mRMR, assume independence between 
features. In a domain that there is a strong dependency between 
features, RReliefF usually performs better. RReliefF generates a 
ranking of features based on their importance in predicting the 
target parameter [19]. 

2.3. MLP Weight Based Method 

As filter type methods that do not require classifier or predictor 
training, mRMR and ReliefF are considered as fast feature 
selection methods. However, their performances depend on the 
predictor which, later, is used on the candidate optimal features set. 
Although there are other feature selection methods that use the 
predictor in feature selection steps, such as backward and forward 
feature selection, they are computationally intensive and unfit for 
online DSA. In MLP weight (MLPW) based method, the behavior 
of MLP predictor during the sample training is used.  
MLP is a general function estimator which has the form 
𝑓𝑓(𝑊𝑊𝑖𝑖 ,𝑊𝑊ℎ, 𝑥𝑥)  ∈ 𝑅𝑅, where x denotes the vector of input variables,  

𝑊𝑊𝑖𝑖  and 𝑊𝑊ℎ are the matrices of weights of the input layer and the 
second layer of the MLP, respectively. The process of training 
comprises of repeated estimation and fine-tuning of network 
weights 𝑊𝑊𝑖𝑖  and 𝑊𝑊ℎ to minimize the discrepancy between the actual 
target output y and the prediction of MLP, 𝑓𝑓(𝑊𝑊𝑖𝑖 ,𝑊𝑊ℎ, 𝑥𝑥). 
In order to determine the correlated features, the behavior of input 
layer weights 𝑊𝑊𝑖𝑖   are observed during training. It is expected that 
the correlation between input features are embodied in the 
correlation of weights of the network during the training phase. If 
the weights connecting two features behave similarly during 
training, then it is assumed that these features should have higher 
correlation. 
The general framework of the proposed methodology consists of 
training a sample MLP with all features once, recording the 
training weight, performing the correlation analysis and feature 
ranking. These training weights are recorded in column vectors. 
For each feature 𝑥𝑥𝑖𝑖, 𝑖𝑖 = 1, … ,𝐷𝐷, and for each epoch 𝑡𝑡𝑗𝑗, 𝑗𝑗 = 1, . . ,𝑇𝑇 
of batch training, MLP has h, the number of hidden units, weights 
corresponding to the weights of the connections between feature i 
and each of the h hidden units. Then, these weights of different 
training epochs are concatenated, so that it ends up with D columns 
of length 𝑇𝑇 × ℎ. In other words, the result is a 𝐷𝐷–by-(𝑇𝑇 × ℎ) 
matrix of training weights, 𝑁𝑁𝑁𝑁𝑡𝑡𝑊𝑊 ∈ 𝑅𝑅𝐷𝐷×(𝑇𝑇×ℎ). The next step is to 
calculate the correlations between different columns of the NetW 
matrix. The absolute value of the Pearson correlation is used to 
form a matrix of pairwise correlations between network weights of 
different features. The general steps of the proposed feature 
selection method are represented in the algorithm below: 

Algorithm (MLPW Feature Selection): 
Input= NetW   // matrix of network weights 
Output=featureRank (Ranking of features by their importance) 
1. counter=1 
2. corr=correlation(NetW ) 
3. while eliminatingFeatures 
4. imVec=rowSum_of_ corr 
5. referenceFeature=max(imVec) 
6. IdxCF=max(corr(referenceFeature,i)/ imVec (i)) 
7. featureRank(1, counter)= IdxCF 
8. counter=counter+1 
9. Remove IdxCF entry from R 
10.end 

The proposed algorithm gets the matrix NetW of training weights, 
then produces a list of features, featureRank, which records the 
features in order, so that irrelevant features can be eliminated to 
reach an optimal subset of the feature set. In this sense, the 
proposed algorithm gives a feature ranking similar to the ReliefF 
algorithm. Line 5 of the MLPW algorithm is an important step 
where the feature that minimizes the following is obtained: 

𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖   𝑅𝑅(𝑟𝑟𝑁𝑁𝑓𝑓𝑁𝑁𝑟𝑟𝑁𝑁𝑟𝑟𝑟𝑟𝑁𝑁𝐹𝐹𝑁𝑁𝑚𝑚𝑡𝑡𝑟𝑟𝑟𝑟𝑁𝑁, 𝑖𝑖)
𝑆𝑆𝑟𝑟𝑚𝑚(𝑅𝑅(𝑖𝑖, : ))�   (1) 

Thus, the feature that is highly correlated with the 
referenceFeature, from the point of view of MLP, and at the same 
time, that has the lowest correlation with all the features, including 
the referenceFeature, is found. 

3. Methodology 
3.1. Neural Networks for DSA 

DSA can be formulated as a classification or a regression problem 
depending on the security information required for the application. 
In the classification task, classifiers can classify the security status 
of the system at a particular operating point (OP) as secure or 
insecure, whereas in the regression task, the regression tools can 
predict a security index that measures how far the system is away 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(1), 53-58  |55 

from becoming unstable if the contingencies do occur. In this 
study, the MLPs developed for DSA are trained through a 
supervised learning algorithm which requires a KB composed of 
various examples of OPs and the security status of the system 
operating at them.  
The method starts with the task of a contingency scan over a wide 
range of OPs as the critical contingencies are distinguished. The 
critical contingencies are selected from the ones leading angular 
instabilities after the occurrence of three-phase faults.  
A crucial step in the method is to generate the training data of 
representative instances that are properly chosen. For a number of 
different topologies and loading levels, a large set of OPs is created 
using the power flow solutions.  Then, at each OP, the security 
status of the system is determined by means of the post-
contingency dynamics through time-domain simulations. When 
the problem is formulated as a classification problem, the security 
of the system at a particular OP can be represented as secure or 
insecure by a straightforward calculation of the angle stability 
index, 

𝜂𝜂 = 360−𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚

360+𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚
× 100     ,    − 100 < 𝜂𝜂 < 100 (2) 

where δmax is the maximum angle separation in degrees of any two 
generators at the same time in the post-contingency response and 
OP is labeled as secure if the index is positive. In the regression 
problem, the security is quantified by a security index, the CCT, 
which is the maximum time allowed for clearing the fault without 
causing any angular instability. In addition to the assessment for 
transient stability using the aforementioned indices, the dynamic 
security assessment of the system is extended with the assessment 
for small-signal angle stability. For all operating conditions, the 
system must also be secure in the sense that both inter-area and 
intra-area oscillations are well damped in a power system when it 
is subjected to disturbances. This can be assessed by computing the 
eigenvalues associated with the electromechanical modes of 
oscillations and distinguishing the ones with the minimum 
damping ratio.   
In this study, a multilayer perceptron (MLP) is trained and 
developed to determine the security status of the system operating 
at a given OP for each critical contingency. The KB contains a 
large number of OPs from a wide range of operating conditions, 
each of which is defined by a particular schedule of generation and 
distribution of the load demand, a particular network topology and 
a loading level. Having such a large KB, a feature selection process 
becomes crucial to attain better performances of the MLPs 
predicting the security as well as to reduce the size and the 
complexity of the MLPs without losing too much information. In 
the next section, the framework for feature selection and the 
selection of the best MLP structure are given in more detail. 

3.2. Feature Selection 

The feature selection step consists of determining two parameters: 
the size of the optimal feature subset, m, and the size of the hidden 
layer of the MLP, h. First, the size of the optimal subset of features  
m is calculated. For this purpose, a set of initial guesses for m is 
required, then, for each of them, the best subset of features are 
calculated by using mRMR and RReliefF. This optimal subset of 
features is fed to the MLP and the accuracy of prediction is 
evaluated for different number of hidden units, h. Finally, the best 
combination of m and h is chosen based on the prediction error. 
The steps of the proposed feature selection and training approach 
are shown in Fig. 1. 

 
Fig. 1.  Feature selection steps.  

Increasing the number of the units in the hidden layer of MLP 
always increases the training accuracy. However, the training 
performance represents only the ability of the MLP in predicting 
instances that exist in the training set while the actual performance 
of the MLP is tested on instances that have not been seen yet. 
Therefore, increasing the value of h will have a negative effect on 
the prediction performance on the unknown instances as it 
decreases the generalization performance. To overcome this effect, 
a portion of data is set aside for evaluation only and named as 
validation set. The value of h is determined based on the 
performance of the MLP on the validation set. By increasing h, a 
decrease in the prediction error is expected at first, however, then 
the prediction error will eventually increase. Additionally, to 
eliminate any adverse effect of choosing a fixed validation set on 
the final performance of prediction, 10 fold cross-validation is 
applied. In this method, the KB is divided into 10 validation and 
training sets, each validation set consisting of 10% of the 
knowledge base, and the remaining 90% is designated as the 
corresponding training set.  
By combining the feature selection step and model selection step, 
it is possible to identify the best subset of features that in 
combination with the MLP yields the best prediction performance. 
This is important since the choice of MLP as the predictor will 
affect the size of the optimal feature subset, m. 

4. Results 
4.1. Test System 

The proposed methodology is applied on a 16-generator, 68-bus 
test system [21] shown in Fig. 2. Each generating unit is modeled 
with the 6th order two-axis synchronous generator model, a static 
exciter model of order 1, a power system stabilizer model and a 
speed governor turbine unit model of order 3. Through a 
contingency scan over a wide range of operating condition, 12 
critical contingencies (Fig. 2), which lead to instabilities, are 
found. Each critical contingency is a three-phase fault at one end 
of a transmission line cleared by the removal of the faulted line 
well after its CCT.  
For each OP, the power flow computations and DSA via time-
domain simulations and eigenvalue analysis are performed. The 
KB including instances (OPs) at various loading levels (75% - 
125%) with 45 different topologies is generated by DSAToolsTM 
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[22]. Instances are represented by 136 features, which are the 
magnitudes and phase angles of the bus voltages, and the stability 
index values (the CCTs related to the critical contingencies and the 
minimum damping ratios at the pre-fault conditions). 

 
Fig. 2.  16-generator-68-bus power system. 

4.2. Prediction of CCT 

In this study, a KB of 3692 instances of operating points and their 
corresponding CCT values is generated. 20% of the KB has been 
randomly selected and allocated to evaluate the final performance 
of the MLP-based CCT predictor and is not used in any step of the 
feature selection or the MLP model selection. The remaining 80% 
is used for validation and training sets. Thus, it is guaranteed that 
the reported prediction error is as close to a test experiment as 
possible. For the training of MLP, scaled conjugate gradient back 
propagation method is used. In addition, to prevent the MLP from 
over-fitting, early stopping is applied. The proposed procedure for 
all feature selection methods is independent of the initial selection 
of critical contingencies. Therefore, it is applicable to other 
contingencies. 
The measure for evaluating the performance of MLP is chosen to 
be mean squared error (MSE). MSE is a widely used performance 
criterion for prediction problem in MLP. For a set of instances and 
target values in form of {𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘} with (𝑘𝑘 = 1, … ,𝐾𝐾) and a set of 
corresponding K prediction 𝑦𝑦�𝑘𝑘, the MSE is defined as 

𝑀𝑀𝑆𝑆𝑀𝑀 = ∑ (𝑦𝑦�𝑘𝑘−𝑦𝑦𝑘𝑘)2𝐾𝐾
𝑘𝑘=1

𝐾𝐾
  (3) 

where 𝑦𝑦𝑘𝑘  and 𝑦𝑦�𝑘𝑘 are the actual and the predicted values of CCT, 
respectively. 
The evaluation step has been repeated 10 times to ensure an 
accurate representation of the actual prediction error and the 
average MSE is reported. At each repetition of the evaluation, the 
MLP is initialized with a different set of weight so that the small 
change in the final performance of the MLP is considered.  
In order to choose the best number of hidden units, for a fixed 
number of input features m, after feature selection step, MLP is 
trained and evaluated by using cross-validation, for different 
number of hidden units. For each size of the hidden unit, cross-
validation provides us with two performance measures, one for 
training and one for validation. The validation error is used to 
choose h. Thus, it is ensured that the MLP does not over-fit the 
training set. After choosing h, the MLP with h hidden units and for 
different values of m is trained and its performance on the test data 

is evaluated. The number of hidden units is changed from 5 to 60, 
while the number of input features is changed from 1 to 136. 
Fig. 3 shows the performance analysis graph of the proposed 
framework on the contingency 2. For this contingency, it is 
observed that the proposed feature selection method, MLPW, 
results in a small MSE using less features than the other methods. 
The performance of the CCT prediction using MLPW has a lower 
average MSE. In addition to this, the standard deviation (SD) of 
the error should also be considered. A sizable SD is an indication 
of low quality feature subset with unstable regression performance. 
In other words, it signifies that the regression performance could 
vary significantly using the same set of features. It should be noted 
that, for different contingencies, different feature selection 
methods may yield the best performance results. For instance, in 
Fig. 4, MLPW outperforms mRMR and RReliefF and the best 
result is achieved using 40 features selected by MLPW.  As seen 
in Fig. 3 and Fig. 4, using a proper feature selection method will 
improve the performance prediction. 

 
Fig. 3.  Test MSE for CCT prediction, contingency 2. 

In addition to CCTs, the proposed methodology is applied to 
predict the minimum damping ratio of electromechanical 
oscillations. Fig. 5 shows the results of the analysis. In this case, 
RreliefF surpasses all the other methods in terms of the feature 
selection performance. However, the results of the different parts 
of the graph may be different. For example, if for any reason only 
the top 20 features are used, mRMR provides a better performing 
subset of features, with both smaller error and SD of error. 
However, for feature subsets of size larger than 20, MLPW and 
RreliefF consistently outperform mRMR. To validate the 
observations, the dependency of features and outputs to each other 
is also investigated. For this purpose, mutual information measure 
is used. 

 
Fig. 4.  Test MSE for CCT prediction, contingency 4. 
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Fig. 5.  Test MSE for minimum damping ratio prediction. 

By definition, mutual information meters the amount of 
information obtained from one variable, using another variable. 
Fig. 6 shows the plot of mutual information score for different 
features, measured against contingency 2. The observation is that 
most of the features have the same amount of information about 
the CCT value of contingency 2. Therefore, it is validated that all 
features can be equally informative about the output variable. 

5. Conclusion 
In this study, the effect of feature selection algorithms in the DSA 
based on MLPs is investigated. The results show that a comparable 
prediction performance is achievable using only a subset of power 
system parameters which have an important effect on simplifying 
the process of security assessment. 
The other side of the argument is the dependency of features to 
each other; how much information a feature can provide about a 
different feature. In this case, high mutual information score 
indicates that one of the two features can be excluded without 
much loss of overall information provided to the predictor. Fig. 7 
provides the pairwise mutual information of the features. The 
results show that some of the features are relatively informative of 
each other. This observation is in line with the error rate graphs of 
Fig. 3. For contingency 2, at around 60 features, the rate of 
decrease of the prediction error drastically reduces. In other words, 
the added useful information for prediction selecting more than 60 
features is miniscule. 

 
Fig. 6.  Mutual information of features and output for contingency 2. 

Due to space limitations, only the top 5 most important features 
obtained in each algorithm for the contingencies, ctg. 2, ctg. 4, 
ctg.8, and ctg. 10, are provided in Table 1, where the voltage 
magnitude and its phase angle at bus i of the test system are 

denoted by V_i and θ_i, respectively. As it is expected, the closer 
features to the location of each contingency are found as important.  
Incorporating smaller set of network parameters reduces the time 
complexity and model complexity of MLP based DSA and prove 
to be critical in large power systems in which fast security 
assessment and control are critical to deliver high quality service. 

 
Fig. 7.  Pairwise mutual information of features. 

Table 1. Top 5 most important features determined by the feature 
selection methods for each contingency 

Method Top 5 most important features for each contingency 

Ctg. 2 Ctg. 4 Ctg. 6 Ctg. 8 Ctg. 10 

MLPW 

V_24 V_12 V_35 θ_8 V_29 
θ_11 V_28 V_65 θ_19 θ_10 
V_50 V_60 V_56 θ_20 θ_39 
θ_40 θ_54 θ_33 V_45 θ_66 
θ_41 V_25 θ_16 θ_68 θ_57 

RReliefF 

V_42 V_42 V_42 V_42 V_42 
V_8 V_4 V_23 V_23 V_23 

V_41 V_10 V_21 V_21 V_21 
V_7 V_12 V_24 V_24 V_24 

V_12 θ_65 V_41 V_12 V_22 

mRMR 

V_54 θ_55 θ_58 θ_58 V_58 
θ_55 V_10 V_30 V_30 V_42 
V_55 V_29 V_53 V_53 θ_59 
V_6 V_55 θ_59 θ_59 V_27 

V_53 V_53 V_42 V_58 θ_58 

In addition to complexity reduction, another effect of feature 
selection is to measure less number of variables in order to predict 
the security status of the system. This can be a critical factor in 
practical situations when measuring or estimating some of the 
features is costly or time consuming. Therefore, by means of a 
proper feature selection method and identifying the important 
features, the effort for prediction and online DSA of the system can 
be optimized. 
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