

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3110–3121 | 3110

Enhancing Software Requirements Classification: Integrating

Recurrent Neural Networks and Natural Language Processing for

Managing Structural Complexity

Justine Nakirijja1, Abid Yahya2,4, Ravi Samikannu3, and Lory Liza D.Bulay-og4

Submitted:12/03/2024 Revised: 27/04/2024 Accepted: 04/05/2024

Abstract: The inherent complexity of software requirements poses significant challenges in project planning and quality assurance. This

research addresses these challenges by enhancing the classification of software requirements. It explores the dynamic relationships between

requirements and their associated acceptance criteria through advanced deep-learning methods. The primary objective is to improve the

accuracy and efficiency of requirements classification, thereby contributing to more effective project management and development

processes. We propose a novel approach using a Recurrent Neural Network for Requirement Engineering (RNNRE) model. This model

integrates natural language processing to analyze and process complex, multilevel requirements’ temporal and functional dynamics. Our

methodology is rigorously tested on the Baseline EMR, a comprehensive real-world dataset, to assess the model’s effectiveness and

accuracy in classifying software requirements. Results: The study reveals that finer granularity in requirement conditions substantially

influences classification outcomes, impacting the precision of acceptance statements. The RNNRE model demonstrates robust

performance, achieving an accuracy of 82.6%, a recall rate of 80%, and a precision of 100%. These results notably surpass the performance

of several benchmarked state-of-the-art models, showcasing the model’s effectiveness in handling complex requirement scenarios. The

RNNRE model marks a significant advancement in refining the requirements engineering process, particularly for intricate and multileveled

requirements. This research demonstrates the practical application of deep learning in requirements classification. It contributes valuable

insights to the field, enhancing the understanding and methodology of managing structural complexity in software requirements

engineering.

Keywords: Requirements Engineering, Deep Learning, Recurrent Neural Network, Requirements Classification, Structural Complexity in

Software, NLP.

Introduction

The success of software projects is intricately linked to

satisfying customer expectations, a determination often

formalized through acceptance testing at project

completion [29]. However, the seeds of success are

sown much earlier in the project lifecycle, specifically

during the pre-development acceptance planning

conducted jointly by the project team and the customer.

This process establishes the acceptance conditions (AC),

which define the detailed quality benchmarks for each

requirement and shape the eventual user perception and

satisfaction [25].

This relationship between requirements and their

acceptance conditions is complex, as ACs can apply

variably to single or multiple needs. Such variability

necessitates meticulous tracking from the initial planning

stages to the final sign-off. The project’s ultimate goals,

aligning with user satisfaction and product requirements,

hinge on the quality expectations set out by these ACs

[14]. Moreover, the granularity of ACs can vary

significantly, leading to potential issues with class

imbalance and the challenge of accurately classifying

and mapping requirements. This point becomes

increasingly complex with advancing technology and

evolving user expectations. Current methodologies for

handling complex systems in software engineering

address various aspects of this complexity [8, 9, 10, 26].

Yet, there is a notable gap in addressing the intrinsic and

extrinsic complexities that originate from the nuanced

requirements structure in alignment with ACs. This gap

is particularly evident in agile project environments,

where the rapid delivery of high-quality software is

paramount [23]. They identified critical reasons for

project failures, as illustrated by poor user input at 13%,

incomplete requirements at 12%, changing requirements

at 12%, poor starting at 6%, inadequate technical skills

at 7%, and others at 50%. As such, there is a vital need

for innovative approaches to adeptly manage the

structural complexities within requirements sets. The

1Department of Data Science, Networks and Artificial Intelligence,

Kyambogo University, Kampala, Uganda; Corresponding Author
2,3Department of Electrical and Communications Systems

Engineering, Botswana University of Science and Technology,

Pa lapye, Botswana;
3Department of Electronics and Communication Engineering,

Saveetha School of

Engineering, Saveetha Institute of Medical and Technical Sciences,

Saveetha University, Chennai, India;
4University of Science and Technology of Southern Philippines

(USTP), Alubijid (Main) Campus, Philippines.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3110–3121 | 3111

researcher [22] noted that “70% of software projects fail

due to poor requirements with an associated rework

spend just north of $45 billion annually”.

In this paper, we present a novel approach that leverages

the robust capabilities of deep learning to enhance the

requirements of the engineering process. By focusing on

the alignment of ACs with their corresponding

requirements, our research offers a method to navigate

the complexity presented by varied AC granularity levels.

We introduce a model that not only aids in classifying

requirements but also in recognizing their acceptance for

project planning purposes. This work, therefore,

contributes to the ongoing pursuit of sophisticated

models that can be seamlessly integrated within the

requirements engineering framework to ensure the

delivery of quality software products that meet or

exceed stakeholder expectations.

In this study, we regard this as structural complexity

within a requirement dataset that has to be controlled

to mitigate the risk of dissatisfaction with the end

product. We infer that the continued lack of a mechanism

to track and manage this structural complexity within

requirements impacts the quality of a condition and the

downstream processes immensely.

Literature Review

Natural Language Processing

Natural Language Processing (NLP) and Information

Retrieval (IR) techniques have been applied to address

some of these challenges, including improving

information (in this case, requirements) tracing. NLP

applies to “Shallow Knowledge” from requirement

text, tracing the relationship among conditions [31].

Natural language processing is a branch of artificial

intelligence that enables computers to understand,

manipulate, and interpret human language [28]. A

common component of NLP is artificial intelligence text

analysis, which defines extracting information from

extensive text data, also known as text mining [21]. Text

mining converts unstructured data into structured data for

machine learning [28]. With machine learning, Natural

language processing (NLP) involves manually

identifying critical text sections or labeling readers. It can

locate sentiments, speech parts, proper nouns, and text

in images, PDFs, and other documents.

NLP Techniques

Natural Language Processing (NLP) uses two

techniques, syntactic analytics and semantic analysis, to

help computers understand text.

Syntactic Analysis or Parsing examines text using basic

grammatical principles to detect sentence structure, word

arrangement, and how they connect. The major subtasks

for this technique include:

Tokenization: Involves dividing a text into smaller pieces

called tokens (which may be phrases or words) to

simplify material handling.

Part of Speech Tagging: Labels tokens like verbs,

adverbs, adjectives, nouns, etc. This helps determine the

meaning of words (for example, the term “book” refers

to different objects, whether employed as a verb or a

noun).

Lemmatization and Stemming reduce inflected phrases

and derivationally related forms of words to their base

form to facilitate analysis.

Stop-word Removal: Often eliminates words that do not

contribute value, such as “I,” “they,” “have,” and others.

The semantic analysis relies on capturing the meaning

of the text. It utilizes the syntax tree (i.e., structures

such as phrases, clauses, sentences, and texts) generated

in the parsing process to interpret language-independent

meanings. Initially, it will examine the significance of

each word (lexical semantics) [28]. Then, the

arrangement of words and what they signify is reviewed

in context. The primary task of semantic analysis

includes determining the meaning of the given sentence

and representing that meaning in an appropriate form.

However, these generally require human effort to analyze

and create requirements-based features. Subsequently,

machine learning approaches, particularly classification,

show promise. Several ML-related techniques have been

developed to manage the identification and classification

of non-functional requirements (NFRs) in requirements

documents [6]. [2] the most used supervised learning

algorithms in the literature are Support Vector Machine,

naive Bayes, Decision Tree, K-nearest Neighbor, and

Random Forest.

Related Work

Several studies have been proposed to handle challenges

that lead to the misclassification of textual requirements,

as critical studies presented in Table 1.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3110–3121 | 3112

Table 1.

Research focus Techniques

used

Data used Performance/

Results

Limitations

Ontologies to classify

the requirements in

the RE context

(Alrmuaih, Mirza and

Alsalamah, 2020)

Requirements

Classification

ontology

(RCO)

Not

Applicable

A hybrid approach with

several artificial

intelligence techniques

that

RCO can be used to

automate the

requirements

classification process

Not stated

SLR on automatic

classification of

software requirements

(Baqais and Alshayeb,

2020)

Mostly used

NLP tools,

WEKA in-built

tools, SVM,

MNB, LR,

K-NN, J48,

CNN

Not

Mentioned
Not Applicable

More

contribution is

still needed in

this research

Text feature

extraction techniques,

with Non-

functional

requirements

(Canedo and Mendes,

2020)

Comparison

of (BoW) vs.

(TF-IDF) vs.

(CHI2),

Algorithms:

(LR), (SVM),

(MNB) and

(KNN)

Labeled

data

Binary classification: F-

Measure 91, general

classification 0.78 and

0.74 in NF

classification

imbalance and

smaller dataset

influence the

classification

performance

results in a

machine learning

environment

Requirements classification (RC) using analysis of

textual natural language is the trend to solve numerous

software engineering challenges. As indicated in Table 1,

the most recent study points to using artificial

intelligence as a suitable alternative. Even the

systematic literature review shows that several studies

on classifying requirements using machine learning and

deep learning, such as [3] applied convolutional

neural network CNN, still recommend further studies

with other deep learning techniques. Some studies, a s

i n [4] , focused on RC modeling using a small dataset

with class imbalance but observed that this impacts the

model performance [7, 17]—the researchers in [1]

compared RNN and CNN performance on a small

dataset. In [11], BERT’s deep learning technique was

enhanced into NoBERT, with transfer learning

focused on binary and multiclass classification. Other

researchers [20] used LSTM and GRU with the small

and class-imbalanced dataset. The work in [16]

presented points to guide the selection of techniques that

can be applied in constructing classification models.

While this all is promising work for RC, the interest of

this study was to evaluate RNN with large,

multileveled networks. RNN models are widely used

in classification studies such as [1, 30]. RNNs are

neural networks specializing in processing sequences

and are often used in Natural Language Processing

(NLP) tasks because of their effectiveness in handling

text. Most vanilla neural nets and Convolutional Neural

Networks (CNNs) usually work with predetermined

sizes, and they take fixed-size inputs and produce

fixed-size outputs. With this flexibility that allows for

variable-length sequences (as both inputs and outputs),

we applied an RNN’s many-to-one (M1RNN),

explicitly using RNN’s variant, the LSTM, to examine

the relationships between requirements and the

associated ACs in a many-to-one connection.

Long Short-Term Memory

Long-short-term memory (LSTM) networks are a type of

recurrent neural network capable of learning order

dependence in sequence prediction problems. Unlike

traditional RNNs, which may struggle with long-range

dependencies due to vanishing or exploding gradients,

LSTMs are designed to retain information efficiently for

extended periods. They achieve this through a complex

architecture comprising memory cells and various gates:

forget, input, and output gates, each playing a distinct

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3110–3121 | 3113

role in managing the flow of information.

Forget Gate

The forget gate, also known as the remember vector,

determines how much previous information is retained for

future steps. It uses a sigmoid function to output a value

between 0 and 1, indicating the proportion of each

component of the cell state to be forgotten.

Input Gate

The input gate is responsible for updating the cell state.

It decides the degree of importance for new information

to be added to the current state, using a sigmoid function

to filter values and a tanh function to scale them within

a range of -1 to 1.

Output Gate

The output gate defines the next hidden state, which

carries information about previous inputs. The current

state and the last hidden state are fed into a sigmoid

function, and the new cell state is processed through a

tanh function. Their product determines the information

to be included in the hidden form.

LSTMs are particularly well-suited for handling

multivariate time-series data, as they can map multiple

inputs to a single output, manage varying numbers of

time steps, and handle variable-length inputs. This

flexibility allows them to capture temporal dependencies

effectively. The mathematical model of an LSTM can be

expressed through a series of equations representing the

operations within the memory cells and gates:

∇𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛 (1)

Given that xtn is a row vector with P dimensions, the

prediction model can be described as follows:

 𝑦̂𝑡𝑁+1 = 𝑓(𝑥𝑡1, 𝑥𝑡2 … , 𝑎𝑡𝑁 , ∆𝑡1∆𝑡2 … , ∆𝑡𝑁) (2)

The behavior of the LSTM at any time step t is

governed by:

ℎ𝑡 = 𝜎(𝑊ℎ𝑥𝑡 + 𝑈ℎℎ𝑡−1 + 𝑏ℎ) (3)

𝑦𝑡 = 𝜎(𝑊𝑦ℎ𝑡 + 𝑏𝑦) (4)

Where σ represents the activation function, and Wh, Uh,

bh, Wy, by are the weights and biases of the network.

These equations are iteratively applied to process

sequences, and predictions are made based on learned

temporal dependencies.

Methodology: Recurrent Neural Networks for

Requirement Engineering (RNNRE)

Research Context of RNN

Predictive classification modeling is essential in

predicting a future value based on historical data at the

preceding time step. This process necessitates the

preparation of input and output pairs given the time

series data. Formally, time series classification is

defined as follows:

Definition 1: A univariate time series 𝑋 =

 [𝑋1, 𝑋2, . . . , 𝑋𝑛] is an ordered set of acceptance

conditions (ACs). The length of X, denoted as |X|,

equals the number of fundamental values N.

Definition 2: An M-dimensional multivariate time

series (MTS), [𝑋1, 𝑋2, . . . , 𝑋𝑚],, consists of M different

univariate time series requirements (R), each with Xi ∈

RN .

Definition 3: A dataset 𝐷 =

 {(𝑋1, 𝑌11), (𝑋2, 𝑌2), . . . , (𝑋𝑁 , 𝑌𝑁)} is a collection of

pairs (Xi, Yi), where Xi could either be a univariate or a

multivariate time series AC, and Yi is its corresponding

one-hot label vector. For a dataset with K classes, the

one-hot label vector Yi is a K-dimensional vector where

the j-th element is 1 if the class of Xi is j, and 0

otherwise.

Classification involving time series data is performed by

training a classifier to learn from a dataset using a

probability distribution and then using it to relate ACs

with requirements [13].

Phase of RNNRE

The methodology for RNNRE is characterized by a

process divided into the following four phases:

1. Data pre-processing.

2. Word Vectorization and Labelling.

3. RNN model construction.

4. Model Training and Testing to align

Requirements to ACs.

The Fig.1 shows the Representation of an alignment of

requirement(S) to acceptance conditions (AC)

Fig.1. Representation of an alignment of requirement(S)

to acceptance conditions (AC)

Procedural Flow

Building this classification model involves a four-

phased process, as illustrated in Fig.2.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3110–3121 | 3114

2 2

Fig.2. Procedural phases for Multileveled

Requirements Classification

Phase 1: Data Pre-Processing

The initial step in this framework is cleaning and

preprocessing the software requirement dataset. This

stage is preceded by data acquisition and includes

removing special characters, stop words, case-folding,

lemmatization, and tokenization. The outcome is that the

data is well-cleaned and ready for the learning

environment.

Phase 2: Word Vectorization/Labeling

Word vectorization converts sentences into a computer-

understandable format for deep-learning models that

cannot process natural language. This process is crucial

for enabling pattern recognition within the data. The text

of the requirements is transformed into word vectors

using the word2vec model, explicitly utilizing the

skip-gram approach for feature extraction. In this

context, word2vec maps a word to a vector v ∈ R,

where R represents the set of real numbers. Thus, the

transformation of a sentence can be represented by a

matrix m ∈ Rn×l, where n is the embedded vector size

and l is the length of the sentence.

This study employed embeddings from language models,

particularly ELMo, for word embedding [15]. ELMo

considers the entire sentence context to assign each word

a unique embedding and functions as a bidirectional

RNN trained on a specific task to generate these

embedding [15]. The resulting individual word vectors

populate an embedding matrix, the dimensions of which

are determined by the vocabulary size and the

embedding extent.

Phase 3: RNN Model Construction

We utilize an LSTM network for the RNN model,

composed of:

Input Layer: Prepares the model input with sequence

length and embedding dimension.

Hidden Layer: Employs LSTM units with dropout

to reduce overfitting.

Output Layer: Uses activation functions like softmax

and sigmoid to output the final classification.

Phase 4: Model Training and Testing

The model is trained and tested using various training-

testing split ratios. The performance is analyzed as the

proportion of testing data varies.

Extension to GCN-RIA for Structural Analysis

Following the RNN model construction, we extend our

approach with the Graph Convolutional Networks for

Requirements Interdependency Analysis (GCN-RIA) to

capture the structural dependencies among requirements.

Given a graph G = (V, E) representing the

interdependencies among software requirements:

 Let V be the set of nodes (requirements) and E the set

of edges (dependencies).

 Each node vi ∈ V has a feature vector xi.

The graph convolution operation at layer l is defined as:

𝐻(𝑙+1)𝜎 (𝐷−
1

2𝐴̂𝐷−
1

2𝐻(1)𝑊(𝑙)) (5)

Â = A + I is the adjacency matrix with self-connections,

D is the degree matrix, H(l) is the activations, and W (l) is

the weights.

This approach captures the complex interdependencies in

software requirements, enhancing the predictive

accuracy of the RNNRE model.

Model Training and Testing

Following the structural analysis with GCN-RIA, we

integrate the Transformer-based Multi- Aspect

Requirements Analysis (TMARA) for a comprehensive

linguistic analysis:

Consider a sequence of tokenized requirements R 𝑅 =

 {𝑟1, 𝑟2, . . . , 𝑟𝑛}.

Embed each token into a high-dimensional space,

obtaining embedding 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (6)

Employ the Transformer model’s self-attention

mechanism:

Q, K, V are query, key, and value matrices, and dk is

key dimensionality.

TMARA’s integration allows the model to consider

various linguistic aspects of software requirements,

providing a nuanced understanding essential for

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3110–3121 | 3115

accurate classification.

Model Evaluation/ Performance Metrics

In evaluating predictive models, accuracy and loss are

recommended as key performance metrics in the

literature [12]. Platforms like Python provide built-in

modules to support metrics such as loss, score, accuracy,

and utility functions for measuring classification

performance. We considered recall and accuracy scores

for binary classification, while for multi-class and multi-

label sort, the F1 score is crucial. The metrics are

defined as follows:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9)

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (10)

Where T P is the actual positive rate, T N is the actual

negative rate, FP is the false-positive rate, and FN is the

false-negative rate for a classifier across all classes.

For deep learning models, we define a loss function, such

as binary cross-entropy, to measure the accuracy metric

for binary classification, multi-label classification, and

many-to-one classification scenarios. This also applies to

multi-class methods with the output layer configured

with more than one unit and the activation function set

to ‘Softmax’.

Experimental Setup and Evaluation

We conducted two experiments for our analysis. The first

experiment evaluated the proposed RNN model’s

performance against two datasets (Labeled and

Unlabeled, EMR dataset), combined with an embedding

layer for flexible word embedding in neural networks

and text data. The experiments on the EMR dataset

assessed complexity from the perspectives of Precision,

Recall, and F1-score, varying the “Loss Function” and

“Activation Function.” The performance results are

presented in Table 3.

Algorithmic Representation of Deep Learning

Model Training and Evaluation

The subsequent algorithm delineates the process of

training and evaluating a deep learning model for

classification tasks. It outlines the initialization of pre-

trained embedding, tokenization, sequence mapping,

dataset partitioning, and the construction and training of

a recurrent neural network (RNN) with a long short-

term memory (LSTM) architecture.

Algorithm 1 Complex Deep Learning Classification Algorithm

1: START

2: Θ ← LoadPretrainedEmbeddings(V, L, d) ▷ V : vocabulary size,

 L: sequence length, d: embedding dimension

3: T ← Tokenize(T) ▷ T : Corpus of text

4: S ← MapToSequences(T)

5: D ← ∅ ▷ Data set

6: L ← ∅ ▷ Label set

7: where

8: D ← ExtractAcceptanceConditions(AC) ▷ AC: Acceptance conditions

9: L ← DefineRequirements(R) ▷ R: Requirements

 10: (Dtrain, Dtest, Ltrain, Ltest) ← PartitionDataSet(D, L)

11: Model ← InitializeRNNModel()

12: Model.Add(EmbeddingLayer(E, trainable=False)) ▷ Load embedding matrix E

13: Model.Add(LSTM(h)) ▷ Add LSTM layer with h hidden units

 14: Model.Add(Dense(K, activation = σ)) ▷ K: Number of classes, σ: activation function

15: Model.Compile(loss = L, optimizer = O) ▷ L: Loss function, O: Optimizer

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3110–3121 | 3116

16: Model.Fit(Dtrain, Ltrain)

17: Model.Evaluate(Dtest, Ltest)

18: END

Datasets and Hyper-Parameter Tuning

Datasets: In our experimental framework, we

concentrated on datasets with a lower-dimensional feature

space, where the dimensionality of the feature set p is

substantially lesser than the number of observations N,

typically denoted by p ≪ N. The dataset in question, the

EMR requirements specification dataset, is enumerated

in Table A within the appendix. This dataset

encapsulates 108 individual requirements alongside their

respective acceptance conditions (ACs). Each dataset

instance represents a distinct input level or a time step

within our model’s context.

Hyper-Parameter and Training: The hyper-parameters

selected for the experimental process include a minibatch

size 10, an epoch count of 50, a learning rate fixed at

0.001, and a dropout probability set to 0.2. The

embedding layer is instantiated with a max length of 16

and an embedding dimension of 32 units. Data

preparation involved extracting text from CSV files,

tokenizing this text, and creating sequences from the

processed words.

The global parameters utilized for the Recurrent

Neural Network Requirement engineering (RNNRE)

model are Embedding Dimension,32; MaxLength,16;

Neurons in OutputLayer,1; Optimizer, Adam; Activation

Functions, Sigmoid and Softmax; Performance

Functions, Binary cross-entropy and Categorical cross-

entropy.

Tensor Flow, a Python-based API engineered by Google,

was the foundation for constructing deep neural

networks. This platform’s intrinsic tools were

instrumental in evaluating and refining model

performance. Consistent with prevailing studies, we

utilized a sigmoid activation function at the output layer

for binary and multi-label classification tasks and a

soft-max activation function for multi-class

classification objectives [24]. Our experimental trials

spanned both labeled and unlabeled datasets, with

labeled data demanding the use of softmax due to

multiple class outputs, in contrast to the unlabeled

dataset, which necessitated the use of sigmoid for its

singular output class.

Sequential Approach Model

The architecture of the proposed model is compiled with

the loss function binary cross-entropy and employs the

optimizer Adam. Our model architecture consists of

three distinct layers:

An embedding layer transforms words into vector space

using pre-trained word embeddings, enabling the model

to understand the context of the words in the input data.

A dense, fully connected layer in which each neuron

receives input from all neurons in the previous layer,

thereby integrating signals across the network.

The output layer generates the final prediction for the

given inputs. This layer employs the sigmoid activation

function for binary and multi-label classification tasks to

output independent probabilities for each label.

The optimizer Adam is used for hyper-parameter tuning

because it efficiently handles sparse gradients on noisy

problems. A dropout rate 0.2 is integrated into the

network as a regularization technique to prevent

overfitting. The activation function relu is utilized in

all layers except the output layer due to its effectiveness

in addressing the vanishing gradient problem. In contrast,

the sigmoid activation is specifically chosen for the

output layer in binary and multi-label classifications,

facilitating the model to output probabilities

independently for each label without constraint on the

sum of these probabilities.

Result Analysis

Experiment Two: RNNRE Performance

on EMR Datasets

The classification tasks were executed on both labeled

and unlabeled datasets. Labeled datasets encompass low-

level requirements categorized into distinct classes based

on their attributes, while unlabeled datasets lack

predefined categorization.

A segment of the labeled dataset employed for

classification using LSTM is exemplified in Table 2.

Table 2: Sample of Labeled Dataset for Prediction

using LSTM

High

level

Requires

(HI.R)

Low-level

Requirements

(I.I.R)

Category Label

Search

Patient

The user can

search for a

Patient by name

or ID.

Search_Patient

Details

1

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3110–3121 | 3117

The system shall

display the

patient’s identity

details.

Search_Patient

Details

1

The user can

scan a barcoded

ID number to

find the Patient.

Input 2

Add

Patient

Details

The user can

register a new

patient with a

unique ID.

Generation

Report

3

Requirements Classification with Labeled

Data

Classification of requirements was performed using a

labeled dataset, which was structured to facilitate the

assignment of samples to generated labels. The efficacy

of this classification is evidenced by the outcomes

depicted in Fig.3, which elucidates the model’s accuracy

and loss when utilizing labeled data.

Fig.3. Training and validation accuracy and loss for

labelled data classification

Our model achieved commendable training accuracy,

surpassing 98%, suggesting a solid learning capacity from

the labeled dataset. However, it is imperative to note that

the validation/test accuracy averaged around 50%. This

disparity may indicate an overfitting scenario, wherein the

model’s predictions are highly accurate for the training

data yet fail to generalize to unseen data. Further

examination into recall and precision metrics revealed

values approaching 100%, indicative of the model’s

proficiency in correctly classifying the positive cases. To

gain deeper insights into the model’s ability to align

specific requirements with their corresponding predicted

classes, we subjected the last ten entries of the unlabeled

dataset— denoted as Xnew—to the trained model. This

subset, extracted from the dataset presented in the

appendix (see Table 4), is a test case to evaluate the model’s

predictive capabilities in a real-world scenario. The

predicted outcomes are given in Table 3.

Sample Predictions and Their Implications for

Requirements Assessment

The LSTM model was tasked with classifying a set of

previously unseen requirements (denoted as Xnew) from

the EMR system. These requirements range from

diagnostics to laboratory orders and patient follow-up

protocols. The model's predictions for these

requirements are delineated in Table 3.

Table 3.

Require

ment

No.

EMR Requirements Predicted

Category

95 The user can generate a

list of patients...

Search Patient

Details

93 Free text noncoded

diagnoses should be

avoided...

Generation

Report

103 The system shall

automatically generate

Order IDs

Generation

Report

97 The user can print the

lost to follow-up report

Generation

Report

100 The user can select

Laboratory tests...

Generation

Report

Practitioners can leverage these results to discern the

overt and subtle requirements pivotal for meticulous

project estimation [[19]]. Specifically, the model’s

ability to align needs with predicted categories facilitates

planning and prioritization based on domain expertise.

For instance, the clustering of requirements into Class 3

predominantly pertains to Clinical Documentation and

Reporting, indicating a nuanced level of complexity

associated with features related to clinical

documentation.

This adept classification underscores the potential of the

LSTM model in streamlining fea- ture implementation

planning. Nonetheless, the results also highlight the

necessity for a reason- able selection of a subset of unseen

data, which is crucial for rigorously evaluating the

predictive prowess of the model. The ensuing section

elaborates on a scenario where the model undergoes

evaluation using the entirety of the dataset.

Requirements Classification with Unlabeled

Data

Methodology and Dataset

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3110–3121 | 3118

In this exploratory phase, we employed an unlabeled

dataset comprising high-level requirements (HLR) and

their corresponding acceptance conditions, denoted as

low-level requirements (LLR). Our objective was to

discern how an RNN model would categorize

requirements in the absence of explicit labels. The

dataset, composed of 108 samples, was the basis for

gauging quality metrics such as accuracy, precision,

and recall.

Challenges of Unlabeled Data

While accurate, manual labeling can be excessively

labor-intensive and necessitate substantial domain

expertise. Conversely, classifying unlabeled datasets

streamlines the process but requires in-depth knowledge

for effective hyperparameter tuning. The potential for

overfitting presents a significant challenge, mainly when

dealing with limited datasets. Notwithstanding these

issues, our model achieved promising results, with

training accuracy surpassing 80% and validation metrics

approaching perfection.

Implications

The implications of these findings are profound,

especially when considering the scalability of the

approach to more extensive datasets and varied

requirement types. We anticipate extending our

methodology to include clustering techniques via

network science, such as network models and

community detection, to enhance our understanding of

requirement dependencies within software projects.

Fig.4 Model accuracy and loss with unlabeled data.

In-depth Discussion and Comparative

Synthesis

The results derived from our empirical evaluations

elucidate the complex dynamics that deep learning (DL)

and recurrent neural network-based requirements

engineering (RNNRE) could potentially introduce into

the requirements engineering (RE) process. The initial

experiment, which employed accuracy, precision, and

recall as surrogates for reliability, consistency, and

completeness, provided a sophisticated methodology for

evaluating software requirements’ intricate patterns and

integrity. Such a methodology is not merely procedural

but critical for the nuanced alignment of requirements

spanning explicit directives and implicit expectations

integral to effective software project planning.

The insights documented in Table 2 and Table 3

underscore the transformative influence of DL and

RNNRE as facilitators within the RE sphere.

However, the variability in performance across

different datasets accentuates the intricacy inherent in

applying these advanced computational models. This

underscores the necessity for a bespoke approach, where

DL models are finely tuned to the particularities and

semantic nuances of the dataset in question.

Our research approach did not fully explore the breadth

of hyper-parameter optimization, which suggests that

further enhancements could be realized. For instance,

expanding the deep learning architecture with additional

hidden layers or experimenting with alternative

activation functions could unveil more profound layers

of abstraction within the requirements, thereby

enhancing the model’s predictive accuracy and

interpretability.

This investigation provokes critical considerations for

industry adoption: Is manual labeling, which requires

meticulous expert intervention, sustainable in

burgeoning datasets? Alternatively, does the future

beckon toward paradigms such as semi-supervised or

unsupervised learning, which can extract structure from

unstructured data with minimal human oversight? In

scenarios involving unlabeled data, the integration of

visualization tools becomes essential. Such devices can

reveal the latent interdependencies within requirements,

thus enabling more informed and strategic decision-

making.

Our study ventures into unexplored territory by

employing self-labeled and unlabeled data in RNNRE

frameworks. Using the EMR certification dataset for

classification purposes represents an innovative

endeavor. Given the unique methodological path we

have embarked upon, direct comparisons with extant

research are not feasible. Nonetheless, our exploratory

efforts have uncovered valuable insights and established

a foundation for future research. The implications of our

findings are manifold, prompting further inquiry into

how these emerging technologies might be leveraged to

engender a more agile, effective, and insightful RE

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3110–3121 | 3119

process.

Conclusion and Future Work

This study has explored the intricacies of

Requirements Engineering (RE), mainly focusing on

integrating diverse stakeholder interests and the

challenges in accurately identifying and validating

requirements to meet business objectives. The

deployment of our Recurrent Neural Network for

Requirement Engineering (RNNRE) model represents a

significant methodological leap in effectively managing

the structural complexity of requirements. This

advancement enriches the tools available for RE,

contributing to a more nuanced mapping and

interpretation of needs.

Empirical evidence from our research underscores the

influence of granularity in mapping conditions to

requirements on classification accuracy. The RNNRE

model has demonstrated impressive performance,

aligning multi-level requirements with their

corresponding acceptance criteria and achieving quality

metrics—accuracy, precision, and recall—exceeding

81%. However, the constraints of the limited dataset size

and lack of diversity necessitate further empirical

validation to affirm the model’s robustness and broader

applicability. Future research directions include.

Dataset Expansion: Exploring more extensive and

diverse datasets to uncover more subtle aspects of

requirements complexity.

Class Balancing Techniques: Investigating different

techniques to enhance model performance, especially

in imbalanced classes.

Alternative Learning Paradigms: Experimenting with

unsupervised and semi-supervised learning methods to

deepen the understanding of data relationships.

Comparative Analysis: Conduct benchmarking studies

with established models and datasets to validate and

position the RNNRE model within the broader RE

context.

Our research will expand to include clustering

techniques on similar datasets to unearth the

interdependencies among various requirements. This

will help integrate classification and clustering

methodologies, improving decision-making in RE by

uncovering patterns not immediately visible through

classification. Such advancements are expected to push

the boundaries of machine learning applications in RE,

equipping practitioners with sophisticated analytical

tools for navigating the complexities of software

development.

Funding Information

This research received no specific grant from funding

agencies in the public, commercial, or not-for-profit

sectors.

Author’s Contributions

Justine Nakirijja, Conceptualization, Methodology,

Software, Data curation, coding, first draft Writing,

validation. Yahya Abid, methodology, Code review,

formal analysis, Review of all drafts/Writing, Validation.

Ravi Samikannu, formal analysis, review of all

drafts/writing, and validation. Lory Liza D. Bulay-og,

formal analysis, Review of all drafts/Writing,

Validation.

References

[1] Abualhaija, S., Arora, C., Sabetzadeh, M.,

Briand, L. C. & Traynor, M. Automated

demarcation of requirements in textual

specifications: a machine learning-based

approach. Empirical Software Engineering, 25

(2020), 5454–5497.

https://link.springer.com/article/10.1007/s10664

-020-09864-1

[2] Sleem, S., Capretz, L. F. & Ahmed, F.

Benchmarking machine learning tech- nologies

for software defect detection., 2015, https:arXiv

preprint arXiv:1506.07563.

https://doi.org/10.48550/arXiv.1506.07563

[3] Alrumaih, H., Mirza, A. & Alsalamah, H.

Domain ontology for requirements classi- fication

in a requirements engineering context. IEEE

Access, 8 (2020), 89899–89908.

https://ieeexplore.ieee.org/document/9091131

[4] AlOmar, E., A., Mkaouer, W., M., Newman, C.

& Ouni, A. On preserving the behavior in

software refactoring: A systematic mapping study.

Information and Software Technology, 140 (2021),

no. 2, 459–502.

https://doi.org/10.1016/j.infsof.2021.106675

[5] Barry-Straume, J., Tschannen, A., Engels, D. W.

& Fine, E. An evaluation of training size impacts

validation accuracy for optimized convolutional

neural networks. SMU Data Sci- ence Review, 1

(2018), no. 1, 12.

https://scholar.smu.edu/datasciencereview/vol1/iss

4/12.

[6] Maciejauskaitė , M. & Miliauskaitė , J. (2024). The

efficiency of machine learning algorithms in

classifying non-functional requirements. New

https://link.springer.com/article/10.1007/s10664-020-09864-1
https://link.springer.com/article/10.1007/s10664-020-09864-1
https://doi.org/10.48550/arXiv.1506.07563
https://ieeexplore.ieee.org/document/9091131
https://doi.org/10.1016/j.infsof.2021.106675
https://scholar.smu.edu/datasciencereview/vol1/iss4/12
https://scholar.smu.edu/datasciencereview/vol1/iss4/12

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3110–3121 | 3120

Trends in Computer Sciences, 2(1), 46–56.

https://doi.org/10.3846/ntcs.2024.21574

[7] Patel, V., Mehta, P. & Lavingia, K. Software

Requirement Classification Using Ma- chine

Learning Algorithms. Proceedings of the 2023,

nternational Conference on Artifi- cial

Intelligence and Applications (ICAIA) Alliance

Technology Conference (ATCON-1).

https://ieeexplore.ieee.org/document/10169588

[8] Damasiotis, V., Fitsilis, P., Considine, P. &

Kane, O. J. Analysis of software project

complexity factors. Proceedings of the 2017

International Conference on Management

Engineering, Software Engineering and Service

Sciences, 2017, 54–58.

https://dl.acm.org/doi/pdf/10.1145/3034950.303

4989

[9] Fitsilis, P. Measuring the complexity of software

projects. 2009 WRI World Congress on

Computer Science and Information Engineering, 7

(2009), 644–648.

http://dx.doi.org/10.1109/CSIE.2009.936

[10] Gupta, Varun and Fernandez-Crehuet, Jose Maria

and Hanne, Thomas and Telesko, Rainer.

Requirements engineering in software startups: A

systematic mapping study. Ap- plied Sciences, 10

(2020), no. 17, 6125.

http://dx.doi.org/10.3390/app10176125

[11] Hey, T., Keim, J., Koziolek, A. & Tichy, W. F.

Norbert: Transfer learning for requirements

classification—2020 IEEE 28th International

Requirements Engineering Conference (RE)

2020, 169–179.

https://doi.org/10.1109/RE48521.2020.00028

[12] Hossin, M. & Sulaiman, M. N. A review on

evaluation metrics for data classification eval-

uations.International journal of data mining &

knowledge management process., 2015, https://DOI

: 10.5121/ijdkp.2015.5201.

[13] Ismail, F. H., Forestier, G., Weber, J., Idoumghar,

L. & Muller, P. A. Deep learning for time series

classification: a review. Data mining and

knowledge discovery, 33 (2019), 917–963.

https://doi.org/10.1007/s10618-019-00619-

[14] Jiao, J. & Chen, C. H. Customer requirement

management in product develop- ment: a review

of research issues. Concurrent Engineering, 14

(2006), no. 3, 173–185.

http://dx.doi.org/10.1177/1063293X06068357

[15] Khattak, F. K., Jeblee, S., Pou-Prom, C.,

Abdalla, M., Meaney, C. & Rudzicz, F. A survey

of word embeddings for clinical text. Journal of

Biomedical Informatics, 100 (2019), 100057.

https://doi.org/10.1016/j.yjbinx.2019.100057

[16] Kowsari, K., Jafari, M. K., Heidarysafa,

M., Mendu, S., Barnes, L. & Brown, D.

Text classification algorithms: A survey.

Information, 10 (2019), no. 4, 150.

https://doi.org/10.3390/info10040150

[17] Li, C., Huang, L., Ge, J., Luo, B. & Ng, V.

Automatically classifying user requests in

crowdsourcing requirements engineering. Journal

of Systems and Software, 138 (2018), 108–123.

https://doi.org/10.1016/j.jss.2017.12.028

[18] Maxwell, A., Li, R., Yang, B., Weng, H., Ou, A.,

Hong, H., Zhou, Z., Gong, P. & Zhang, C. Deep

learning architectures for multi-label classification

of intelligent health risk prediction.

BMC bioinformatics, 18 (2017), 121–131.

https://doi.org/10.1186/s12859-017-1898-z

[19] Onyeka, E. A process framework for managing

implicit requirements using analogy-based

reasoning: Doctoral consortium paper. IEEE 7th

International Conference on Research Challenges

in Information Science (RCIS), 2013, 1–5.

https://ieeexplore.ieee.org/document/6577726

[20] Rahman, M. A., Haque, M. A., Tawhid, M. N. A.

& Siddik, M. S. Classifying non-functional

requirements using RNN variants for quality

software development. Proceedings of the 3rd ACM

SIGSOFT International Workshop on Machine

Learning Techniques for Software Quality

Evaluation, 2019, 25–30.

https://doi.org/10.1145/3340482.3342745

[21] Khurana, D., Koli, A., Khatter, K. et al.

Natural language processing: state of the art,

current trends and challenges. Multimed Tools Appl

82, 3713–3744 (2023).

https://doi.org/10.1007/s11042-022-13428-4

[22] Randell, A., Spellman, E., Ulrich, W. &

Wallk, J. Leveraging business architec- ture to

improve business requirements analysis.

Business Architecture Guild, 2014.

https://cdn.ymaws.com/www.businessarchitectu

reguild.org

[23] Rasheed, A., Zafar, B., Shehryar, T., Aslam, N.

A., Sajid, M., Ali, N., Dar, S. H & Khalid, S.

http://dx.doi.org/10.1109/CSIE.2009.936
http://dx.doi.org/10.3390/app10176125
https://doi.org/10.1007/s10618-019-00619-
http://dx.doi.org/10.1177/1063293X06068357
https://doi.org/10.1016/j.yjbinx.2019.100057
http://www.businessarchitectureguild.org/
http://www.businessarchitectureguild.org/
http://www.businessarchitectureguild.org/
http://www.businessarchitectureguild.org/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3110–3121 | 3121

Requirement engineering challenges in agile

software development. Mathematical Problems in

Engineering, 2021 (2021), 1–18.

https://doi.org/10.1155/2021/6696695

[24] Ren, Y., Zhao, P., Sheng, Y., Yao, D. & Xu, Z.

Robust softmax regression for multi-class

classification with self-paced learning. Proceedings

of the 26th International Joint Confer- ence on

Artificial Intelligence, 2017, 2641–2647.

https://doi.org/10.24963/ijcai.2017/368

[25] Rodriguez, S., Thangarajah, J. & Winikoff, M.

User and System Stories: an agile approach for

managing requirements in AOSE. Open Access

Te Herenga Waka-Victoria University of

Wellington, 2021.

https://doi.org/10.26686/wgtn.14527758.v1

[26] San Cristóbal, J. R., Carral, L., Diaz, E.,

Fraguela, J. A., Iglesias, G. & oth- ers.

Complexity and project management: A general

overview. Complexity, 2018.

https://api.semanticscholar.org/CorpusID:53098

515

[27] Shabi, J., Reich, Y., Robinzon, R. & Mirer, T. A

decision support model to manage

overspecification in system development projects.

Journal of Engineering Design, 32 (2021), no. 7,

323–345.

https://doi.org/10.1080/09544828.2021.190897

[28] Torfi, A., Shirvani, R. A., Keneshloo, Y., Tavaf,

N. & Fox, E. A. Natural language processing

advancements by deep learning: A survey., 2020,

https://arXiv preprint arXiv:2003.01200.

[29] Wallace, D. R. & Cherniavsky, J. C. Guide to

software acceptance. DIANE Publishing, 1990.

https://api.semanticscholar.org/CorpusID:56489

605

[30] Winkler, J. P., Grönberg, J. & Vogelsang, A.

Predicting How to Test Requirements: An

Automated Approach. 2019 IEEE 27th

International Requirements Engineering

Conference (RE), 2019, 120–130.

https://ieeexplore.ieee.org/document/8920404

[31] Zhao, L., Alhoshan, W., Ferrari, A. & Letsholo,

K. J. Classification of natural lan- guage

processing techniques for requirements

engineering., 2022, https://arXiv preprint

arXiv:2204.04282.

https://doi.org/10.26686/wgtn.14527758.v1
https://api.semanticscholar.org/CorpusID:53098515
https://api.semanticscholar.org/CorpusID:53098515
https://doi.org/10.1080/09544828.2021.190897
https://api.semanticscholar.org/CorpusID:56489605
https://api.semanticscholar.org/CorpusID:56489605
https://ieeexplore.ieee.org/document/8920404

