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Abstract: The inherent complexity of software requirements poses significant challenges in project planning and quality assurance. This
research addresses these challenges by enhancing the classification of software requirements. It explores the dynamic relationships between
requirements and their associated acceptance criteria through advanced deep-learning methods. The primary objective is to improve the
accuracy and efficiency of requirements classification, thereby contributing to more effective project management and development
processes. We propose a novel approach using a Recurrent Neural Network for Requirement Engineering (RNNRE) model. This model
integrates natural language processing to analyze and process complex, multilevel requirements’ temporal and functional dynamics. Our
methodology is rigorously tested on the Baseline EMR, a comprehensive real-world dataset, to assess the model’s effectiveness and
accuracy in classifying software requirements. Results: The study reveals that finer granularity in requirement conditions substantially
influences classification outcomes, impacting the precision of acceptance statements. The RNNRE model demonstrates robust
performance, achieving an accuracy of 82.6%, a recall rate of 80%, and a precision of 100%. These results notably surpass the performance
of several benchmarked state-of-the-art models, showcasing the model’s effectiveness in handling complex requirement scenarios. The
RNNRE model marks a significant advancement in refining the requirements engineering process, particularly for intricate and multileveled
requirements. This research demonstrates the practical application of deep learning in requirements classification. It contributes valuable
insights to the field, enhancing the understanding and methodology of managing structural complexity in software requirements
engineering.
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variably to single or multiple needs. Such variability
necessitates meticulous trackingfrom the initial planning
stages to the final sign-off. The project’s ultimate goals,
aligning withuser satisfaction and product requirements,
hinge on the quality expectations set out by theseACs
[14]. Moreover, the granularity of ACs can vary
significantly, leading to potential issueswith class
imbalance and the challenge of accurately classifying
and mapping requirements. This point becomes
increasingly complex with advancing technology and
evolving user expectations. Current methodologies for
handling complex systems in software engineering
address various aspects of this complexity [8, 9, 10, 26].

Introduction

The success of software projects is intricately linked to
satisfying customer expectations, a determination often
formalized through acceptance testing at project
completion [29]. However, the seeds of success are
sown much earlier in the project lifecycle, specifically
during the pre-development acceptance planning
conducted jointly by the project team and the customer.
This process establishes the acceptance conditions (AC),
which define the detailed quality benchmarks for each
requirement and shape the eventual user perception and
satisfaction [25].

This relationship between requirements and their
acceptance conditions is complex, as ACscan apply
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Yet, there is a notable gap in addressing the intrinsic and
extrinsic complexities that originate from the nuanced
requirements structure in alignment withACs. This gap
is particularly evident in agile project environments,
where the rapid deliveryof high-quality software is
paramount [23]. They identified critical reasons for
project failures,as illustrated by poor user input at 13%,
incomplete requirements at 12%, changing requirements
at 12%, poor starting at 6%, inadequate technical skills
at 7%, and others at 50%. As such,there is a vital need
for innovative approaches to adeptly manage the
structural complexities within requirements sets. The

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(4), 3110 3121 | 3110



researcher [22] noted that “70% of software projects fail
due to poor requirements with an associated rework
spend just north of $45 billion annually”.

In this paper, we present a novel approach that leverages
the robust capabilities of deep learning to enhance the
requirements of the engineering process. By focusing on
the alignment of ACs with their corresponding
requirements, our research offers a method to navigate
the complexitypresented by varied AC granularity levels.
We introduce a model that not only aids in classifying
requirements but also in recognizing their acceptance for
project planning purposes. This work, therefore,
contributes to the ongoing pursuit of sophisticated
models that can be seamlessly integrated within the
requirements engineering framework to ensure the
delivery of quality software products that meet or
exceed stakeholder expectations.

In this study, we regard this as structural complexity
within a requirement dataset that has to be controlled
to mitigate the risk of dissatisfaction with the end
product. We inferthat the continued lack of a mechanism
to track and manage this structural complexity within
requirements impacts the quality of a condition and the
downstream processes immensely.

Literature Review
Natural Language Processing

Natural Language Processing (NLP) and Information
Retrieval (IR) techniques have been applied to address
some of these challenges, including improving
information (in this case, requirements) tracing. NLP
applies to “Shallow Knowledge” from requirement
text, tracing therelationship among conditions [31].

Natural language processing is a branch of artificial
intelligence that enables computers to understand,
manipulate, and interpret human language [28]. A
common component of NLPis artificial intelligence text
analysis, which defines extracting information from
extensive text data, also known as text mining [21]. Text
mining converts unstructured data into structured data for
machine learning [28]. With machine learning, Natural
language processing (NLP) involves manually
identifying critical text sections or labeling readers. It can
locate sentiments,speech parts, proper nouns, and text
in images, PDFs, and other documents.

NLP Techniques

Natural Language Processing (NLP) uses two
techniques, syntactic analytics and semantic analysis, to
help computers understand text.

Syntactic Analysis or Parsing examines text using basic
grammatical principles to detect sentence structure, word
arrangement, and how they connect. The major subtasks
for this technique include:

Tokenization: Involves dividing a text into smaller pieces
called tokens (which may be phrases or words) to
simplify material handling.

Part of Speech Tagging: Labels tokens like verbs,
adverbs, adjectives, nouns, etc. This helps determine the
meaning of words (for example, the term “book” refers
to different objects, whether employed as a verb or a
noun).

Lemmatization and Stemming reduce inflected phrases
and derivationally related forms of words to their base
form to facilitate analysis.

Stop-word Removal: Often eliminates words that do not
contribute value, such as “I,” “they,” “have,” and others.

The semantic analysis relies on capturing the meaning
of the text. It utilizes the syntaxtree (i.e., structures
such as phrases, clauses, sentences, and texts) generated
in the parsing process to interpret language-independent
meanings. Initially, it will examine the significanceof
each word (lexical semantics) [28]. Then, the
arrangement of words and what they signify is reviewed
in context. The primary task of semantic analysis
includes determining the meaningof the given sentence
and representing that meaning in an appropriate form.

However, these generally require human effort to analyze
and create requirements-based features. Subsequently,
machine learning approaches, particularly classification,
show promise. Several ML-related techniques have been
developed to manage the identification and classification
of non-functional requirements (NFRs) in requirements
documents [6]. [2] the most used supervised learning
algorithms in the literature are Support Vector Machine,
naive Bayes, Decision Tree, K-nearest Neighbor, and
Random Forest.

Related Work

Several studies have been proposed to handle challenges
that lead to the misclassification of textual requirements,
as critical studies presented in Table 1.
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Table 1.

Research focus Techniques Data used Performance/ Limitations
used Results
A hybrid approach with | Not stated
. . | artificial
Ontologies to classify . §ever§ arimicia .
. . Requirements intelligence techniques
the requirements in e
Classification Not that
the RE context .
. . ontology Applicable RCO can be used to
(Alrmuaih, Mirza and (RCO) automate the
Alsalamah, 2020) .
requirements
classification process
Mostly used
SLR on automatic NLP tools, More
classification of WEKA in-built Not contribution is
software requirements | tools, SVM, . Not Applicable . .

. Mentioned still needed in
(Bagais and Alshayeb, | MNB, LR, this research
2020) K-NN, J48,

CNN
Text feature Comparison imbalance and
extraction techniques, | of (BoW) vs. . e . smaller dataset
. Binary classification: F- | .
with Non- (TF-IDF) vs. influence the
. Measure 91, general e .
functional (CHI2), Labeled e . classification
. . classification 0.78 and
requirements Algorithms: data 0.74 in NE performance
(Canedo and Mendes, | (LR), (SVM), cllassification results in a
2020) (MNB) and machine learning
(KNN) environment

Requirements classification (RC) using analysis of
textual natural language is the trend tosolve numerous
software engineering challenges. As indicated in Table 1,
the most recent study points to using artificial
intelligence as a suitable alternative. Even the
systematic literaturereview shows that several studies
on classifying requirements using machine learning and
deep learning, such as [3] applied convolutional
neural network CNN, still recommend furtherstudies
with other deep learning techniques. Some studies, as
in [4], focused on RC modelingusing a small dataset
with class imbalance but observed that this impacts the
model performance [7, 17]—the researchers in [1]
compared RNN and CNN performance on a small
dataset. In [11], BERT’s deep learning technique was
enhanced into NOBERT, with transfer learning
focusedon binary and multiclass classification. Other
researchers [20] used LSTM and GRU with thesmall
and class-imbalanced dataset. The work in [16]
presented points to guide the selection oftechniques that
can be applied in constructing classification models.
While this all is promisingwork for RC, the interest of
this study was to evaluate RNN with large,
multileveled networks.RNN models are widely used

in classification studies such as [1, 30]. RNNs are
neural networks specializing in processing sequences
and are often used in Natural Language Processing
(NLP) tasks because of their effectiveness in handling
text. Most vanilla neural nets andConvolutional Neural
Networks (CNNs) usually work with predetermined
sizes, and they take fixed-size inputs and produce
fixed-size outputs. With this flexibility that allows for
variable-length sequences (as both inputs and outputs),
we applied an RNN’s many-to-one (M1RNN),
explicitly using RNN’s variant, the LSTM, to examine
the relationships between requirements and the
associated ACs in a many-to-one connection.

Long Short-Term Memory

Long-short-term memory (LSTM) networks are a type of
recurrent neural network capable of learning order
dependence in sequence prediction problems. Unlike
traditional RNNs, which may struggle with long-range
dependencies due to vanishing or exploding gradients,
LSTMsare designed to retain information efficiently for
extended periods. They achieve this througha complex
architecture comprising memory cells and various gates:
forget, input, and output gates, each playing a distinct
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role in managing the flow of information.
Forget Gate

The forget gate, also known as the remember vector,
determines how much previous informationis retained for
future steps. It uses a sigmoid function to output a value
between 0 and 1, indicating the proportion of each
component of the cell state to be forgotten.

Input Gate

The input gate is responsible for updating the cell state.
It decides the degree of importancefor new information
to be added to the current state, using a sigmoid function
to filter values and a tanh function to scale them within
a range of -1 to 1.

Output Gate

The output gate defines the next hidden state, which
carries information about previous inputs. The current
state and the last hidden state are fed into a sigmoid
function, and the new cell state is processed through a
tanh function. Their product determines the information
to be included in the hidden form.

LSTMs are particularly well-suited for handling
multivariate time-series data, as they canmap multiple
inputs to a single output, manage varying numbers of
time steps, and handle variable-length inputs. This
flexibility allows them to capture temporal dependencies
effectively. The mathematical model of an LSTM can be
expressed through a series of equations representing the
operations within the memory cells and gates:

Vtp = ther — ty (1)

Given that xin is a row vector with P dimensions, the
prediction model can be described asfollows:

ytN-f—l = f(xtl, sz ...,atN, AtlAtz ...,AtN) (2)

The behavior of the LSTM at any time step t is
governed by:

he = o(Wyx + Upheq + by) (3)
Ye = U(W}ht + by) (4)

Where o represents the activation function, and Wh, U,
bn, Wy, by are the weights and biases of the network.
These equations are iteratively applied to process
sequences, and predictions are made based on learned
temporal dependencies.

Methodology: Recurrent Neural
Requirement Engineering (RNNRE)

Networks for

Research Context of RNN

Predictive classification modeling is essential in
predicting a future value based on historicaldata at the
preceding time step. This process necessitates the

preparation of input and output pairs given the time
series data. Formally, time series classification is
defined as follows:

Definition 1: A univariate time series X =
[X1,X5,...,X,] is an ordered set of acceptance
conditions (ACs). The length of X, denoted as |X|,
equals the number of fundamental values N.
Definition 2: An M-dimensional multivariate time
series (MTS), [Xy, X5, ..., X;,],, consists of M different
univariate time series requirements (R), each with X' €
RN,

Definition 3: A dataset D =
{X, 1), (X5, Y5),...,(Xy, Yy)} is a collection of
pairs (Xi, Yi), where X; could either be a univariate or a
multivariate time series AC, and Yi; is its corresponding
one-hot label vector. For a dataset with K classes, the
one-hot label vector Y; is a K-dimensional vector where
the j-th element is 1 if the class of X is j, and O
otherwise.

Classification involving time series data is performed by
training a classifier to learn from a dataset using a
probability distribution and then using it to relate ACs
with requirements [13].

Phase of RNNRE

The methodology for RNNRE is characterized by a
process divided into the following fourphases:

1. Data pre-processing.

2. Word Vectorization and Labelling.

3. RNN model construction.

4. Model Training and Testing to align

Requirements to ACs.

The Fig.1 shows the Representation of an alignment of
requirement(S) to acceptance conditions (AC)

Reauirement ACs
HUI*I‘}“'T-‘*' * Meroine of natient
merging |
of = Meroing recorde |
duplicate

*| Must allow user to

Fig.1. Representation of an alignment of requirement(S)
to acceptance conditions (AC)
Procedural Flow

Building this classification model involves a four-
phased process, as illustrated in Fig.2.
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Fig.2. Procedural phases for Multileveled
Requirements Classification

Phase 1: Data Pre-Processing

The initial step in this framework is cleaning and
preprocessing the software requirement dataset. This
stage is preceded by data acquisition and includes
removing special characters, stop words, case-folding,
lemmatization, and tokenization. The outcome is that the
data is well-cleaned and ready for the learning
environment.

Phase 2: Word Vectorization/Labeling

Word vectorization converts sentences into a computer-
understandable format for deep-learning models that
cannot process natural language. This process is crucial
for enabling pattern recognition within the data. The text
of the requirements is transformed into word vectors
using the word2vec model, explicitly utilizing the
skip-gram approach for feature extraction. In this
context, word2vec maps a word to a vector v € R,
where R represents the set of real numbers. Thus, the
transformation of a sentence can be represented by a

matrix m € R"*! where n is the embedded vector size

and | is the length of the sentence.

This study employed embeddings from language models,
particularly ELMo, for word embedding [15]. ELMo
considers the entire sentence context to assign each word
a unique embedding and functions as a bidirectional
RNN trained on a specific task to generate these
embedding [15]. The resulting individual word vectors
populate an embedding matrix, the dimensions of which
are determined by the vocabulary size and the
embedding extent.

Phase 3: RNN Model Construction

We utilize an LSTM network for the RNN model,
composed of:

Input Layer: Prepares the model input with sequence
length and embedding dimension.

Hidden Layer: Employs LSTM units with dropout
to reduce overfitting.

Output Layer: Uses activation functions like softmax
and sigmoid to output the finalclassification.

Phase 4: Model Training and Testing

The model is trained and tested using various training-
testing split ratios. The performance is analyzed as the
proportion of testing data varies.

Extension to GCN-RIA for Structural Analysis
Following the RNN model construction, we extend our
approach with the Graph Convolutional Networks for
Requirements Interdependency Analysis (GCN-RIA) to
capture the structural dependencies among requirements.
Given a graph G = (V, E) representing the
interdependencies among software requirements:

Let V be the set of nodes (requirements) and E the set
of edges (dependencies).

Each node vi € V has a feature vector Xx;.

The graph convolution operation at layer | is defined as:

Bl 5 éD'%AD'%H(l)WU)) ©)

A= A+ | is the adjacency matrix with self-connections,
D is the degree matrix, H is the activations, and W (1) is
the weights.

This approach captures the complex interdependencies in
software requirements, enhancing the predictive
accuracy of the RNNRE model.

Model Training and Testing

Following the structural analysis with GCN-RIA, we
integrate  the  Transformer-based Multi- Aspect
Requirements Analysis (TMARA) for a comprehensive
linguistic analysis:

Consider a sequence of tokenized requirements R R =
{r,ry,..., 1}

Embed each token into a high-dimensional space,
obtaining embedding E = {ey,e,,...,e,}.

Attention(Q,K,V ) ft (QKT) V(6)
ention(Q, K, = softmax
v

Employ the Transformer model’s self-attention

mechanism:

Q, K, V are query, key, and value matrices, and di is
key dimensionality.

TMARA’s integration allows the model to consider
various linguistic aspects of softwarerequirements,
providing a nuanced understanding essential for
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accurate classification.
Model Evaluation/ Performance Metrics

In evaluating predictive models, accuracy and loss are
recommended as key performance metrics in the
literature [12]. Platforms like Python provide built-in
modules to support metrics suchas loss, score, accuracy,
and utility functions for measuring classification
performance. We considered recall and accuracy scores
for binary classification, while for multi-class and multi-
label sort, the F1 score is crucial. The metrics are
defined as follows:

TP+TN
Accuracy = —————— @)
TP+TN+FP+FN
TP
Recall = (8)
TP+FN
.. TP
Precision = —— 9
TP+FP
2XPrecisionxXRecall
F1Score = ——F————— (20)
Precision+Recall

Where T P is the actual positive rate, T N is the actual
negative rate, FP is the false-positive rate, and FN is the
false-negative rate for a classifier across all classes.

For deep learning models, we define a loss function, such
as binary cross-entropy, to measure the accuracy metric
for binary classification, multi-label classification, and
many-to-one classification scenarios. This also applies to

multi-class methods with the output layer configured
with more than one unit and the activation function set
to ‘Softmax’.

Experimental Setup and Evaluation

We conducted two experiments for our analysis. The first
experiment evaluated the proposed RNN model’s
performance against two datasets (Labeled and
Unlabeled, EMR dataset), combined with an embedding
layer for flexible word embedding in neural networks
and text data. The experiments on the EMR dataset
assessed complexity from the perspectives of Precision,
Recall, and Fl-score, varying the “Loss Function” and
The performance results are

2

“Activation Function.
presented in Table 3.

Algorithmic Representation of Deep Learning
Model Training and Evaluation

The subsequent algorithm delineates the process of
training and evaluating a deep learning model for
classification tasks. It outlines the initialization of pre-
trained embedding, tokenization, sequence mapping,
dataset partitioning, and the construction and training of
a recurrent neural network (RNN) with a long short-
term memory (LSTM) architecture.

Algorithm 1 Complex Deep Learning Classification Algorithm

1: START
2: ©® « LoadPretrainedEmbeddings(V, L, d)

T « Tokenize(T)
: S « MapToSequences(T)

D0

: where

> V: vocabulary size,

L:

sequence length, d:embedding dimension

> T: Corpus of text

> Data set
> Label set

D « ExtractAcceptanceConditions(AC) > AC: Acceptance conditions

3
4
5
6: L—0
7
8
9

L < DefineRequirements(R)

10: (Drrain, Dtest, Ltrain, Ltest) <— PartitionDataSet(D, L)

11: Model « InitializeRNNModel()

12:  Model.Add(EmbeddingLayer(E, trainable=False))
13: Model. Add(LSTM(h))
14: Model.Add(Dense(K, activation = 6))

15: Model.Compile(loss = L, optimizer = O)

> R: Requirements

> Load embedding matrix E

> Add LSTM layer with h hidden units

> K: Number of classes, o: activation function

D> L: Loss function, O: Optimizer
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16 ModeI.Fit(Dtrain, Ltrain)
17: Model.Evaluate(Diest, Ltest)
18: END

Datasets and Hyper-Parameter Tuning

Datasets: In  our experimental framework, we
concentrated on datasets with a lower-dimensionalfeature
space, where the dimensionality of the feature set p is
substantially lesser than the number of observations N,
typically denoted by p << N. The dataset in question, the
EMR requirements specification dataset, is enumerated
in Table A within the appendix. This dataset
encapsulates 108 individual requirements alongside their
respective acceptance conditions (ACs). Each dataset
instance represents a distinct input level or a time step
within our model’s context.

Hyper-Parameter and Training: The hyper-parameters
selected for the experimental process include a minibatch
size 10, an epoch count of 50, a learning rate fixed at
0.001, and a dropout probability set to 0.2. The
embedding layer is instantiated with a max length of 16
and an embedding dimension of 32 units. Data
preparation involved extracting text from CSV files,
tokenizing this text, and creating sequences from the
processed words.

The global parameters utilized for the Recurrent
Neural Network Requirement engineering (RNNRE)
model are Embedding Dimension,32; MaxLength,16;
Neurons in OutputLayer,1; Optimizer, Adam; Activation
Functions, Sigmoid and Softmax; Performance
Functions, Binary cross-entropy and Categorical cross-
entropy.

Tensor Flow, a Python-based API engineered by Google,
was the foundation for constructing deep neural
networks. This platform’s intrinsic tools were
instrumental in evaluating and refining model
performance. Consistent with prevailing studies, we
utilized a sigmoid activation function at the output layer
for binary and multi-label classification tasks and a
soft-max  activation  function for  multi-class
classification objectives [24]. Our experimental trials
spanned both labeled and unlabeled datasets, with
labeled data demanding the use of softmax due to
multiple class outputs, in contrast to the unlabeled
dataset, which necessitated the use of sigmoid for its
singular output class.

Sequential Approach Model

The architecture of the proposed model is compiled with
the loss function binary cross-entropy and employs the
optimizer Adam. Our model architecture consists of

three distinct layers:

An embedding layer transforms words into vector space
using pre-trained word embeddings, enabling the model
to understand the context of the words in the input data.

A dense, fully connected layer in which each neuron
receives input from all neurons in the previous layer,
thereby integrating signals across the network.

The output layer generates the final prediction for the
given inputs. This layer employs the sigmoid activation
function for binary and multi-label classification tasks to
output independent probabilities for each label.

The optimizer Adam is used for hyper-parameter tuning
because it efficiently handles sparse gradients on noisy
problems. A dropout rate 0.2 is integrated into the
network asa regularization technique to prevent
overfitting. The activation function relu is utilized in
all layers except the output layer due to its effectiveness
in addressing the vanishing gradient problem. In contrast,
the sigmoid activation is specifically chosen for the
output layer in binary and multi-label classifications,
facilitating the model to output probabilities
independently for each label without constraint on the
sum of these probabilities.

Result Analysis
Experiment Two: RNNRE Performance
on EMR Datasets

The classification tasks were executed on both labeled
and unlabeled datasets. Labeled datasetsencompass low-
level requirements categorized into distinct classes based
on their attributes, while unlabeled datasets lack
predefined categorization.

A segment of the labeled dataset employed for
classification using LSTM is exemplified in Table 2.

Table 2: Sample of Labeled Dataset for Prediction

using LSTM

High Low-level Category Label
level Requirements
Requires (l.I.R)
(HI.R)
Search The wuser can Search Patient 1
Patient search for a Details

Patient by name

or ID.
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The system shall
display the
patient’s identity
details.

The wuser can Input 2
scan a barcoded

ID number to

find the Patient.

Search_Patient 1
Details

Add The user can

Patient register a new

Details patient with a
unique 1D.

Generation 3
Report

Requirements Classification with Labeled
Data

Classification of requirements was performed using a
labeled dataset, which was structured to facilitate the
assignment of samples to generated labels. The efficacy
of this classification is evidenced by the outcomes
depicted in Fig.3, which elucidates the model’s accuracy
and losswhen utilizing labeled data.

Training and Validation Accuracy Training and Vakdation Loss

¢¢¢¢¢
,,,,,

Fig.3. Training and validation accuracy and loss for
labelled data classification

Our model achieved commendable training accuracy,
surpassing 98%, suggesting a solidlearning capacity from
the labeled dataset. However, it is imperative to note that
the validation/test accuracy averaged around 50%. This
disparity may indicate an overfitting scenario,wherein the
model’s predictions are highly accurate for the training
data yet fail to generalize tounseen data. Further
examination into recall and precision metrics revealed
values approaching 100%, indicative of the model’s
proficiency in correctly classifying the positive cases.To
gain deeper insights into the model’s ability to align
specific requirements with their corresponding predicted
classes, we subjected the last ten entries of the unlabeled
dataset—denoted as Xnew—to the trained model. This
subset, extracted from the dataset presented inthe
appendix (see Table 4), is a test case to evaluate the model’s

predictive capabilities in a real-world scenario. The
predicted outcomes are given in Table 3.

Sample Predictions and Their Implications for
Requirements Assessment

The LSTM model was tasked with classifying a set of
previously unseen requirements (denoted as Xnew) from
the EMR system. These requirements range from
diagnostics to laboratory orders and patient follow-up
protocols. The model's predictions for these
requirements aredelineated in Table 3.

Table 3.
Require EMR Requirements Predicted
ment Category
No.
95 The user can generate a Search Patient
list of patients... Details
93 Free text noncoded Generation
diagnoses should be Report
avoided...
103  The system shall Generation
automatically generate  Report
Order IDs
97 The user can print the  Generation
lost to follow-up report  Report
100  The user can select Generation
Laboratory tests... Report

Practitioners can leverage these results to discern the
overt and subtle requirements pivotal for meticulous
project estimation [[19]]. Specifically, the model’s
ability to align needs with predicted categories facilitates
planning and prioritization based on domain expertise.
For instance,the clustering of requirements into Class 3
predominantly pertains to Clinical Documentation and
Reporting, indicating a nuanced level of complexity
associated with  features related to clinical
documentation.

This adept classification underscores the potential of the
LSTM model in streamlining fea- ture implementation
planning. Nonetheless, the results also highlight the
necessity for a reason-able selection of a subset of unseen
data, which is crucial for rigorously evaluating the
predictive prowess of the model. The ensuing section
elaborates on a scenario where the model undergoes
evaluation using the entirety of the dataset.

Requirements Classification with Unlabeled
Data

Methodology and Dataset
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In this exploratory phase, we employed an unlabeled
dataset comprising high-level requirements (HLR) and
their corresponding acceptance conditions, denoted as
low-level requirements (LLR). Our objective was to
discern how an RNN model would categorize
requirements in the absence of explicit labels. The
dataset, composed of 108 samples, was the basis for
gauging quality metrics such as accuracy, precision,
and recall.

Challenges of Unlabeled Data

While accurate, manual labeling can be excessively
labor-intensive and necessitate substantial domain
expertise. Conversely, classifying unlabeled datasets
streamlines the process but requires in-depth knowledge
for effective hyperparameter tuning. The potential for
overfitting presents asignificant challenge, mainly when
dealing with limited datasets. Notwithstanding these
issues, our model achieved promising results, with
training accuracy surpassing 80% and validation metrics
approaching perfection.

Implications

The implications of these findings are profound,
especially when considering the scalability of the
approach to more extensive datasets and varied
requirement types. We anticipate extending our
methodology to include clustering techniques via
network science, such as network models and
community detection, to enhance our understanding of
requirement dependencies within software projects.

Training and Validation Accuracy Training and Validation Loss

e Training Loss
Validation Loss

\
|
Bl ”m i “‘
H‘\\)}‘ | M ,“‘

| :

=

—

U ) | ||

= Training Accuracy \J
05 Validation Accuracy 025 ! ! v

) R ]
epochs

Fig.4 Model accuracy and loss with unlabeled data.

In-depth Discussion  and

Synthesis

Comparative

The results derived from our empirical evaluations
elucidate the complex dynamics that deep learning (DL)
and recurrent neural network-based requirements
engineering (RNNRE) could potentially introduce into

the requirements engineering (RE) process. The initial
experiment, which employed accuracy, precision, and
recall as surrogates for reliability, consistency, and
completeness, provided a sophisticated methodology for
evaluating software requirements’ intricatepatterns and
integrity. Such a methodology is not merely procedural
but critical for the nuancedalignment of requirements
spanning explicit directives and implicit expectations
integral to effective software project planning.

The insights documented in Table 2 and Table 3
underscore the transformative influence of DL and
RNNRE as facilitators within the RE sphere.
However, the wvariability in performance across
different datasets accentuates the intricacy inherent in
applying these advanced computational models. This
underscores the necessity for a bespoke approach, where
DL models are finely tuned to the particularities and
semantic nuances of the dataset in question.

Our research approach did not fully explore the breadth
of hyper-parameter optimization, which suggests that
further enhancements could be realized. For instance,
expanding the deep learning architecture with additional
hidden layers or experimenting with alternative
activation functions could unveil more profound layers
of abstraction within the requirements, thereby
enhancing the model’s predictive accuracy and
interpretability.

This investigation provokes critical considerations for
industry adoption: Is manual labeling, which requires
meticulous expert intervention, sustainable in
burgeoning datasets? Alternatively, does the future
beckon toward paradigms such as semi-supervised or
unsupervised learning, which can extract structure from
unstructured data with minimal human oversight?In
scenarios involving unlabeled data, the integration of
visualization tools becomes essential. Such devices can
reveal the latent interdependencies within requirements,
thus enabling more informed and strategic decision-
making.

Our study ventures into unexplored territory by
employing self-labeled and unlabeled data in RNNRE
frameworks. Using the EMR certification dataset for
classification purposes represents an innovative
endeavor. Given the unique methodological path we
have embarked upon, direct comparisons with extant
research are not feasible. Nonetheless, our exploratory
efforts have uncovered valuable insights and established
a foundation for future research. Theimplications of our
findings are manifold, prompting further inquiry into
how these emerging technologies might be leveraged to
engender a more agile, effective, and insightful RE
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process.
Conclusion and Future Work

This study has explored the intricacies of
Requirements Engineering (RE), mainly focusingon
integrating diverse stakeholder interests and the
challenges in accurately identifying and validating
requirements to meet business objectives. The
deployment of our Recurrent Neural Network for
Requirement Engineering (RNNRE) model represents a
significant methodological leap in effectively managing
the structural complexity of requirements. This
advancement enriches the tools available for RE,
contributing to a more nuanced mapping and
interpretation of needs.

Empirical evidence from our research underscores the
influence of granularity in mapping conditions to
requirements on classification accuracy. The RNNRE
model has demonstrated impressive performance,
aligning  multi-level  requirements  with  their
corresponding acceptancecriteria and achieving quality
metrics—accuracy, precision, and recall—exceeding
81%. However, the constraints of the limited dataset size
and lack of diversity necessitate further empirical
validation to affirm the model’s robustness and broader
applicability. Future research directions include.

Dataset Expansion: Exploring more extensive and
diverse datasets to uncover more subtle aspects of
requirements complexity.

Class Balancing Techniques: Investigating different
techniques to enhance model performance, especially
in imbalanced classes.

Alternative Learning Paradigms: Experimenting with
unsupervised and semi-supervisedlearning methods to
deepen the understanding of data relationships.

Comparative Analysis: Conduct benchmarking studies
with established models anddatasets to validate and
position the RNNRE model within the broader RE
context.

Our research will expand to include clustering
techniques on similar datasets to unearth the
interdependencies among various requirements. This
will help integrate classification and clustering
methodologies, improving decision-making in RE by
uncovering patterns not immediately visible through
classification. Such advancements are expected to push
the boundaries of machine learning applications in RE,
equipping practitioners with sophisticated analytical
tools for navigating the complexities of software
development.
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