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Abstract: The inherent complexity of software requirements poses significant challenges in project planning and quality assurance. This 

research addresses these challenges by enhancing the classification of software requirements. It explores the dynamic relationships between 

requirements and their associated acceptance criteria through advanced deep-learning methods. The primary objective is to improve the 

accuracy and efficiency of requirements classification, thereby contributing to more effective project management and development 

processes. We propose a novel approach using a Recurrent Neural Network for Requirement Engineering (RNNRE) model.  This model 

integrates natural language processing to analyze and process complex, multilevel requirements’ temporal and functional dynamics. Our 

methodology is rigorously tested on the Baseline EMR, a comprehensive real-world dataset, to assess the model’s effectiveness and 

accuracy in classifying software requirements. Results: The study reveals that finer granularity in requirement conditions substantially 

influences classification outcomes, impacting the precision of acceptance statements. The RNNRE model demonstrates robust 

performance, achieving an accuracy of 82.6%, a recall rate of 80%, and a precision of 100%. These results notably surpass the performance 

of several benchmarked state-of-the-art models, showcasing the model’s effectiveness in handling complex requirement scenarios. The 

RNNRE model marks a significant advancement in refining the requirements engineering process, particularly for intricate and multileveled 

requirements. This research demonstrates the practical application of deep learning in requirements classification. It contributes valuable 

insights to the field, enhancing the understanding and methodology of managing structural complexity in software requirements 

engineering. 

Keywords: Requirements Engineering, Deep Learning, Recurrent Neural Network, Requirements Classification, Structural Complexity in 

Software, NLP.

Introduction  

The success of software projects is intricately linked to 

satisfying customer expectations, a determination often 

formalized through acceptance testing at project 

completion [29]. However, the seeds of success are 

sown much earlier in the project lifecycle, specifically 

during the pre-development acceptance planning 

conducted jointly by the project team and the customer. 

This process establishes the acceptance conditions (AC), 

which define the detailed quality benchmarks for each 

requirement and shape the eventual user perception and 

satisfaction [25].  

This relationship between requirements and their 

acceptance conditions is complex, as ACs can apply 

variably to single or multiple needs. Such variability 

necessitates meticulous tracking from the initial planning 

stages to the final sign-off. The project’s ultimate goals, 

aligning with user satisfaction and product requirements, 

hinge on the quality expectations set out by these ACs 

[14]. Moreover, the granularity of ACs can vary 

significantly, leading to potential issues with class 

imbalance and the challenge of accurately classifying 

and mapping requirements. This point becomes 

increasingly complex with advancing technology and 

evolving user expectations. Current methodologies for 

handling complex systems in software engineering 

address various aspects of this complexity [8, 9, 10, 26]. 

Yet, there is a notable gap in addressing the intrinsic and 

extrinsic complexities that originate from the nuanced 

requirements structure in alignment with ACs. This gap 

is particularly evident in agile project environments, 

where the rapid delivery of high-quality software is 

paramount [23]. They identified critical reasons for 

project failures, as illustrated by poor user input at 13%, 

incomplete requirements at 12%, changing requirements 

at 12%, poor starting at 6%, inadequate technical skills 

at 7%, and others at 50%. As such, there is a vital need 

for innovative approaches to adeptly manage the 

structural complexities within requirements sets. The 
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researcher [22] noted that “70% of software projects fail 

due to poor requirements with an associated rework 

spend just north of $45 billion annually”. 

In this paper, we present a novel approach that leverages 

the robust capabilities of deep learning to enhance the 

requirements of the engineering process. By focusing on 

the alignment of ACs with their corresponding 

requirements, our research offers a method to navigate 

the complexity presented by varied AC granularity levels. 

We introduce a model that not only aids in classifying 

requirements but also in recognizing their acceptance for 

project planning purposes. This work, therefore, 

contributes to the ongoing pursuit of sophisticated 

models that can be seamlessly integrated within the 

requirements engineering framework to ensure the 

delivery of quality software products that meet or 

exceed stakeholder expectations. 

In this study, we regard this as structural complexity 

within a requirement dataset that has to be controlled 

to mitigate the risk of dissatisfaction with the end 

product. We infer that the continued lack of a mechanism 

to track and manage this structural complexity within 

requirements impacts the quality of a condition and the 

downstream processes immensely. 

Literature Review  

Natural Language Processing  

Natural Language Processing (NLP) and Information 

Retrieval (IR) techniques have been applied to address 

some of these challenges, including improving 

information (in this case, requirements) tracing. NLP 

applies to “Shallow Knowledge” from requirement 

text, tracing the relationship among conditions [31]. 

Natural language processing is a branch of artificial 

intelligence that enables computers to understand, 

manipulate, and interpret human language [28]. A 

common component of NLP is artificial intelligence text 

analysis, which defines extracting information from 

extensive text data, also known as text mining [21]. Text 

mining converts unstructured data into structured data for 

machine learning [28]. With machine learning, Natural 

language processing (NLP) involves manually 

identifying critical text sections or labeling readers. It can 

locate sentiments, speech parts, proper nouns, and text 

in images, PDFs, and other documents. 

NLP Techniques  

Natural Language Processing (NLP) uses two 

techniques, syntactic analytics and semantic analysis, to 

help computers understand text. 

Syntactic Analysis or Parsing examines text using basic 

grammatical principles to detect sentence structure, word 

arrangement, and how they connect. The major subtasks 

for this technique include: 

Tokenization: Involves dividing a text into smaller pieces 

called tokens (which may be phrases or words) to 

simplify material handling. 

Part of Speech Tagging: Labels tokens like verbs, 

adverbs, adjectives, nouns, etc.  This helps determine the 

meaning of words (for example, the term “book” refers 

to different objects, whether employed as a verb or a 

noun). 

Lemmatization and Stemming reduce inflected phrases 

and derivationally related forms of words to their base 

form to facilitate analysis. 

Stop-word Removal: Often eliminates words that do not 

contribute value, such as “I,” “they,” “have,” and others. 

The semantic analysis relies on capturing the meaning 

of the text. It utilizes the syntax tree (i.e., structures 

such as phrases, clauses, sentences, and texts) generated 

in the parsing process to interpret language-independent 

meanings. Initially, it will examine the significance of 

each word (lexical semantics) [28]. Then, the 

arrangement of words and what they signify is reviewed 

in context. The primary task of semantic analysis 

includes determining the meaning of the given sentence 

and representing that meaning in an appropriate form. 

However, these generally require human effort to analyze 

and create requirements-based features. Subsequently, 

machine learning approaches, particularly classification, 

show promise. Several ML-related techniques have been 

developed to manage the identification and classification 

of non-functional requirements (NFRs) in requirements 

documents [6]. [2] the most used supervised learning 

algorithms in the literature are Support Vector Machine, 

naive Bayes, Decision Tree, K-nearest Neighbor, and 

Random Forest. 

Related Work  

Several studies have been proposed to handle challenges 

that lead to the misclassification of textual requirements, 

as critical studies presented in Table 1. 
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Table 1. 

Research focus Techniques 

used 

Data used Performance/ 

Results 

 

Limitations 

Ontologies to classify 

the requirements in 

the RE context 

(Alrmuaih, Mirza and 

Alsalamah, 2020) 

Requirements 

Classification 

ontology 

(RCO) 

Not 

Applicable 

A hybrid approach with 

several artificial 

intelligence techniques 

that 

RCO can be used to 

automate the 

requirements 

classification process 

Not stated 

SLR on automatic 

classification of 

software requirements 

(Baqais and Alshayeb, 

2020) 

Mostly used 

NLP tools, 

WEKA in-built 

tools, SVM, 

MNB, LR, 

K-NN, J48, 

CNN 

Not  

Mentioned 
Not Applicable 

More 

contribution is 

still needed in 

this research 

Text feature 

extraction techniques, 

with Non- 

functional 

requirements 

(Canedo and Mendes, 

2020) 

Comparison 

of (BoW) vs. 

(TF-IDF) vs. 

(CHI2), 

Algorithms: 

(LR), (SVM), 

(MNB) and 

(KNN) 

Labeled 

data 

Binary classification: F-

Measure 91, general 

classification 0.78 and 

0.74 in NF 

classification 

imbalance and 

smaller dataset 

influence the 

classification 

performance 

results in a 

machine learning 

environment 

 

Requirements classification (RC) using analysis of 

textual natural language is the trend to solve numerous 

software engineering challenges. As indicated in Table 1, 

the most recent study points to using artificial 

intelligence as a suitable alternative. Even the 

systematic literature review shows that several studies 

on classifying requirements using machine learning and 

deep learning, such as [3] applied convolutional 

neural network CNN, still recommend further studies 

with other deep learning techniques. Some studies,  a s  

i n  [ 4 ] ,  focused on RC modeling using a small dataset 

with class imbalance but observed that this impacts the 

model performance [7, 17]—the researchers in [1] 

compared RNN and CNN performance on a small 

dataset. In [11], BERT’s deep learning technique was 

enhanced into NoBERT, with transfer learning 

focused on binary and multiclass classification. Other 

researchers [20] used LSTM and GRU with the small 

and class-imbalanced dataset. The work in [16] 

presented points to guide the selection of techniques that 

can be applied in constructing classification models. 

While this all is promising work for RC, the interest of 

this study was to evaluate RNN with large, 

multileveled networks. RNN models are widely used 

in classification studies such as [1, 30]. RNNs are 

neural networks specializing in processing sequences 

and are often used in Natural Language Processing 

(NLP) tasks because of their effectiveness in handling 

text. Most vanilla neural nets and Convolutional Neural 

Networks (CNNs) usually work with predetermined 

sizes, and they take fixed-size inputs and produce 

fixed-size outputs. With this flexibility that allows for 

variable-length sequences (as both inputs and outputs), 

we applied an RNN’s many-to-one (M1RNN), 

explicitly using RNN’s variant, the LSTM, to examine 

the relationships between requirements and the 

associated ACs in a many-to-one connection. 

Long Short-Term Memory  

Long-short-term memory (LSTM) networks are a type of 

recurrent neural network capable of learning order 

dependence in sequence prediction problems. Unlike 

traditional RNNs, which may struggle with long-range 

dependencies due to vanishing or exploding gradients, 

LSTMs are designed to retain information efficiently for 

extended periods. They achieve this through a complex 

architecture comprising memory cells and various gates: 

forget, input, and output gates, each playing a distinct 
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role in managing the flow of information. 

Forget Gate  

The forget gate, also known as the remember vector, 

determines how much previous information is retained for 

future steps. It uses a sigmoid function to output a value 

between 0 and 1, indicating the proportion of each 

component of the cell state to be forgotten. 

Input Gate  

The input gate is responsible for updating the cell state. 

It decides the degree of importance for new information 

to be added to the current state, using a sigmoid function 

to filter values and a tanh function to scale them within 

a range of -1 to 1. 

Output Gate  

The output gate defines the next hidden state, which 

carries information about previous inputs. The current 

state and the last hidden state are fed into a sigmoid 

function, and the new cell state is processed through a 

tanh function. Their product determines the information 

to be included in the hidden form. 

LSTMs are particularly well-suited for handling 

multivariate time-series data, as they can map multiple 

inputs to a single output, manage varying numbers of 

time steps, and handle variable-length inputs. This 

flexibility allows them to capture temporal dependencies 

effectively. The mathematical model of an LSTM can be 

expressed through a series of equations representing the 

operations within the memory cells and gates: 

∇𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛                                      (1) 

Given that xtn is a row vector with P dimensions, the 

prediction model can be described as follows: 

  𝑦̂𝑡𝑁+1 = 𝑓(𝑥𝑡1, 𝑥𝑡2 … , 𝑎𝑡𝑁 , ∆𝑡1∆𝑡2 … , ∆𝑡𝑁)  (2) 

The behavior of the LSTM at any time step t is 

governed by: 

ℎ𝑡 = 𝜎(𝑊ℎ𝑥𝑡 + 𝑈ℎℎ𝑡−1 + 𝑏ℎ)  (3) 

𝑦𝑡 = 𝜎(𝑊𝑦ℎ𝑡 + 𝑏𝑦)   (4) 

Where σ represents the activation function, and Wh, Uh, 

bh, Wy, by are the weights and biases of the network. 

These equations are iteratively applied to process 

sequences, and predictions are made based on learned 

temporal dependencies. 

Methodology: Recurrent Neural Networks for 

Requirement Engineering (RNNRE) 

Research Context of RNN 

Predictive classification modeling is essential in 

predicting a future value based on historical data at the 

preceding time step. This process necessitates the 

preparation of input and output pairs given the time 

series data. Formally, time series classification is 

defined as follows: 

Definition 1: A univariate time series 𝑋 =

 [𝑋1, 𝑋2, . . . , 𝑋𝑛]   is an ordered set of acceptance 

conditions (ACs). The length of X, denoted as |X|, 

equals the number of fundamental values N. 

Definition 2: An M-dimensional multivariate time 

series (MTS), [𝑋1, 𝑋2, . . . , 𝑋𝑚],, consists of M different 

univariate time series requirements (R), each with Xi ∈ 

RN . 

Definition 3:  A dataset 𝐷 =

 {(𝑋1, 𝑌11), (𝑋2, 𝑌2), . . . , (𝑋𝑁 , 𝑌𝑁)}   is a collection of 

pairs (Xi, Yi), where Xi could either be a univariate or a 

multivariate time series AC, and Yi is its corresponding 

one-hot label vector.  For a dataset with K classes, the 

one-hot label vector Yi is a K-dimensional vector where 

the j-th element is 1 if the class of Xi is j, and 0 

otherwise. 

Classification involving time series data is performed by 

training a classifier to learn from a dataset using a 

probability distribution and then using it to relate ACs 

with requirements [13]. 

Phase of RNNRE 

The methodology for RNNRE is characterized by a 

process divided into the following four phases: 

1. Data pre-processing. 

2. Word Vectorization and Labelling. 

3. RNN model construction. 

4. Model Training and Testing to align 

Requirements to ACs. 

The Fig.1 shows the Representation of an alignment of 

requirement(S) to acceptance conditions (AC) 

 

Fig.1. Representation of an alignment of requirement(S) 

to acceptance conditions (AC) 

Procedural Flow  

Building this classification model involves a four-

phased process, as illustrated in Fig.2. 
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Fig.2. Procedural phases for Multileveled 

Requirements Classification 

Phase 1: Data Pre-Processing  

The initial step in this framework is cleaning and 

preprocessing the software requirement dataset. This 

stage is preceded by data acquisition and includes 

removing special characters, stop words, case-folding, 

lemmatization, and tokenization. The outcome is that the 

data is well-cleaned and ready for the learning 

environment. 

Phase 2: Word Vectorization/Labeling 

Word vectorization converts sentences into a computer-

understandable format for deep-learning models that 

cannot process natural language. This process is crucial 

for enabling pattern recognition within the data.  The text 

of the requirements is transformed into word vectors 

using the word2vec model, explicitly utilizing the 

skip-gram approach for feature extraction. In this 

context, word2vec maps a word to a vector v ∈ R, 

where R represents the set of real numbers. Thus, the 

transformation of a sentence can be represented by a 

matrix m ∈ Rn×l, where n is the embedded vector size 

and l is the length of the sentence. 

This study employed embeddings from language models, 

particularly ELMo, for word embedding [15]. ELMo 

considers the entire sentence context to assign each word 

a unique embedding and functions as a bidirectional 

RNN trained on a specific task to generate these 

embedding [15]. The resulting individual word vectors 

populate an embedding matrix, the dimensions of which 

are determined by the vocabulary size and the 

embedding extent.  

Phase 3: RNN Model Construction  

We utilize an LSTM network for the RNN model, 

composed of: 

Input Layer: Prepares the model input with sequence 

length and embedding dimension. 

Hidden Layer: Employs LSTM units with dropout 

to reduce overfitting. 

Output Layer: Uses activation functions like softmax 

and sigmoid to output the final classification. 

Phase 4: Model Training and Testing 

The model is trained and tested using various training-

testing split ratios. The performance is analyzed as the 

proportion of testing data varies.  

Extension to GCN-RIA for Structural Analysis 

Following the RNN model construction, we extend our 

approach with the Graph Convolutional Networks for 

Requirements Interdependency Analysis (GCN-RIA) to 

capture the structural dependencies among requirements. 

Given a graph G = (V, E) representing the 

interdependencies among software requirements: 

 Let V be the set of nodes (requirements) and E the set 

of edges (dependencies). 

 Each node vi ∈ V has a feature vector xi. 

The graph convolution operation at layer l is defined as: 

𝐻(𝑙+1)𝜎 (𝐷−
1

2𝐴̂𝐷−
1

2𝐻(1)𝑊(𝑙))                 (5)
 
 

Â = A + I is the adjacency matrix with self-connections, 

D is the degree matrix, H(l) is the activations, and W (l) is 

the weights. 

This approach captures the complex interdependencies in 

software requirements, enhancing the predictive 

accuracy of the RNNRE model. 

Model Training and Testing 

Following the structural analysis with GCN-RIA, we 

integrate the Transformer-based Multi- Aspect 

Requirements Analysis (TMARA) for a comprehensive 

linguistic analysis: 

Consider a sequence of tokenized requirements R 𝑅 =

 {𝑟1, 𝑟2, . . . , 𝑟𝑛}. 

Embed each token into a high-dimensional space, 

obtaining embedding 𝐸 =  {𝑒1, 𝑒2, . . . , 𝑒𝑛}. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (6) 

Employ the Transformer model’s self-attention 

mechanism: 

Q, K, V are query, key, and value matrices, and dk is 

key dimensionality. 

TMARA’s integration allows the model to consider 

various linguistic aspects of software requirements, 

providing a nuanced understanding essential for 
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accurate classification. 

Model Evaluation/ Performance Metrics 

In evaluating predictive models, accuracy and loss are 

recommended as key performance metrics in the 

literature [12]. Platforms like Python provide built-in 

modules to support metrics such as loss, score, accuracy, 

and utility functions for measuring classification 

performance. We considered recall and accuracy scores 

for binary classification, while for multi-class and multi-

label sort, the F1 score is crucial. The metrics are 

defined as follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   (7) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (9) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
               (10) 

Where T P is the actual positive rate, T N is the actual 

negative rate, FP is the false-positive rate, and FN is the 

false-negative rate for a classifier across all classes. 

For deep learning models, we define a loss function, such 

as binary cross-entropy, to measure the accuracy metric 

for binary classification, multi-label classification, and 

many-to-one classification scenarios. This also applies to 

multi-class methods with the output layer configured 

with more than one unit and the activation function set 

to ‘Softmax’. 

Experimental Setup and Evaluation 

We conducted two experiments for our analysis. The first 

experiment evaluated the proposed RNN model’s 

performance against two datasets (Labeled and 

Unlabeled, EMR dataset), combined with an embedding 

layer for flexible word embedding in neural networks 

and text data. The experiments on the EMR dataset 

assessed complexity from the perspectives of Precision, 

Recall, and F1-score, varying the “Loss Function” and 

“Activation Function.” The performance results are 

presented in Table 3. 

Algorithmic Representation of Deep Learning  

Model Training and Evaluation 

The subsequent algorithm delineates the process of 

training and evaluating a deep learning model for 

classification tasks. It outlines the initialization of pre-

trained embedding, tokenization, sequence mapping, 

dataset partitioning, and the construction and training of 

a recurrent neural network (RNN) with a long short-

term memory (LSTM) architecture. 

 

Algorithm 1 Complex Deep Learning Classification Algorithm 

 

1:  START 

2:   Θ ← LoadPretrainedEmbeddings(V, L, d)          ▷ V : vocabulary size,  

  L:  sequence length, d: embedding dimension 

3:   T ← Tokenize(T ) ▷ T : Corpus of text 

4: S ← MapToSequences(T ) 

5: D ← ∅ ▷ Data set 

6: L ← ∅ ▷ Label set 

7: where 

8:   D ← ExtractAcceptanceConditions(AC)  ▷ AC: Acceptance conditions  

9:  L ← DefineRequirements(R) ▷ R: Requirements  

    10: (Dtrain, Dtest, Ltrain, Ltest) ← PartitionDataSet(D, L) 

11:   Model ← InitializeRNNModel() 

12:    Model.Add(EmbeddingLayer(E, trainable=False)) ▷ Load embedding matrix E 

13:  Model.Add(LSTM(h)) ▷ Add LSTM layer with h hidden units 

 14: Model.Add(Dense(K, activation = σ)) ▷ K: Number of classes, σ: activation function  

15:   Model.Compile(loss = L, optimizer = O)  ▷ L: Loss function, O: Optimizer 
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16:   Model.Fit(Dtrain, Ltrain) 

17:   Model.Evaluate(Dtest, Ltest) 

18: END 

Datasets and Hyper-Parameter Tuning 

Datasets: In our experimental framework, we 

concentrated on datasets with a lower-dimensional feature 

space, where the dimensionality of the feature set p is 

substantially lesser than the number of observations N, 

typically denoted by p ≪ N. The dataset in question, the 

EMR requirements specification dataset, is enumerated 

in Table A within the appendix.  This dataset 

encapsulates 108 individual requirements alongside their 

respective acceptance conditions (ACs). Each dataset 

instance represents a distinct input level or a time step 

within our model’s context. 

Hyper-Parameter and Training: The hyper-parameters 

selected for the experimental process include a minibatch 

size 10, an epoch count of 50, a learning rate fixed at 

0.001, and a dropout probability set to 0.2.  The 

embedding layer is instantiated with a max length of 16 

and an embedding dimension of 32 units. Data 

preparation involved extracting text from CSV files, 

tokenizing this text, and creating sequences from the 

processed words. 

The global parameters utilized for the Recurrent 

Neural Network Requirement engineering (RNNRE) 

model are Embedding Dimension,32; MaxLength,16; 

Neurons in OutputLayer,1; Optimizer, Adam; Activation 

Functions, Sigmoid and Softmax; Performance 

Functions, Binary cross-entropy and Categorical cross-

entropy. 

Tensor Flow, a Python-based API engineered by Google, 

was the foundation for constructing deep neural 

networks. This platform’s intrinsic tools were 

instrumental in evaluating and refining model 

performance. Consistent with prevailing studies, we 

utilized a sigmoid activation function at the output layer 

for binary and multi-label classification tasks and a 

soft-max activation function for multi-class 

classification objectives [24]. Our experimental trials 

spanned both labeled and unlabeled datasets, with 

labeled data demanding the use of softmax due to 

multiple class outputs, in contrast to the unlabeled 

dataset, which necessitated the use of sigmoid for its 

singular output class. 

Sequential Approach Model 

The architecture of the proposed model is compiled with 

the loss function binary cross-entropy and employs the 

optimizer Adam. Our model architecture consists of 

three distinct layers: 

An embedding layer transforms words into vector space 

using pre-trained word embeddings, enabling the model 

to understand the context of the words in the input data. 

A dense, fully connected layer in which each neuron 

receives input from all neurons in the previous layer, 

thereby integrating signals across the network. 

The output layer generates the final prediction for the 

given inputs.  This layer employs the sigmoid activation 

function for binary and multi-label classification tasks to 

output independent probabilities for each label. 

The optimizer Adam is used for hyper-parameter tuning 

because it efficiently handles sparse gradients on noisy 

problems. A dropout rate 0.2 is integrated into the 

network as a regularization technique to prevent 

overfitting. The activation function relu is utilized in 

all layers except the output layer due to its effectiveness 

in addressing the vanishing gradient problem. In contrast, 

the sigmoid activation is specifically chosen for the 

output layer in binary and multi-label classifications, 

facilitating the model to output probabilities 

independently for each label without constraint on the 

sum of these probabilities. 

Result Analysis 

Experiment Two: RNNRE Performance 

on EMR Datasets 

The classification tasks were executed on both labeled 

and unlabeled datasets. Labeled datasets encompass low-

level requirements categorized into distinct classes based 

on their attributes, while unlabeled datasets lack 

predefined categorization. 

A segment of the labeled dataset employed for 

classification using LSTM is exemplified in Table 2. 

Table 2:  Sample of Labeled Dataset for Prediction 

using LSTM 

High 

level  

Requires 

(HI.R) 

Low-level 

Requirements 

(I.I.R) 

Category  Label 

Search 

Patient 

The user can 

search for a 

Patient by name 

or ID. 

Search_Patient 

Details 

1 
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The system shall 

display the 

patient’s identity 

details. 

Search_Patient 

Details 

1 

The user can 

scan a barcoded 

ID number to 

find the Patient. 

Input 2 

Add 

Patient  

Details 

The user can 

register a new 

patient with a 

unique ID. 

Generation      

Report 

3 

 

Requirements Classification with Labeled 

Data 

Classification of requirements was performed using a 

labeled dataset, which was structured to facilitate the 

assignment of samples to generated labels. The efficacy 

of this classification is evidenced by the outcomes 

depicted in Fig.3, which elucidates the model’s accuracy 

and loss when utilizing labeled data. 

 

Fig.3. Training and validation accuracy and loss for 

labelled data classification 

Our model achieved commendable training accuracy, 

surpassing 98%, suggesting a solid learning capacity from 

the labeled dataset. However, it is imperative to note that 

the validation/test accuracy averaged around 50%. This 

disparity may indicate an overfitting scenario, wherein the 

model’s predictions are highly accurate for the training 

data yet fail to generalize to unseen data. Further 

examination into recall and precision metrics revealed 

values approaching 100%, indicative of the model’s 

proficiency in correctly classifying the positive cases. To 

gain deeper insights into the model’s ability to align 

specific requirements with their corresponding predicted 

classes, we subjected the last ten entries of the unlabeled 

dataset— denoted as Xnew—to the trained model. This 

subset, extracted from the dataset presented in the 

appendix (see Table 4), is a test case to evaluate the model’s 

predictive capabilities in a real-world scenario. The 

predicted outcomes are given in Table 3. 

Sample Predictions and Their Implications for 

Requirements Assessment 

The LSTM model was tasked with classifying a set of 

previously unseen requirements (denoted as Xnew) from 

the EMR system. These requirements range from 

diagnostics to laboratory orders and patient follow-up 

protocols. The model's predictions for these 

requirements are delineated in Table 3. 

Table 3. 

Require

ment 

No. 

EMR Requirements Predicted 

Category 

95 The user can generate a 

list of patients... 

Search Patient 

Details 

93 Free text noncoded 

diagnoses should be 

avoided... 

Generation 

Report 

103 The system shall 

automatically generate 

Order IDs 

Generation 

Report 

97 The user can print the 

lost to follow-up report 

Generation 

Report 

100 The user can select 

Laboratory tests... 

Generation 

Report 

   

 

Practitioners can leverage these results to discern the 

overt and subtle requirements pivotal for meticulous 

project estimation [[19]]. Specifically, the model’s 

ability to align needs with predicted categories facilitates 

planning and prioritization based on domain expertise. 

For instance, the clustering of requirements into Class 3 

predominantly pertains to Clinical Documentation and 

Reporting, indicating a nuanced level of complexity 

associated with features related to clinical 

documentation. 

This adept classification underscores the potential of the 

LSTM model in streamlining fea- ture implementation 

planning. Nonetheless, the results also highlight the 

necessity for a reason- able selection of a subset of unseen 

data, which is crucial for rigorously evaluating the 

predictive prowess of the model. The ensuing section 

elaborates on a scenario where the model undergoes 

evaluation using the entirety of the dataset. 

Requirements Classification with Unlabeled 

Data 

Methodology and Dataset 
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In this exploratory phase, we employed an unlabeled 

dataset comprising high-level requirements (HLR) and 

their corresponding acceptance conditions, denoted as 

low-level requirements (LLR). Our objective was to 

discern how an RNN model would categorize 

requirements in the absence of explicit labels. The 

dataset, composed of 108 samples, was the basis for 

gauging quality metrics such as accuracy, precision, 

and recall. 

Challenges of Unlabeled Data 

While accurate, manual labeling can be excessively 

labor-intensive and necessitate substantial domain 

expertise. Conversely, classifying unlabeled datasets 

streamlines the process but requires in-depth knowledge 

for effective hyperparameter tuning. The potential for 

overfitting presents a significant challenge, mainly when 

dealing with limited datasets. Notwithstanding these 

issues, our model achieved promising results, with 

training accuracy surpassing 80% and validation metrics 

approaching perfection. 

Implications 

The implications of these findings are profound, 

especially when considering the scalability of the 

approach to more extensive datasets and varied 

requirement types. We anticipate extending our 

methodology to include clustering techniques via 

network science, such as network models and 

community detection, to enhance our understanding of 

requirement dependencies within software projects. 

 

Fig.4 Model accuracy and loss with unlabeled data. 

In-depth Discussion and Comparative 

Synthesis 

The results derived from our empirical evaluations 

elucidate the complex dynamics that deep learning (DL) 

and recurrent neural network-based requirements 

engineering (RNNRE) could potentially introduce into 

the requirements engineering (RE) process. The initial 

experiment, which employed accuracy, precision, and 

recall as surrogates for reliability, consistency, and 

completeness, provided a sophisticated methodology for 

evaluating software requirements’ intricate patterns and 

integrity. Such a methodology is not merely procedural 

but critical for the nuanced alignment of requirements 

spanning explicit directives and implicit expectations 

integral to effective software project planning. 

The insights documented in Table 2 and Table 3 

underscore the transformative influence of DL and 

RNNRE as facilitators within the RE sphere. 

However, the variability in performance across 

different datasets accentuates the intricacy inherent in 

applying these advanced computational models. This 

underscores the necessity for a bespoke approach, where 

DL models are finely tuned to the particularities and 

semantic nuances of the dataset in question. 

Our research approach did not fully explore the breadth 

of hyper-parameter optimization, which suggests that 

further enhancements could be realized. For instance, 

expanding the deep learning architecture with additional 

hidden layers or experimenting with alternative 

activation functions could unveil more profound layers 

of abstraction within the requirements, thereby 

enhancing the model’s predictive accuracy and 

interpretability. 

This investigation provokes critical considerations for 

industry adoption: Is manual labeling, which requires 

meticulous expert intervention, sustainable in 

burgeoning datasets? Alternatively, does the future 

beckon toward paradigms such as semi-supervised or 

unsupervised learning, which can extract structure from 

unstructured data with minimal human oversight? In 

scenarios involving unlabeled data, the integration of 

visualization tools becomes essential. Such devices can 

reveal the latent interdependencies within requirements, 

thus enabling more informed and strategic decision-

making. 

Our study ventures into unexplored territory by 

employing self-labeled and unlabeled data in RNNRE 

frameworks. Using the EMR certification dataset for 

classification purposes represents an innovative 

endeavor. Given the unique methodological path we 

have embarked upon, direct comparisons with extant 

research are not feasible. Nonetheless, our exploratory 

efforts have uncovered valuable insights and established 

a foundation for future research. The implications of our 

findings are manifold, prompting further inquiry into 

how these emerging technologies might be leveraged to 

engender a more agile, effective, and insightful RE 
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process. 

Conclusion and Future Work  

This study has explored the intricacies of 

Requirements Engineering (RE), mainly focusing on 

integrating diverse stakeholder interests and the 

challenges in accurately identifying and validating 

requirements to meet business objectives. The 

deployment of our Recurrent Neural Network for 

Requirement Engineering (RNNRE) model represents a 

significant methodological leap in effectively managing 

the structural complexity of requirements. This 

advancement enriches the tools available for RE, 

contributing to a more nuanced mapping and 

interpretation of needs. 

Empirical evidence from our research underscores the 

influence of granularity in mapping conditions to 

requirements on classification accuracy. The RNNRE 

model has demonstrated impressive performance, 

aligning multi-level requirements with their 

corresponding acceptance criteria and achieving quality 

metrics—accuracy, precision, and recall—exceeding 

81%. However, the constraints of the limited dataset size 

and lack of diversity necessitate further empirical 

validation to affirm the model’s robustness and broader 

applicability. Future research directions include.  

Dataset Expansion: Exploring more extensive and 

diverse datasets to uncover more subtle aspects of 

requirements complexity. 

Class Balancing Techniques: Investigating different 

techniques to enhance model performance, especially 

in imbalanced classes. 

Alternative Learning Paradigms: Experimenting with 

unsupervised and semi-supervised learning methods to 

deepen the understanding of data relationships. 

Comparative Analysis: Conduct benchmarking studies 

with established models and datasets to validate and 

position the RNNRE model within the broader RE 

context. 

Our research will expand to include clustering 

techniques on similar datasets to unearth the 

interdependencies among various requirements. This 

will help integrate classification and clustering 

methodologies, improving decision-making in RE by 

uncovering patterns not immediately visible through 

classification.  Such advancements are expected to push 

the boundaries of machine learning applications in RE, 

equipping practitioners with sophisticated analytical 

tools for navigating the complexities of software 

development. 
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