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Abstract: In vehicular communication systems, the evolution of Vehicular Ad Hoc Networks (VANETs) provides the door for novel 

solutions and expanded features. This proposed study presents an upgraded framework for Vehicular Ad Hoc Networks (VANETs), 

focusing on better privacy measures, real-time intelligent traffic management, and augmented safety features. Our framework leverages an 

adaptive network architecture that dynamically responds to varying vehicular conditions, ensuring uninterrupted communication and 

optimal performance. To secure user privacy, we have incorporated a powerful privacy-preserving system utilizing modern encryption 

algorithms, assuring the security of sensitive information while facilitating vital data interchange for vehicle operations. Specifically, we 

have presented a hybrid encryption technique that leverages the Advanced Encryption Standard (AES-128) coupled with digital signatures 

to protect the content of Content-Centric Vehicular Networks (CCVN) during inter-vehicle communication. This hybrid technique secures 

data confidentiality and integrity, delivering a complete security solution for vehicle communication. Furthermore, our system provides 

real-time intelligent traffic management capabilities, including dynamic route optimization and congestion prediction, boosting traffic flow 

and minimizing travel times. This is accompanied by a comprehensive warning system that gives drivers real-time information about speed 

restrictions, dangers, and traffic conditions, enhancing driver awareness and overall traffic safety. The warning system is designed to be 

all-encompassing, ensuring that drivers are well-informed about potential dangers on the road. Network administration is handled using a 

decentralized architecture, guaranteeing robust and dependable communication without depending on centralized infrastructure. 

Additionally, our system contains machine learning algorithms that continually learn and adapt to traffic patterns, further enhancing the 

network’s speed and dependability. Our proposed framework dramatically enhances the capabilities of current VANETs, providing a safe, 

intelligent, and privacy-preserving alternative for contemporary vehicular communication systems. This revolutionary strategy intends to 

increase vehicular communication and boost traffic management systems' overall efficiency and safety. 

Keywords: Dynamic Network Management, Enhanced Privacy Mechanism, Hybrid Encryption Scheme, Intelligent Traffic Management, 

Real-Time Notifications, VANET (Vehicular Ad Hoc Networks) 

1. Introduction 

Over the past few years, the ever-evolving wireless 

communication technologies have radically changed 

vehicular networks. VANETs, a subtype of Mobile Ad Hoc 

Networks (MANETs), have become increasingly important 

in enabling communication between vehicles and 

infrastructure. This technology has the potential with the 

goal of substantially enhancing traffic efficiency, driving 

enjoyment, and security on the roads. Through vehicle-to-

vehicle and vehicle-to-roadside communication, VANETs 

offer many applications, including collision prevention, 

traffic control, entertainment, and self-driving capabilities. 

VANETs are known for their intermittent interactions 

among edge devices, high node flexibility, and fluid 

interaction [1]. VANETs pose a challenge due to their 

complexity and limitations. To exclusively transmit and 

receive location-based data solely through 

infrastructure-based communications. In addition, the 

TCP/IP architecture was not intended initially or optimised 

to function in these ever-changing environments [2]. It is 

difficult for TCP/IP protocols to handle new features and 

issues in edge computing due to its host-centric paradigm. 

Among them, you may find dynamic routing, node mobility, 

and data security [3]. There has been a trend towards 

designing a system that can withstand delays and 

disconnections so that applications like C-ITS may be 

successful and adaptive on VANETs. Conventional IP-

based network architectural models that focus on hosts have 

not altered despite innovations in IVC and other network 

technologies [5]. Despite this, the constantly shifting 

topology and frequent separations provide difficulties for 

IP-based VANET application in terms of data routing, 

protection, and node mobility. These factors can potentially 

impede their effectiveness [4]. 

Despite the increasing interest in the potential benefits of 

VANETs, the ever-changing nature of VANETs (with 

vehicles joining and leaving at will) and the numerous 

system and application requirements pose significant 

challenges in developing effective methods to protect 

vehicle privacy. Privacy encompasses the protection of 
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vehicle drivers and the confidentiality of vehicle locations. 

The identity or location of a vehicle must remain private 

when it sends a message, except to relevant authorities. 

Every message sent by a vehicle must undergo 

authentication before it is processed. Until these issues are 

resolved to the utmost satisfaction of the users, the 

widespread implementation of VANETs cannot occur. 

Authentication must be accomplished at two different 

levels. The first level is node authentication, which occurs 

at the node level. The second level is message 

authentication, which occurs at the message level [5]. The 

fundamental concept of message authentication involves the 

sender signing a message and the receiver verifying its 

authenticity and integrity. Addressing and solving certain 

authentication requirements is crucial to ensure secure 

communication in VANETs. These requirements include 

low computational overhead, strong and scalable 

authentication, and efficient and scalable certificate 

revocation. 

Vehicular traffic management poses various challenges, 

including the unpredictability of traffic patterns, the 

importance of being able to respond rapidly to new 

circumstances, and the fact that vehicle speeds might vary 

widely. Traditional systems face difficulties addressing 

these challenges, resulting in inefficient traffic flow and 

road infrastructure use [4]. This research focuses on the 

issue of existing traffic management systems being unable 

to handle the constantly changing nature of vehicular 

networks effectively. To optimise traffic flow and reduce 

congestion, a system that can monitor and react to traffic 

conditions in real-time is essential [5]. Building a smart 

traffic control system using Machine Learning is the 

primary focus of this project. The system is designed to 

accurately anticipate and adjust to traffic patterns, resulting 

in optimised signal timings and a transportation 

infrastructure that is more efficient and sustainable. 

This proposed study introduces a cutting-edge framework 

for VANETs aimed at tackling these challenges through the 

integration of improved privacy measures, intelligent traffic 

management, and adaptive network architecture. Our 

framework utilises cutting-edge encryption techniques, 

advanced machine learning algorithms, and a decentralised 

network management approach to deliver a robust, efficient, 

and secure vehicular communication system. Our 

framework incorporates a hybrid encryption scheme that 

combines the Advanced Encryption Standard (AES-128) 

with digital signatures, guaranteeing both data 

confidentiality and integrity. In addition, the incorporation 

of machine learning models allows for the enhancement of 

route optimisation and the prediction of congestion, 

resulting in improved traffic flow and decreased travel 

times. An architecture that is decentralised ensures strong 

communication without depending on centralised 

infrastructure, which improves the reliability and scalability 

of the system. This study addresses essential aspects such as 

privacy, security, and real-time traffic management. Its goal 

is to improve the capabilities of current VANETs, providing 

a comprehensive solution that enhances vehicular 

communication and contributes to the overall efficiency and 

safety of traffic management systems. This ground-breaking 

approach highlights the immense potential of VANETs to 

transform the future of transportation by creating more 

intelligent, secure, and interconnected vehicular 

environments. 

2. Related Works 

The main objective of VANET is to ensure each mobile 

node's safety and minimize accidents and delays in data 

delivery. The network structure's instability causes 

problems with routing. The abundance of data in the 

VANET system often results in a congestion of information 

on RSUs. Various protocols have been created to address 

certain concerns, such as routing, congestion control, and 

stability. A machine learning (ML) strategy for 

supplementary data analysis was, however, absent from all 

of them. Because of this disconnect, there is a push to merge 

traditional and machine learning models in an effort to boost 

performance [15, 16]. 

In order to streamline vehicular ad hoc networks, methods 

of feature selection are used early on to eliminate 

superfluous aberrant features and group intelligent features 

[25]. Computerized correlation-based filtering (CFS) is 

more efficient and accurate than the second filtering 

method. IoT devices can readily utilize machine learning 

and artificial intelligence techniques [23,24]. Several traffic 

classification techniques estimate the commonly used 

supervised machine learning methods achieved through the 

WEKA software [26,27]. Machine learning algorithms are 

highly valuable for acquiring knowledge and improving 

over time. 

The analysis continues with an examination of several 

machine learning approaches to traffic control in [6]. It 

sheds light on the benefits and drawbacks of different 

methods, which is useful for finding smart traffic 

management solutions. Most of the research in [7] is 

devoted on SVM. Use of support vector machines (SVMs) 

for traffic forecasting is the focus of this review. We 

highlight the practicality of SVM models by analyzing their 

effectiveness in capturing complicated traffic patterns. The 

use of Reinforcement Learning (RL) for controlling traffic 

signals is discussed in [8]. The main idea behind this project 

is to adapt the signal schedule in real-time according to 

traffic circumstances. The research provides important 

information on how RL algorithms work for efficient and 

responsive traffic management. A comprehensive history of 

ITS, or smart transportation systems, is given in [9]. The 

article explores the latest advancements in technology, such 

as machine learning, and how they can help overcome 
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obstacles in traffic management. This provides a 

background for the ongoing research.  

Research into kernel approaches, and more especially 

Radial Basis Function (RBF), is explored in [10] with an eye 

on their possible use in traffic flow prediction. In order to 

help readers, choose the best kernels for their traffic 

prediction models, the paper delves into the advantages of 

kernel-based approaches for capturing non-linear 

connections. Integrating smart city projects with vehicle 

networks is explored in the research in [11]. In this study, 

we look at how smart public transportation and city planning 

may function together. It highlights the importance of using 

adaptive and learning-based methods to tackle the obstacles 

of contemporary urban mobility. An enhanced system has 

been proposed in [12] to ensure the confidentiality of 

content-related names and data. In this system, obtaining the 

necessary content is made simple and convenient. Authors 

have utilized proxy-based encryption schemes to ensure 

user privacy. The characteristics of ICN are maintained 

while keeping the computational cost low. This system can 

handle various security attacks. In [13], a method based on 

attributes has been utilized to address the issue of privacy 

preservation in access control within ICN. This approach 

efficiently handles the attributes of ICN. Access to the 

contents of ICN is restricted to authorized users only.  

This approach has successfully reduced time delay, 

improved throughput, lower storage costs, and enhanced 

network security. In [14], the authors have explored 

different privacy concerns related to CCN and its 

architecture. Extensive research has been conducted on the 

different types of network attacks that can compromise the 

integrity and confidentiality of content. 

Sumi and Ranga [17] proposed an intelligent traffic 

management solution for countries using the principles of 

IoT and vehicular ad hoc networks (VANET). The proposed 

approach prioritizes emergency vehicles to ensure a smooth 

flow through traffic, considering the type of incident. It 

guides ambulances towards the most efficient routes to their 

destination while also providing a means to detect and 

respond to traffic signal manipulation. Our solution 

outperforms these suggestions for emergency vehicle 

systems in terms of congestion avoidance, travel duration, 

and energy consumption. In their study, Ning et al. [18] 

proposed a practical approach to reduce response time in 

traffic management services. They suggested enabling real-

time content distribution in IoV systems based on different 

network access, which could help improve overall 

efficiency. Large-scale IoV systems typically begin by 

developing a framework that relies on crowd sensing. In 

addition, an exploration is conducted into a framework that 

optimizes traffic control by utilizing clusters. They trust the 

messages generated by vehicles. There is a potential issue 

with the accuracy of information being shared on the 

network, which could lead to misleading other vehicles and 

traffic control systems. 

  

Tsang et al. [19] devised a fully integrated approach to 

traffic monitoring, which involved the combination of high-

definition intelligent cameras and wireless connectivity. 

Gunda [20] provided a systematic framework for 

developing a practical traffic management tool that 

effectively addresses network-level traffic congestion on 

roadways. Lee et al. [21] presented a collaborative visual 

analytics system that utilizes vehicle detection information 

to investigate, monitor, and predict traffic congestion. These 

visual analytics technological advances allow customers to 

explore the origins, routes, and degree of traffic congestion. 

To address the existing limitations, Nguyen et al. [22] 

proposed an adaptable smart traffic management platform 

(STMP) that utilizes untrained deep learning techniques. 

3. Methods and Materials 

An adaptive network architecture that dynamically adjusts 

to different traffic situations is included into the framework 

that has been presented for traffic Ad Hoc Networks 

(VANETs). The flow diagram Fig. 1. showcases the 

suggested technique for Advanced Dynamic Vehicular 

Networks (VANETs), with a specific emphasis on 

improving privacy and implementing real-time intelligent 

traffic management. The process starts by initializing the 

network and establishing the essential communication 

protocols required for VANET operations. Effective node 

management is essential for maintaining optimal 

performance and communication integrity in a vehicle 

network. This involves constantly monitoring vehicle 

conditions like speed and location, and adjusting network 

parameters accordingly. Communication protocols play a 

crucial role in the framework, allowing for smooth 

integration of Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I) connections. This ensures reliable data 

exchange and optimal network performance. 

The methodology includes a hybrid encryption mechanism 

that utilizes the Advanced Encryption Standard (AES-128) 

for data confidentiality and digital signatures to guarantee 

data integrity and authenticity. Ensuring that 

communications within the network remain secure and 

private is of utmost importance. Having real-time traffic 

management capabilities is crucial. Our system optimizes 

routes based on real-time data to reduce travel time and 

avoid congested areas. Additionally, we use data analytics 

and machine learning to predict and manage congestion, 

allowing us to proactively reroute traffic. 
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Fig. 1. The outline of the Advanced Dynamic Vehicular 

Networks with Enhanced Privacy and Real-Time 

Intelligent Traffic Management  

Drivers receive real-time notifications that provide updated 

information on road conditions, speed limits, hazards, and 

other critical details. This helps to enhance safety and 

awareness while on the road. Machine learning integration 

is utilized to analyze traffic patterns, allowing for the 

identification and prediction of traffic conditions. It also 

helps in detecting any anomalies or potential hazards, 

thereby ensuring a smooth flow of traffic and enhancing 

safety. This comprehensive framework aims to improve the 

capabilities of current VANETs, providing a secure, 

efficient, and intelligent vehicular communication system. 

When it comes to modelling traffic flow and vehicle 

interactions, SUMO is the single most important simulation 

tool. It offers a comprehensive and scalable environment for 

simulating vehicle movement and communication, which 

enables the evaluation of dynamic route optimization, the 

prediction of congestion, and the provision of real-time 

warnings. For the purpose of analyzing the proposed 

VANET system, SUMO is an excellent candidate because 

of its adaptability in modelling complicated urban and 

highway situations. 

3.1. Communication Protocols Implementation 

The implementation of communication protocols in the 

proposed VANET framework is crucial to ensure seamless 

and efficient data exchange between vehicles (V2V) and 

between vehicles and infrastructure (V2I). The protocols are 

designed to handle the dynamic and decentralized nature of 

VANETs, providing robust and reliable communication 

even under varying traffic conditions. V2V communication, 

which stands for vehicle-to-vehicle communication, allows 

cars to communicate directly with one another. This is 

crucial for the transmission of real-time data, which is 

required for safety applications and traffic management. 

Algorithm V2V_Communication 

Input: Vehicle data (speed, position, direction), DSRC 

parameters 

Output: Real-time communication between vehicles 

1. Initialize DSRC and IEEE 802.11p protocol 

2. For each vehicle V in the network do 

3.    Collect real-time data from vehicle sensors 

4.    Create message M (type: BSM/CAM/DENM) 

5.    M.content ← {V.speed, V.position, V.direction} 

6.    Encrypt M using AES-128 

7.    Sign M with vehicle's digital signature 

8.    Broadcast M to neighboring vehicles 

9. End for 

Data transmission between cars and roadside units (RSUs) 

is an example of vehicle-to-infrastructure (V2I) 

communication. This communication supports various 

applications, including traffic control and information and 

entertainment services.  

Algorithm V2I_Communication 

Input: Vehicle data, RSU parameters, cellular network 

parameters 

Output: Communication between vehicles and 

infrastructure 

1. Initialize RSUs and connect to cellular network 

2. For each vehicle V approaching an RSU do 

3.   Collect data D from vehicle sensors 

4.   Create message M (type: Request/Response) 

5.   M.content ← {D} 

6.   Encrypt M using AES-128 

7.   Sign M with vehicle's digital signature 

8.   Send M to RSU 

9.   RSU processes M and generates response R 

10. Encrypt R using AES-128 

11. Sign R with RSU's digital signature 

12. Send R to V 

13. End for 

3.2. Hybrid Encryption 

To ensure data security and privacy in the proposed VANET 

framework, we implement a hybrid encryption scheme that 

combines symmetric and asymmetric encryption methods. 
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This approach leverages the strengths of both encryption 

techniques to provide robust data confidentiality, integrity, 

and authenticity. The symmetric encryption component 

employs the Advanced Encryption Standard (AES-128), 

which is chosen for its balance between security and 

performance, ensuring data confidentiality through fast and 

secure encryption. 

Mathematically, the plaintext message P is encrypted using 

a randomly generated session key K with AES-128, 

resulting in the ciphertext 𝐸1. 

𝐸1 = 𝐴𝐸𝑆 − 128_𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑃, 𝐾) (1) 

To ensure the integrity and authenticity of the message, a 

digital signature S is created using the sender's private 

key𝑉𝑝𝑟𝑖𝑣. 

𝑆 = 𝑆𝑖𝑔𝑛(𝐸1, 𝑉𝑝𝑟𝑖𝑣)  (2) 

For secure key distribution, the session key 𝐾 is encrypted 

using the recipient's public key 𝑅𝑝𝑢𝑏, yielding 𝐸2. 

𝐸2 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐾, 𝑅𝑝𝑢𝑏)  (3) 

Additionally, the session key is encrypted with the 

Certificate Authority's public key 𝐶𝐴𝑝𝑢𝑏to ensure secure 

verification, producing 𝐸3. 

𝐸3 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐾, 𝐶𝐴𝑝𝑢𝑏)  (4) 

The final encrypted message E is then composed of the 

ciphertext E1, the digital signature 𝑆, and the encrypted 

session keys 𝐸2 and 𝐸3: 

𝐸 = {𝐸1, 𝑆, 𝐸2, 𝐸3}   (5) 

The hybrid encryption process includes encrypting the 

message using a symmetric key (AES-128) and then 

encrypting the symmetric key using the recipient's public 

key (asymmetric encryption). A digital signature is 

generated and attached to the message to ensure its 

authenticity. 

Algorithm Hybrid_Encryption 

Input: Plaintext message P, vehicle's private key 𝑉𝑝𝑟𝑖𝑣 , 

recipient's public key 𝑅𝑝𝑢𝑏, CA's public key 𝐶𝐴𝑝𝑢𝑏 

Output: Encrypted and signed message E 

1. Generate session key K 

2. E1 ← AES-128_Encrypt(P, K) 

3. Signature S ← Sign(E1, 𝑉𝑝𝑟𝑖𝑣) 

4. E2 ← Encrypt(K, 𝑅𝑝𝑢𝑏) 

5. E3 ← Encrypt(K, 𝐶𝐴𝑝𝑢𝑏) 

6. E ← {E1, S, E2, E3} 

7. Return E 

Upon receiving the encrypted message 𝐸, the recipient 

decrypts the session key 𝐾 using their private key 𝑅𝑝𝑟𝑖𝑣: 

𝐾 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐸2, 𝑅𝑝𝑟𝑖𝑣)   (6) 

The hybrid encryption process includes encrypting the 

message using a symmetric key (AES-128) and then 

encrypting the symmetric key using the recipient's public 

key (asymmetric encryption). A digital signature is 

generated and attached to the message to ensure its 

authenticity. 

Algorithm Hybrid_Encryption 

Input: Plaintext message P, vehicle's private key 𝑉𝑝𝑟𝑖𝑣 , 

recipient's public key 𝑅𝑝𝑢𝑏, CA's public key 𝐶𝐴𝑝𝑢𝑏 

Output: Encrypted and signed message E 

1. Generate session key K 

2. E1 ← AES-128_Encrypt(P, K) 

3. Signature S ← Sign(E1, 𝑉𝑝𝑟𝑖𝑣) 

4. E2 ← Encrypt(K, 𝑅𝑝𝑢𝑏) 

5. E3 ← Encrypt(K, 𝐶𝐴𝑝𝑢𝑏) 

6. E ← {E1, S, E2, E3} 

7. Return E 

Upon receiving the encrypted message 𝐸, the recipient 

decrypts the session key 𝐾 using their private key 𝑅𝑝𝑟𝑖𝑣: 

𝐾 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐸2, 𝑅𝑝𝑟𝑖𝑣)   (6) 

The recipient then uses the decrypted session key 𝐾 to 

decrypt the ciphertext 𝐸1, recovering the plaintext message 

𝑃: 

𝑃 = 𝐴𝐸𝑆 − 128_𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐸1, 𝐾)  (7) 

To verify the integrity and authenticity of the message, the 

recipient checks the digital signature 𝑆 using the sender's 

public key. If the signature verification is successful, the 

recipient can be confident that the message has not been 

tampered with and that it indeed originated from the 

claimed sender: 

𝑉𝑒𝑟𝑖𝑓𝑦(𝑆, 𝐸1, 𝑉𝑝𝑢𝑏)   (8) 

Algorithm Hybrid_Decryption 

Input: Encrypted message E, recipient's private key 𝑅𝑝𝑟𝑖𝑣, 

CA's public key 𝐶𝐴𝑝𝑢𝑏 

Output: Decrypted and verified plaintext message P 

1. Parse E to get {E1, S, E2, E3} 

2. K ← Decrypt(E2, R_priv) 

3. P ← AES-128_Decrypt(E1, K) 
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4. Verify signature S with sender's public key 

5. If verification succeeds then 

6.    Return P 

7. Else 

8.    Return "Verification Failed" 

9. End if 

By integrating this hybrid encryption scheme, the proposed 

VANET framework ensures secure communication, 

protecting sensitive data from unauthorized access and 

ensuring the integrity and authenticity of the exchanged 

information. This robust approach combines the efficiency 

of symmetric encryption with the security of asymmetric 

encryption and digital signatures, providing a 

comprehensive solution for secure vehicular 

communication. 

3.3. Rear Time Traffic Management Using Machine 

Learning 

The proposed VANET framework utilises advanced 

machine learning algorithms to optimise traffic flow, predict 

congestion, and improve road safety, resulting in the 

implementation of real-time traffic management. This 

section outlines the approach for incorporating machine 

learning into the traffic management system, with a specific 

focus on dynamic route optimisation and congestion 

prediction. 

3.3.1. Color/Grayscale figures 

Dynamic route optimization focuses on reducing travel 

times and helping vehicles avoid congested areas by 

offering real-time routing suggestions. The process entails 

analyzing current traffic conditions and historical traffic 

data to recommend the most optimal routes. Let T_i 

represent the travel time on route i. The objective is to 

minimize the total travel time T for all vehicles 𝑉. 

min 𝑇 = ∑ 𝑇𝑖
𝑛
𝑖=1    (9) 

Deep Q-networks are machine learning models trained to 

predict the best routes, taking into account factors such as 

current traffic density, vehicle speeds, and road conditions. 

Formulating the optimization problem is essential. 

𝜋∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝜋𝔼[∑ 𝑟𝑡|𝜋𝑇
𝑡=0 ] (10) 

where 𝜋 is the policy mapping states to actions (routes), 

and 𝑟𝑡 is the reward (negative of travel time) at time 𝑡. 

Forecasting traffic congestion is crucial for effectively 

managing and preventing traffic jams. This entails utilizing 

machine learning models to analyze traffic patterns and 

make predictions about future congestion. 

Algorithm Congestion_Prediction 

Input: Real-time traffic data, historical traffic data 

Output: Predicted congestion levels 

1. Initialize machine learning model M 

2. Collect real-time traffic data D 

3. Collect historical traffic data H 

4. For each time step t do 

5.    X ← {D, H} 

6.    𝐶𝑝𝑟𝑒𝑑  ← Predict_Congestion(M, X) 

7.    If 𝐶𝑝𝑟𝑒𝑑> threshold then 

8.        Trigger congestion management protocol 

9.    End if 

10. End for 

3.4. Deep Q-networks 

Within the proposed VANET framework, real-time traffic 

management utilizes Deep Q-networks (DQNs) to enhance 

traffic flow optimization and congestion prediction. DQNs, 

which combine Q-learning and deep neural networks, are 

highly effective in dealing with complex state spaces and 

dynamic environments such as vehicular networks. 

Dynamic route optimization utilizes DQNs to learn and 

propose the most efficient vehicle routes in real-time, 

considering current traffic conditions and historical data. 

The objective is to reduce travel time and steer clear of 

crowded areas by constantly updating routing decisions 

using up-to-date inputs. 

The Q-learning algorithm aims to find the optimal policy 𝜋∗ 

that maximizes the expected cumulative reward over time. 

The Q-value 𝑄(𝑠, 𝑎) represents the expected reward for 

taking action 𝑎 in state 𝑠: 

𝑄(𝑠, 𝑎) = 𝔼[𝑟𝑡 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)|𝑠, 𝑎] (11) 

where 𝑟𝑡 is the reward at time 𝑡, 𝛾 γ is the discount factor, 𝑠′ 

is the next state, and 𝑎′ is the next action. In the context of 

route optimization, the states 𝑠 are the traffic conditions, the 

actions 𝑎 are the possible routes, and the rewards 𝑟𝑡 are 

based on travel times and congestion levels. 

To approximate the Q-values, a neural network 𝑄(𝑠, 𝑎; 𝜃) 

with parameters 𝜃 is used. The network is trained to 

minimize the loss function. 

𝐿(𝜃) = 𝔼 [(𝑟𝑡 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃−) − 𝑄(𝑠, 𝑎; 𝜃))
2

]

 (12) 

where 𝜃− are the parameters of the target network, which 

are periodically updated to stabilize training. 

Real-time notifications are generated using the predictions 

and route optimisations provided by the DQNs. These 

notifications provide drivers with information on the best 
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routes, possible traffic jams, and current traffic conditions, 

which helps improve traffic management and promote road 

safety. Through the integration of Deep Q-Networks into 

real-time traffic management, the suggested VANET 

framework has the potential to significantly enhance route 

optimisation, congestion prediction and mitigation, and 

timely driver notifications. This approach utilises the power 

of machine learning to effectively manage traffic in 

vehicular networks, ensuring efficiency and safety. 

4. Result and Discussion 

In order to successfully implement and assess the suggested 

VANET framework utilizing Deep Q-Networks (DQNs) for 

real-time traffic management, it is crucial to have a 

comprehensive dataset. It is essential to have a 

comprehensive dataset containing in-depth traffic data for 

the purpose of training, validating, and testing the DQN 

models. It is essential to have a dataset that includes a wide 

range of information on traffic conditions, vehicle 

movements, and environmental factors. 

The dataset needed to implement the proposed VANET 

structure with Deep Q-Networks (DQNs) for real-time 

traffic management consists of various essential 

components. Up-to-the-minute traffic data from multiple 

sources, such as sensors, cameras, and connected vehicles, 

offers valuable information on current traffic conditions, 

vehicle speeds, locations, and travel times. This data is 

essential for training DQNs to quickly determine the best 

routes and forecast congestion. Examining historical traffic 

data provides valuable insights into patterns and trends that 

can help DQNs learn from past scenarios. This includes 

information on traffic volumes, average speeds, and 

congestion incidents. Road network data provides 

comprehensive information on road layouts, types, 

intersections, and traffic signals, as well as geospatial data 

for precise mapping. Vehicle data includes a wide range of 

information about different types of vehicles and how they 

move, such as their paths, where they begin, and where they 

end up. Environmental data provides valuable insights into 

weather conditions and how traffic patterns change 

throughout the day and week. 

The dataset for the suggested VANET structures with Deep 

Q-Networks (DQNs) for real-time control of traffic consists 

of various crucial elements. OpenStreetMap (OSM) offers 

comprehensive geospatial data, encompassing road layouts 

and geographic coordinates, that serve as the foundation for 

constructing the road network in the simulation 

environment. Real-time and historical traffic data collected 

from sensors and cameras in urban areas provide valuable 

insights into current traffic conditions and past trends. This 

data is crucial for training and testing DQN models. You can 

find this data on city or region-specific open data platforms 

like New York City's NYC Open Data. Data on vehicle 

movements, including trajectories, speeds, and travel times, 

can be obtained from vehicle trajectories collected from in-

vehicle GPS systems. These are utilized to simulate 

authentic vehicle behaviour and train the DQN models. A 

variety of mobility datasets are available for this purpose, 

such as those from CRAWDAD. 

The proposed VANET framework was evaluated through 

extensive simulations to assess its effectiveness in real-time 

traffic management. The main factors taken into account 

were the reduction in travel time, the accuracy of congestion 

prediction, the latency of communication, and the overall 

throughput of the network. Table 1 summarizes the results 

obtained from the simulations. 

The proposed DQN-based framework achieved a notable 

decrease in the average travel time, reducing it from 45.2 

minutes to 32.8 minutes. The significant 27.4% decrease 

clearly showcases how the DQN models excel in 

optimizing routes and steering clear of congested areas. 

The DQNs enable dynamic route optimization, allowing 

vehicles to receive real-time route recommendations. This 

helps minimize delays and improve overall traffic flow. 

The accuracy of congestion prediction significantly 

increased from 72% to 98% after implementing the DQN-

based framework. This improvement is credited to the 

DQN models' capacity to analyze past traffic patterns and 

current data, enabling them to make more accurate and 

timely predictions about congestion. Precise congestion 

prediction allows for proactive traffic management, which 

decreases the chances of traffic jams and enhances the 

overall efficiency of the transportation network. 

The communication latency has been reduced from 150 ms 

to 100 ms, showcasing the effectiveness of the proposed 

Table 1. Performance Metrics of the VANET Framework 

Metric Baseline (No Optimization) Proposed DQN-Based Framework 

Average Travel Time (minutes) 45.2 32.8 

Congestion Prediction Accuracy 72% 98% 

Communication Latency (ms) 150 100 

Network Throughput (Mbps) 50 70 
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framework in managing data transmission between 

vehicles and infrastructure. This decrease was made 

possible thanks to the implementation of cutting-edge 

communication protocols and efficient network 

management. This guarantees that vehicles receive prompt 

updates and route suggestions. The network throughput has 

experienced a significant boost, going from 50 Mbps to 70 

Mbps. This suggests that the utilisation of network 

resources has become more efficient. The improvement 

can be attributed to the advanced data-handling capabilities 

of the proposed framework. It enables a larger volume of 

data exchange without compromising the quality of 

communication. Machine learning algorithms were 

instrumental in optimizing data transmission processes 

 

Fig. 2. The average travel time against the traffic volume 

with the proposed model 

Fig. 2. demonstrates the average travel time in different 

traffic scenarios, including those with and without the 

suggested DQN-based optimisation model. The graph 

clearly shows that the average travel time reduces 

considerably when using the DQN optimisation, particularly 

with higher traffic volume. In situations where optimisation 

is not implemented, travel times continue to be high and 

even increase significantly as traffic volume rises, 

demonstrating the system's limited ability to handle higher 

levels of congestion efficiently. On the other hand, the 

DQN-optimized model consistently decreases travel time 

regardless of traffic volumes. Even with increased traffic, 

the model consistently keeps travel times low, 

demonstrating its ability to reduce congestion and choose 

the best routes. This impressive performance results from 

the model's capacity to analyse real-time and historical 

traffic data. By doing so, it can accurately anticipate and 

respond to any fluctuations in traffic conditions. 

 

Fig. 3. Transmission Delay vs VANET Topology 

Snapshot. 

Fig. 3. demonstrates the transmission delay across different 

VANET topology snapshots, showcasing the network's 

performance with and without the suggested optimization 

model based on DQN. The red dashed line, representing the 

scenario without optimization, exhibits noticeable 

fluctuations and generally experiences higher transmission 

delays. The variations observed highlight the challenges 

faced by the system in effectively managing different 

network conditions, leading to inconsistent performance and 

increased communication latencies. On the other hand, the 

green dashed line, which represents the scenario optimized 

by DQN, consistently shows lower transmission delays in 

all topology snapshots, with less variation. The stability and 

decrease in delays demonstrate the efficiency of the DQN 

model in handling network resources and adjusting to 

variations in the VANET topology. The enhancement can 

be credited to effective resource management, ongoing 

learning and flexibility to evolving circumstances, and 

proactive congestion management, guaranteeing seamless 

data flow and preventing congestion. 

The results clearly show the effectiveness of the proposed 

VANET framework in improving real-time traffic 

management with the help of Deep Q-Networks. The 

remarkable decrease in travel time and the enhanced 

precision of congestion prediction highlight the immense 

potential of machine learning in revolutionising traffic 

management systems. The decreased communication 

latency and increased network throughput further support 

the framework's robustness and scalability. The 

combination of real-time traffic data, historical traffic 

patterns, and advanced machine learning models has proven 

to be highly effective in tackling the challenges of urban 

traffic management. Vehicles will receive up-to-date route 

suggestions and congestion notifications by implementing a 

cutting-edge framework. This innovative approach 

optimizes traffic flow, prioritizes road safety, and enhances 
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the overall driving experience. 

Table 2 compares the performance of Deep Q-Networks 

(DQN) with other popular machine learning models in the 

proposed VANET framework for real-time traffic 

management. The metrics considered are average travel 

time, congestion prediction accuracy, communication 

latency, and network throughput. 

Table 2. Performance comparison of Deep Q-Networks 

(DQN) with other popular machine learning models 

Metric 
DQ

N 

Rando

m 

Forest 

Suppor

t 

Vector 

Machi

ne 

(SVM) 

K-

Nearest 

Neighbo

rs 

(KNN) 

Linear 

Regressi

on 

Average 

Travel Time 

(minutes) 

32.8 35.5 34.2 36.0 38.5 

Congestion 

Prediction 

Accuracy 

98% 92% 94% 90% 85% 

Communicati

on Latency 

(ms) 

100 120 110 125 130 

Network 

Throughput 

(Mbps) 

70 65 67 60 55 

 

The DQN model performs better than other models in 

reducing average travel time. Comparing the average travel 

times, it is clear that this method is more efficient than 

Random Forest, SVM, KNN, and Linear Regression. This 

demonstrates the impressive capability of DQN to optimize 

routes, resulting in minimal delays efficiently. When 

predicting congestion, DQN stands out with a remarkable 

accuracy rate of 98%. This outperforms SVM, Random 

Forest, KNN, and Linear Regression with 94%, 92%, 90%, 

and 85% accuracy rates, respectively. The impressive 

accuracy of DQN in predicting congestion points allows for 

proactive traffic management, which in turn helps minimize 

traffic jams. DQN effectively reduces communication 

latency, achieving a delay of only 100 ms. It has fewer 

processing times than SVM, Random Forest, KNN, and 

Linear Regression. Efficient data transmission with lower 

latency is essential for real-time applications in VANETs. 

Regarding network throughput, DQN stands out with an 

impressive throughput of 70 Mbps. It surpasses the 

performance of SVM, Random Forest, KNN, and Linear 

Regression. Increased throughput showcases the efficiency 

of DQN in managing more significant amounts of data. 

5. Conclusion and Future Works 

The proposed VANET framework has significantly 

improved real-time traffic management by implementing 

Deep Q-networks (DQNs). The DQN-based model 

outperforms other machine learning models such as 

Random Forest, Support Vector Machine (SVM), K-

Nearest Neighbours (KNN), and Linear Regression in 

various aspects. It reduces average travel time, improves 

congestion prediction accuracy, minimizes communication 

latency, and boosts network throughput. These 

enhancements are vital for the smooth functioning of 

vehicular communication systems, especially in busy city 

areas where traffic conditions can change rapidly and 

become unpredictable. The DQN model's capacity to gather 

insights from real-time and historical traffic data enables it 

to make informed routing and congestion management 

decisions. The network's adaptability allows it to maintain 

efficiency in different conditions, ensuring timely and 

reliable data transmission to support real-time applications 

like safety alerts and traffic management. The quantitative 

results confirm the effectiveness of the DQN-based 

framework, establishing it as a reliable solution for modern 

vehicular communication systems. 

Although the results show promise, areas still need to be 

addressed to improve the proposed VANET framework. 

Integrating adaptive traffic signal control into the DQN-

based framework can potentially enhance traffic flow at 

intersections. This would require the development of 

algorithms that can adapt signal timings in response to 

current traffic conditions to reduce delays and congestion. 
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