

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 81

Integrating REST APIs in Single Page Applications using Angular and

TypeScript

1Sneha Aravind, 2Ranjit Kumar Gupta, 3Sagar Shukla, 4Anaswara Thekkan Rajan

Submitted: 25/04/2021 Revised: 02/06/2021 Accepted: 15/06/2021

Abstract: This research paper examines the integration of REST APIs in Single Page Applications (SPAs) using Angular and TypeScript.

It explores the fundamental concepts of SPAs, the Angular framework, TypeScript, and RESTful architecture. The study delves into best

practices for API integration, state management, performance optimization, and security considerations. By analyzing current

methodologies and emerging trends, this paper aims to provide a comprehensive guide for developers and researchers working on modern

web applications. The research covers various aspects of SPA development, including framework architecture, API integration techniques,

state management strategies, and deployment methodologies, offering insights into the complexities and best practices of building robust,

scalable web applications.

Keywords: Single Page Applications, Angular, TypeScript, REST APIs, Web Development, Frontend Frameworks, State Management,

Performance Optimization, API Integration, Security

1. Introduction

1.1 Background

The landscape of web development has evolved

significantly over the past decade, with Single Page

Applications (SPAs) emerging as a popular architectural

pattern for building responsive and dynamic web

interfaces. Using the SPAs, page reloads are reduced

aiming to deliver a more convincing application-like

interface to Web applications. This shift has been made

possible by the rising consumers’ expectant for richer,

more engaging content in web page s that are as engaging

as alternative stand-alone desktop and, or mobile

application.

 As for today, Angular– comprehensive front-end

development platform, created by Google is another most

used technology of choice to build SPAs. The framework

was first introduced in 2010 as AngularJS but was

redesigned as the Angular 2 in 2016. The subsequent

releases have maintained the development, enriching the

subsequent Angular with new robust features; the latest is

the Angular 12, at the time of writing in May 2021. Here

Angular uses TypeScript, which is a statically typed script

of ECMAScript that supersedes JavaScript and helps in

improving the efficiency of the developers and quality of

the code being developed.

 Web based Application: REST (Representational State

Transfer) APIs are the standard that are used for client-

server interaction in present era. First proposed by Roy

Fielding in 2000, for his doctoral thesis, REST

architectural principles have garnered much acceptance

because of their simplicity, performance, and compliance

with HTTP. Incorporation of REST APIs in SPA using

Angular is a very important facet when it comes to

building applications that are data-driven and capable of

making seamless interconnectivity with back-end

services.

1.2 Objectives

The primary objectives of this research are to provide a

comprehensive understanding of Single Page

Applications and their benefits in the context of modern

web development. This includes exploring the Angular

framework and TypeScript, analyzing their roles in SPA

development, and examining how they contribute to

building robust and maintainable applications.

 Also, the research seeks to discuss the proper

implementation of REST APIs with regards to angular

applications. This ranges from checking into different

methods of performing HTTP requests, handling the

result, and working with non-blocking tasks. The study

also aims at looking at the best state management practices

and optimization of performance that is vital in creating

more robust SPAs.

 Another work focus is to discuss the security issues and

the testing approaches on the API integration. This

comprises considerations of the arena of authentication,

cross-origin resource shares (CORS), as well as

methodologies of avoiding standard web weaknesses.

 Finally, the research will focus on the current

developments and trends of SPA deployment and future

1Independent Researcher,USA.
2Independent Researcher, USA.
3Independent Researcher, USA.
4Independent Researcher,USA.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 82

trends on the SPA development with an aim of giving the

readers glimpse of the future technologies and

methodologies in development of web applications.

1.3 Scope of the Research

This research focuses on Angular version 12 (released in

May 2021) and TypeScript 4.3 (released in May 2021), as

these were the latest stable versions at the time of writing.

The paper covers various aspects of SPA development,

including framework architecture, API integration, state

management, and deployment. While the primary focus is

on REST APIs, alternative approaches like GraphQL are

briefly discussed to provide a holistic view of the subject

matter.

The study examines the entire lifecycle of SPA

development, from initial setup using Angular CLI to final

deployment and continuous integration strategies. It also

explores advanced topics such as lazy loading, server-side

rendering, and micro frontends, providing a

comprehensive overview of modern SPA development

practices.

2. Understanding Single Page Applications (SPAs)

2.1 Definition and Characteristics

 Single Page Applications are those web applications

where a single HTML page is loaded and it acts as a start

page and all the pages and updates of the application are

done through AJAX requests. In contrast to the

conventional multipage applications, SPAs incorporate

AJAX as well as HTML5 to construct sight applications

that do not require frequent page reloads. This in turn

makes for a more integrated experience for the user akin

to richness and experience of application built entirely for

the web or Desktop/Mobile rather than web/HTML

Application.

 The main features of SPAs are the constant updates of

parts of the page instead of the whole, client-side routing,

handling asynchronous data, as well as increased apparent

efficiency. Generally, in SPAs, the HTML, CSS and JS

that is required for the application to function are loaded

in the first page load, or are loaded on the fly as the

application is used. The initial load may be higher than

that of a typical web page, but subsequent activates

normally take less time since only data is transferred, not

even layouts.

2.2 Benefits and Challenges

 As much as SPAs, there is a long list of advantages which

are in many ways not minor. It provides improved

usability with faster response since content updates are

done in real time as opposed to the whole page refresh.

This causes the application to be more responsive and

keep users glued to their screen. Partial content update,

which is significant in implementing SPAs, acts as an

advantage since the server is not burdened with sending

HTML pages for every request but only the data.

 From the developmental angle then, SPAs are an

excellent approach to constructing complex applications

with functional layers because they partition the issues

into the frontend and the backend. This division makes the

working process clear, enables better development of the

work process and can be maintained easily. Also, to debug

the SPAs might be easier using browser developer’s tools,

unlike in node. js, the complete application state can be

found in the browser.

 But also, SPAs have some peculiarities which can be

regarded as disadvantages: The first time it loads there

will be potentially larger JS bundles, which will affect

subjective perception of performance on slow networks.

As can be seen, SEO can be more challenging in SPAs

since search engine crawlers struggle with indexing such

content as those dynamically created. This problem has

been somewhat resolved using such solutions as server-

side rendering though it is still being taken into

consideration.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 83

SPA’s approach to browser history comes as an added

aspect to consider in which the application is responsible

for routing and creating the feeling of application-like

navigation without reloading the page. Lastly, the state

management in SPAs could be even more complicated,

more so for large application, which often requires the use

of the state management libraries or the need to design the

architecture of application development with this

challenge in mind.

2.3 SPA Frameworks: An Overview

 A few frameworks help in creating SPAs, and each of

them has its conceptual approach and the number of

characteristics. Angular is developed by Google and it is

big framework powerful but with rather steep learning

curve. It offers a comprehensive solution for developing

applications of considerable size, it offers sophisticated

Dependency Injection, has enhanced templates and is

natively based on reactive programming.

 React, by Facebook is an interface technology that has

received a lot of attention because of its ease to implement

and integrate into various entities. While React is not as

developed, complete framework as Angular, it has more

related libraries that can offer similar services.

 Vue. js is another well-liked one, considered to be easy to

learn and rather versatile. it ensures implementation does

not happen in a haphazard way but can be adopted

gradually; this means that is useful for a broad range of

application, from small to large.

 The other typical/other frameworks are; Ember.

Previously, it used the js, which is known for its

convention over the configuration approach, and Svelte

which took a compile-time approach to the reactivity.

The choice of framework often depends on project

requirements, team expertise, and personal preference.

Table 1 provides a comparison of key features among

these popular SPA frameworks.

Table 1: Comparison of Popular SPA Frameworks

Feature Angular React Vue.js Ember.js Svelte

Learning

Curve

Steep Moderate Gentle Moderate Gentle

Performance Good Excellent Excellent Good Excellent

Community

Support

Large Very Large Large Moderate Growing

TypeScript

Support

Native Via JSX Via Class

Components

Via

Decorators

Via

Preprocessor

State

Management

NgRx Redux Vuex Ember

Data

Built-in

CLI Tool Yes Create React App Vue CLI Ember CLI No official

CLI

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 84

3. Angular Framework

3.1 Core Concepts and Architecture

 Angular is a platform with everything you need to create

applications in plain HTML and only TypeScript. It

provides core and optional features as a set of TypeScript

libraries that you incorporate in your applications. Upon

to build an angular application, there are basic

fundamentals that support the architecture of such an

application.

 The most important component from the Angular world

is the NgModules which helps in providing the

compilation context for Groups. An NgModules gathers

related code into functional groups; an Angular

application is best described as a set of NgModules. An

app always has at least a root module that allows

bootstrapping and often has many, many more expressing

features.

 Components declare views, which are screens which

contain on-screen elements of which Angular can select

one and or change based on your program logic and data.

Subcomponents in components use services which are not

directly concerned with views. Services can be injected

into components as dependency and makes your code

much more modular, reusable and efficient.

3.2 Components and Modules

 Modules are usually the main block of construction for

Angular applications. Each component consists of:

· An HTML template that proclaims what shows up

on the page

· An abstract class in TypeScript that expresses

behavior

· An identifier that defines the usage of the

component on a template.

· Optionally, some CSS styles that have to be used

in the template

Here's an example of a simple Angular component:

Modules in Angular help to organize an application and

extend its capabilities. NgModules are containers for a

cohesive block of code dedicated to an application

domain, a workflow, or a closely related set of capabilities.

They can contain components, service providers, and

other code files whose scope is defined by the containing

NgModule.

3.3 Dependency Injection

 Dependency Injection (DI) is a design pattern and a

method of implementing it, for introducing parts of an

application into other parts of the application that need

them. In Angular, DI is done via the constructor of a class

and Angular has the ability to automatically instantiate

and inject the dependencies.

 In general, we can say that DI framework of Angular

gives dependencies to a class at the time when the class is

created. This makes the code more ‘pluggable’ and easier

to test since dependencies can be easily replaced by forms

of ‘fakes’ during testing.

3.4 Angular CLI

 The Angular CLI is the standalone tool that is greatly

helpful in the development of the Angular applications.

The basic format is a set of commands that are used to

initiate a project, which comes with predefined code, to

execute tests, and to build the application.

 Some key features of the Angular CLI include:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 85

· Project scaffolding: Allows for the creation of a

new Angular project in a standard format and

setting up the needed architecture.

· Code generation: Create classes, services, pipes

and other components and related things in

Angular with right naming conventions and code

templates.

· Development server: To encourage development,

it is recommended to launch a local development

server with live reload.

· Build optimization: The last step is to prepare the

application for production and inclusion of

optimisation methods.

· Testing utilities: Provide unit and end-to-end tests

configured with pre-selected test runners.

4. TypeScript in Angular Development

4.1 TypeScript Features and Advantages

 TypeScript is a typed scripting language developed and

maintained by Microsoft; it is JavaScript based, albeit

being a superset of it and compiling to plain JS. It

introduces static typing, classes as well as modules to

JavaScript; thus, helping developers write better code.

 Key features of TypeScript include:

1. Static typing: In particular, TypeScript permits

extending variable declarations, function

parameters, and function return values with types.

This makes a better understandings of tooling

support such as autocomplete, refactorings, and

detection of errors at compile time possible.

2. Object-oriented programming: One of the

consequences of implementing Object-Oriented

concepts in TypeScript is its support of classes,

interfaces and modules.

3. Enhanced IDE support: Static typing feature of

TypeScript allows IDEs to suggest better code

completion, refactoring, and navigation than what

dynamic typing allows.

4. ECMAScript compatibility: TypeScript was

designed as JavaScript successor, it has all of the

ECMAScript features up to the most recent ones that

can be used to write applications for older browsers.

5. Gradual adoption: The TypeScript is designed that it

can be gradually integrated into the JS project, which

may help the team to gradually change to the typed

JS.

 The use of TypeScript in Angular has a number of benefits

and the following are brief descriptions of these benefits.

It offers improved tooling support, helps in matters

concerning errors within the planning and designing phase

and is advantageous in the matters concerning

maintainability. Angular is itself written in TypeScript and

the features of TypeScript are well integrated in the

framework.

4.2 Type Safety and Object-Oriented Programming

 Safety of the data type is one of the essential advantages

that work on angular using TypeScript. It means that using

type annotations, developers are able to fix all the

potential type-related issues at compile-time. This results

in very strong code and it has the effect of minimize the

bug that may occur in the production.

In this example, TypeScript catches the error of passing an

object that doesn't match the User interface to the

greetUser function, preventing a potential runtime error.

Object-Oriented Programming (OOP) in TypeScript

allows developers to create reusable, modular code using

classes and interfaces. This aligns well with Angular's

component-based architecture. Here's an example of a

simple class in TypeScript:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 86

4.3 TypeScript Decorators in Angular

Decorators are a TypeScript feature heavily used in

Angular for metadata annotation. They allow you to

modify or enhance classes and properties at design time.

Angular uses decorators to define components, services,

and other core concepts.

Here are some common decorators used in Angular:

1. @Component: Defines a class as an Angular

component and provides metadata about the

component.

2. @Injectable: Marks a class as available to be

provided and injected as a dependency.

3. @Input and @Output: Used for component

communication, marking properties as inputs or

outputs.

4. @NgModule: Defines a module that contains

components, directives, pipes, and providers.

5. REST APIs: Principles and Best Practices

5.1 RESTful Architecture

 Representational State Transfer or REST is an

architecture scheme for the development of the network

application which has served as the backbone of

contemporary Web services. Proposed by Roy Fielding in

his PhD thesis in the year 2000, REST uses stateless,

client-server, cacheable communication protocol that is

predominantly HTTP. RESTful systems are used to

enhance scalability, to decrease coupling, and to increase

independence of components, these factors makes this

approach highly suitable for development of distributed

systems.

 Client-server, stateless, cache, uniform interface, layered

system, and code on request, these are the six principles

that are the foundation of the REST architectures . The

client-server principle can also facilitate that the focus lies

on two different architectural aspects, such that the user

interface and database can be developed on their own

without necessarily forcing down tightly linking the two

into one design. Statelessness entails that any message

from the client to the server has to include all the

information that the server must understand about the

message and therefore the scalability and ease in

designing the servers. Cacheability means that responses

must provide information about their cacheability, which

is itself cacheable, thus enhancing performance and

request handling capacity.

 Among the principles of REST probably the most

outstanding one is the uniform interface principle. This

seems to lay down a standard manner of communicating

with a given server whether through a PC, a mobile phone,

etc, or when using an application. This is usually attained

by means of standardizing HTTP methods and the notion

of resources characterized by URIs. It remains to note that

in contrast to client–server model, the layered system

principle provides for the use of intermediary servers,

which makes it possible to scale up the system to the

necessary level and carry out load-sharing. Lastly, the

code on demand option enables the servers temporarily to

enhance the client’s functions through transferring of

code.

5.2 HTTP Methods and Status Codes

 RESTful APIs always use HTTP methods that are used to

interact with the specified resource. The four commonly

used HTTP methods are; GET to request resources, POST

for creating a resource, PUT for modifying a resource and

DELETE to remove a resource and PATCH is used to

partially modify a resource. These methods are in order

with the CRUD functions – Create, Read, Update, Delete

– normally found in data handling systems.

 HTTP status codes are also very vital in RESTful

communication as they indicate whether API request was

successful or not. These codes are grouped into five

classes: ,Second: Informational responses (100–199),

Successful responses (200–299), Redirection messages

(300–399), Client error responses (400–499), and Server

error responses (500–599). Some of the well known status

codes are 200, which is ‘ok’, 201 which means ‘created’,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 87

400 which is ‘bad request’, 401 which means

‘unauthorized’, 404 which is ‘not found’ and the last one

is 500 which means ‘internal server error’.

These status codes are slight different and understanding

and using these properly is very important when designing

APIs. It speaks to clients about the results of their actions

and allows to correctly respond to an error, thereby

increasing the stability of the system.

5.3 API Design Patterns

 While implementing RESTful APIs some common

patterns and conventions have been as follows in order to

ensure that the APIs are consistent, manageable and

consumable. There is one fundamental and effective rule,

and it is the rule of the nouns used for naming the

resources. It is preferable to refer to the resources using

nouns rather Than verb since the REST is entity oriented.

For instance, /users is better than /getUsers This approach

is in harmony with the concept of resources as the only

abstraction of information used in application in REST.

 Another important pattern is the use of the plural nouns

where the set is considered. If we are talking about a set

of resources, plural nouns should be used, in order to

avoid confusion and inconsistencies. For instance, /users

is preferable to /user if we speak of a set of user resources.

This convention useful in designing of APIs that are easy

to understand and describe on their own.

 Sub-resources present a good way of showing

relationships of resources with resources. For instance, to

work with the posts of a certain user, the API can use such

a path as /users/{userId}/posts. This structure is quite

evident in the API to denote the users and their post further

enabling the users to navigate through the API easily while

improving its semantic connectivity.

 Versioning is another key element of design API. Given

the changes in APIs, introducing breaking changes is

disadvantageous in so far as client applications are

concerned. To be able to address this, APIs involve

versioning in their integration. Some of these are URL

versioning for example /v1/users, header versioning, or

use of content negotiation. These two methods have their

advantages and disadvantages and the choice depends on

the project that is to be handled.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 88

Pagination is essential for handling large datasets

efficiently. Instead of returning all results at once, which

can be resource-intensive and slow, APIs should support

pagination. This can be implemented using query

parameters like limit and offset or page and per_page. For

example, /users?page=2&per_page=20 might return the

second page of results with 20 users per page.

Filtering, sorting, and searching capabilities enhance the

flexibility of APIs. These features allow clients to request

specific subsets of data, improving efficiency and

reducing unnecessary data transfer. Filters can be

implemented using query parameters (e.g.,

/users?status=active), while sorting might use parameters

like /users?sort=name:asc.

5.4 Authentication and Security

 As important as the implementation of APIs, security is

of key concern where the API is dealing with restricted

operations or data. The concept of users’ access control

involves the use of techniques such as authentication and

authorization to control access to protected resources.

Typically, the basic form of authentication among the

RESTful APIs includes use of API keys, OAuth 2. 0,

minimum usage of cookies and also JSON Web Tokens

(JWT).

 API keys are very easy to implement but they are not

secure and can be sued for APIs that are not very sensitive

or those that are public. OAuth 2. 0 is a more robust

protocol that controls authorization in a standard method

from Web, Mobile and Stand alone Desktop applications

securely. Often employed for access delegation, it offers

reasonable levels of protection while being rather easy to

manage.

 JSON Web Tokens are widely used because they are

stateless and it is possible to envelop claims safely in

them. JWTs are about both credit and content making it

feasible for use in a variety of API security circumstances.

Besides authentication, APIs must incorporate the right

form of authorization to allow a user to only request and

use specific resources and actions that have been

authorized to him or her. Role based access control

(RBAC) is an example of a strategy and this identifies

users by roles that are allowed certain privileges.

 Transport layer security is used for protecting the data in

transit. HTTPS should be used to avoid code

eavesdropping and man in the middle attacks in all

production APIs. Also, rate limiting can provide the APIs

necessary safeguard against malicious usage and fairly

distribute the requests among the clients.

 Another measure of security is Cross-Origin Resource

Sharing (CORS), the feature helpful when consuming

APIs by web apps. CORS defines how a server may

specify any origins (domains) aside from the server’s own

that a browser should allow, to load a resource.

 When followed these principles and recommendation

developers great RESTful APIs that are Secured, Multi-

Tenant and Usable. These APIs are the foundational

structure to most current-era Web and Mobile

applications, facilitating client-server communication in a

regular format.

6. Integrating REST APIs in Angular Applications

6.1 Angular HttpClient Module

 Angular offers the HttpClient module as a fast and diverse

framework for communicating with backend servers with

HTTP protocols. This module is provided by the

@angular/common/http package and provides a Readily

Available client HTTP API for angular applications. It

contains new elements such as typed request and response

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 89

models, interceptors, and a simple error-handling system

the tools, it is convenient to work with.

To use HttpClient, you first need to import the

HttpClientModule in your Angular application's root

module or any feature module where you plan to make

HTTP requests. Here's an example of how to import it in

the AppModule:

Once imported, you can inject the HttpClient service into your components or services and use it to make HTTP requests.

Here's a simple example of how to make a GET request:

In this example, the component makes a GET request to

fetch a list of users when it initializes. The HttpClient.get()

method returns an Observable, which we subscribe to in

order to handle the response or any errors.

6.2 Observables and RxJS

 HttpClient methods of Angular return observables, and

that takes a help of RxJS (Reactive Extensions for

JavaScript). Observables are great at working with forms

of data that come in a stream and are meant to be

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 90

processed at any time, which is why they’re perfect for

HTTP requests.

 They are many operators provided by RxJS that can be

used to filter transform, combine or manipulate these

Observables. Some commonly used operators in the

context of HTTP requests include:Some commonly used

operators in the context of HTTP requests include:

· map: Modify the items released by an Observable.

· catchError: How to properly process error in the

Observable stream?

· switchMap: Switch to an Observable, finish the

prior inner Observable, and transmit values from

the latter.

· retry: Specifying how often a failure should occur

in an Observable sequence Retry an Observable

sequence Click the image to enlarge Retry an

Observable sequence Retry an Observable

sequence should an error occur Click the image to

enlarge

7. State Management in SPAs

7.1 Client-Side Data Storage

 ”Between all the patterns mentioned, data management is

the most significant for Single Page Applications since the

sensitivity of the application’s reaction directly depends

on it. ” This process is facilitated by the client-side data

storage which provides several means to store data in the

local browser environment. These storage options can be

as basic as the key-value pairs and can go up to the

structure data storage options.

 Perhaps the most popular of the storage formats is the

Web Storage API, which includes two types of storage,

one called ‘localStorage’ and the other ‘sessionStorage’.

localStorage on the other hand is the data that can be

accessed even if the window is closed, other than that it is

closed by default; on the other hand, sessionStorage stores

the data only for the duration of the browser session.

Caching is easy and these APIs designed for storing a

small amount of data, for example, user preferences or an

authentication token. For instance, you might store a user's

authentication token in localStorage like this: instead, use

localStorage. setItem('authToken', 'user123token').

However Web Storage is synchronous and it supports only

string data which could be crucial point for using more

complex data structures as well as for large data sets.

 For a more complicated storage, IndexedDB is the answer

to the call. IndexedDB is actually a low level API for

client storage of large amounts of structured data; files and

blobs included. It has indexes through which it is in a

position to search for this data at high speed. Although the

syntax and operation of IndexedDB are more complex

than of the Web Storage, the API provides more freedom

and works faster with the large amounts of data. Libraries

like Dexie. Another two libraries, js or LocalForage, can

help making work with IndexedDB more convenient and

less problematic due to changing API at any time.

 When one is handling data especially with a lot of

information it is wise to factor in security measures. It is

essential for developers to know that client-side storage is

comparatively less secure to server-side storage because it

is a vulnerability to XSS attack. Thus, data that is to be

stored should be encrypted and server side validation such

be performed on data that is critical.

7.2 NgRx for State Management

 When it comes to the larger angular application where

state management becomes a problem for the developers

NgRx is the perfect solution. NgRx or Geki is a state

management solution for Angular that was heavily

influenced by Redux. It has the advantage of being very

explicit and straightforward in identifying the process of

managing the state of an application, which is very useful

in generating an organized framework in tackling the state

transitions of an application as well as the complexity of

the state transitions.

 The core concepts of NgRx include:

1. Store: A single data structure that cannot be changed

and contains all the data of an application.

2. Actions: Simple forms stating what occurred in the

application.

3. Reducers: Functions which do not have side effects

and which receive the previous state and an action as

input, and return the new state.

4. Effects: Side effect model for managing difficult

callback based asynchronous operations.

5. Selectors: Functions to get some slices of the store

state used to be pure.

Here's a basic example of how these concepts come

together in an NgRx application:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 91

In this example, we define an action to add a todo, a

reducer to handle this action and update the state, and an

effect to perform the side effect of saving the todo to a

backend service. This structure ensures that all state

changes are predictable and traceable, which is

particularly valuable in large, complex applications.

7.3 Caching Strategies

 Use of caching is fundamental in the enhancement of the

performance of Single Page Applications, and hence holds

a critical position in the development process. Caching

can help to decrease number of requests that are sent over

the network, decrease the server load, and increase the

amount of time which it takes to access frequently

accessed data. There are various forms of caching used in

Angular applications though they can be adopted

consecutively or concurrently in enhancing the methods

of accessing and managing data.

 A typical on is in-memory caching, where the data is

stored in the memory of the application so that it can be

accessed soon. This may be done using RxJS’s

shareReplay operator which, enables multiple subscribers

to share an observable execution and store the most

recently emitted value. Here's an example:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 92

 In this case, the first time when getUsers() function is

called, the HTTP request will be made and on any

subsequent calls to this function, the cached data will be

returned. This strategy comes in handy when dealing with

information that does not often fluctuates within a users

session.

8. Performance Optimization

8.1 Lazy Loading Modules

 Among the most efficient approaches of how to optimize

the performance of big angular applications, there is the

approach called lazy loading. This approach entails the

fact that the specific set of features for the application is

separated and other features are loaded as the need arises.

Lazy loading means the website will load only a part of

the content at a time, thus making the website load lighter

at start-up.

 To enable lazy loading in Angular, you create routes that

correspond to some feature modules. These modules are

then loaded asynchronously as and when the user accesses

the corresponding path/route. Here is how lazy loading

should be set for the app-routing of the application:

module. ts file:

 In this example both the CustomersModule and

OrdersModule are marked as lazy-loaded. These will only

be downloaded and initialized when the user gets to any

of the defined routes which are ‘/customers’ or ‘/orders’.

This can really help to minimize the time for which the

burden is placed on the initial load of the application and

is especially useful for projects with a large number of

features divided into various modules.

 Lazy loading works great to make the first impressions

faster and, at the same time, may add a little bit of time

when switching to the other parts of the application for the

first time. These trade-offs should be carried out based on

the requirements that the developer has for his application

in terms of performance and the experience that he wants

to provide the user with.

8.2 Change Detection Strategies

 Angular change detection mechanism also has the rather

important function of maintaining the view in sync with

the application state. However, by default Angular is

employing a zone-based change detection where Angular

checks for changes in all components on every event that

takes place. This workflow, as you know, makes the view

always up to date, but it can cause great performance

problems in large-scale complex applications that need to

render trees of components.

 For this purpose, Angular offers the so-called OnPush

change detection strategy which helps to maximize the

effectiveness of change detection. This strategy instructs

Angular as to when it should look for changes in a

component; the changes may be in the properties into the

component or when an event is fired either by the

component or one of its descendants. Here's how you can

implement the OnPush strategy:Here's how you can

implement the OnPush strategy:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 93

 By making changeDetection set to

ChangeDetectionStrategy. OnPush we are making

Angular to check this component for changes only if the

input properties have been modified. This can

considerably decrease the iterate number of change

detection, particularly within the big applications, which

have numerous components.

What is crucial for understanding is that if you use

OnPush, all inputs should be marked as being immutable.

If you change an object which is being passed as an input,

then the angular will not be able to identify the change.

Rather, what you should do is to create a new object from

the class and assign the values to it. This practice

correlates with the ideology of immutability related to the

state management which may result in more predictable

applications and situations when it will be easier to track

the error’s source.

8.3 Server-Side Rendering (Angular Universal)

 Server-Side Rendering is one where the initial rendering

of the HTML content occurs on the server not on the

client’s browser. Angular Universal is the best way to

perform SSR on Angular based applications. It can

dramatically enhance the apparent download time of your

application on low-end devices or low connection and is a

requirement for SEO since it lets search engines index

your dynamically-fed data.

 In order to use SSR with Angular Universal, you need to

create a server side application module and use and apply

this to pre-render your application on the server side.

Here's a basic example of how to set up the server module:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 94

Realization of SSR can be challenging, particularly for the

applications that depend on the use of browser-specific

interfaces. Among other things, you may need to confirm

that this application can run in a server environment,

which would almost certainly entail certain refinements as

to how you handle browser-specific features.

 There are however some disadvantages of using SSR

which are the follows Despite such disadvantages, SSR

can enhance initial load time and SEO significantly. It

makes your application more complicated and it may lead

to some extensive use of server belongings. Thus, the

choice of the SSR implementation should be determined

by your needs because, in applications where the SEO is

critical, it is a decisive factor.

 By adopting these performance optimization strategies;

the above discussed lazy loading modules, optimizing

change detection, and server-side rendering you are in a

position to enhance the performance of your Angular

applications. These optimizations also improve not only

the positions in search engine rankings but also the

usability of the site for the users regardless the device and

the conditions of the network connection. Of course, with

any optimisations trade-offs some of these changes may

not be as beneficial in your particular application

environments as expected.

9. Testing REST API Integration

9.1 Unit Testing with Jasmine and Karma

 Testing is one of the critical conditions in ensuring that

Angular applications is healthy in terms of scalability for

maintenance and usage of REST APIs. Angular already

has out of the box unit testing capabilities via the Jasmine

testing framework and via using the Karma test runner.

These tools enable the developers to write and execute the

tests that check unit by unit of the components, services,

and all other sub parts of the application independently.

9.2 Integration Testing

 Although it is possible to test many units and services in

isolation, there has to be an integration test to confirm that

they are working coherently. They are typically performed

in the context of REST API integration during the tests of

interaction between components, services, and the API.

9.3 Mocking HTTP Requests

 Mocking HTTP requests is particularly important when

carrying out test termed as REST API integration. It gives

the ability to simulate the application activity without

using a real API that it can be unavailable or updated in

time. HttpClientTestingModule from Angular API offers

powerful tools for the mock HTTP calls.

10. Security Considerations

10.1 Cross-Origin Resource Sharing (CORS)

 Cross Origin Resource Sharing (C. O. R. S) is one of the

most significant security measures that dictate the access

rights of other domains (such as APIs) on a web server

than that of the web application. When it comes to Single

Page Applications where the main consumer of a REST

API is developed, CORS has a very important role of

banning the unauthorized access to the resources. There

exist controls on allowing such cross-origin requests put

in place by the browser through the Same-Origin Policy

when a web application make a request in a different

domain. CORS also allows the server to give out the list

of allowed origins for the resource by the server.

 CORS has to be set up properly in terms of security

measures as well as in terms of its usage. On the server

side, the correct headers related to origins have to be set

in order to define which resources may be requested by

them. Some of these headers are; Access-Control-Allow-

Origin, Access-Control-Allow-Methods, and Access-

Control-Allow-Headers. For such settings, it is necessary

to set headers in a proper way with regard to security

requirements in certain applications. If CORS policies are

implemented in a liberal manner, then websites may be

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 95

opened up to malicious attacks, on the other hand, if

CORS is implemented in a very conservative manner, then

genuine access to resources may be blocked.

At the client side, the Angular developers have to pay

attention at CORS consequences while performing the

HTTP requests between the different domains. Angular

HttpClient deals with the CORS preflight requests on its

own, however, it is vital that API endpoints are configured

to handle these requests. In some cases, the developer may

have to include some other headers in the request and this

may lead to the server sending preflight requests, thus

need for CORS handling.

10.2 JSON Web Tokens (JWT)

 JSON Web Tokens are now widely used to deal with the

user identification and access control in many

contemporary web apps, such as Angular-based Single

Page Applications (SPAs) communicating with RESTful

APIs. JWTs are small and rather independent tokens that

can safely transfer information from one party to another

in the form of JSON. They are specifically helpful in

Single Page Applications because they allow for stateless

authentication which is in tandem with RESTful

architecture.

 Whenever jwt is used in an angular project, the token is

generally gotten after successful login, and it is usually

stored on the client side, it can be stored in browser storage

such as localStorage or sessionStorage. This token is used

in the next API calls in the Authorization header for the

user authentication purposes. What crucial is indicated is

while using JWTs as medium of transferring information

is secure, it has to be handled carefully on the client-side

to avoid cases of security breaches.

 There exist certain risks such as cross site scripting (xss)

attack which may threaten the stored JWTs, developers

should keep an eye on. To avoid these risks it is advisable

to implement JWT s in HttpOnly cookies if possible since

the cookies would not be accessible by an XSS script.

Secondly, the time space when tokens can be used also

plays an important role – usually there are token refresh

mechanisms, which also can help to improve security.

10.3 Cross-Site Scripting (XSS) Prevention

 Cross Site Scripting or commonly called XSS is still a

popular attack vector and unfortunately, it is not exempted

from Angular applications. Cross-site scripting also called

XSS takes place when a malicious attacker injects scripts

into the pages the other users visit. XSS vulnerability,

when used in the context of consumption of REST APIs

by SPAs, can result in exposure of fresh contents, session

hijacking, or any other security attack.

 XSS attack protection is inherently included in Angular,

that is protected by template syntax, and binding

expressions. It is important to note, by default, Angular

marks all values as being untrusted and it’s sanitizing and

escaping of untrusted values. But, developers should be

careful and need to avoid the XSS attack on their

applications as much as possible.

 One of them is not to utilize the methods such as

bypassSecurityTrustHtml() when it is possible since such

methods evade circumventing Angular’s sanitization.

When dynamic content has to be generated, then the input

should be sanitized effectively. Also, while using APIs

that return HTML or JavaScript code, developers should

be careful so that such content should be sanitized before

being rendered in an application.

 The use of CSP headers is another way of guarding

against XSS attacks as well as other types of attacks. Thus

there is another source of content allowed to be loaded and

executed by the browser, CSP (Content Scripting Policy),

which enable developers to specify which sources may

load execute content.

 If one reflects on the security aspects aforementioned that

are CORS, JWT implementation, and Basic XSS,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 96

developers can boost the security of Angular apps

interacting with REST APIs tremendously. Security also

remains a constant and continuous endeavor, therefore

maintaining a good practice of constant update on new

security practices and possible URL vulnerability is very

important should one wants to have strongly fortified web

applications.

11. Deployment and Continuous Integration

11.1 Building and Bundling Angular Applications

 This paper will focus on the process of building and

bundling the Angular applications for deployment, which

is an important step in the Angular applications. To this

end, Angular CLI offers robust facilities for tasks such as

creating optimized production builds, consequently

requiring little configuration. When the ng build

command is executed with the --prod flag, it will perform

several optimizations such as the ahead-of-time or AOT,

the tree shaking, and the minification.

 Angular’s AOT compilation works by converting Angular

code from HTML and TypeScript to optimized JavaScript

at the time of compiling and before the browser has a

chance to download and then run the code. This process

increases performance at runtime and decreases the

application’s size which has several benefits. Another

important optimization strategy that is a part of tree

shaking process is the process of excluding unutilized

codes from the last bundle, which in this time makes the

size of the application even smaller. It removes all forms

of whitespacing, comments and other forms of characters

that are not necessary in the working of the code the

process makes the files smaller hence takes lesser time to

load.

 While using Angular for the implementation of

application that interact with REST API, it is necessary to

take into account the settings specific to the environment.

Environment files in Angular provides the setting for

development, staging and production seasons. This is even

for API endpoints, and endpoint may differ depending on

the environment it serves. The use of environment files

makes it possible for the application to call the right API

endpoints depending on the environment of the

application.

11.2 Containerization with Docker

 The concept of containerization has earned a lot of

traction as a way of deploying web applications and goes

for Angular applications relying on REST APIs. Docker

as one of the most popular tools in the sphere of

containerization helps developers place their applications

and all the necessary components into containers. These

containers can then be consistently deployed across

different environments – from development, to test, to

live.

 Docker configuration for Angular applications is

common to develop a multi-stage build process. The first

stage use a Node; the second, a node and a delay; the third,

an average four Nodes, two delays, and a sum; the fourth,

a node, a sum, and an operator; the fifth, a node and an

operator; and the sixth a node. js base image to make your

Angular to build web application, the second build stage

uses a light HTTP server like Nginx for serving static files.

This leads to a smaller lasting image hence the build tools

are not included in the production container.

 In this article, containerization has various benefits when

it comes to applications deployment particularly in

angular. It provides uniformity of the applications across

these environments, ease the application deployment

process and the applications can be scaled out. In the case

of a REST API, containerization can also be helpful when

creating development environments precariously similar

to production, though mock API servers may be necessary.

11.3 CI/CD Pipelines for Angular Projects

 Continuous Integration and Continuous Deployment

(CI/CD) need to be adopted in order to build and deploy

high quality Angular application interfacing with REST

APIs. CI/CD pipelines entail the process where code is

built and tested to prove that the changes that are to be

incorporated into production applications are okay.

 A typical CI/CD pipeline for an Angular project might

include the following stages:

1. Serve from the Version Control System

2. Installation of dependencies

3. Running unit tests

4. Running end-to-end tests

5. He or she constrains constructing the floor of the

production version of the application.

6. Secure software and analyzing the code

7. Generating to a staging environment

8. Performing integration tests using the staging

environment

9. Deploying to production

 The mentioned pipelines can be run with the help of such

CI/CD tools as Jenkins, GitLab CI/CD or GitHub Actions.

In web development it is always a best practice to have

API integration tests to prevent frontend and backend

interferences when working on REST APIs.

 Feature flags can also be helpful in a CI/CD environment

in which deployment can be done on a different

environment while customers on the current environment

are still using previous versions. Anchors let developers

turn on and off features on the client side without making

new code changes, which is especially valuable in case of

branching off new API connections or optional features

that refer to backend adjustments.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 97

 The CI/CD pipelines should be reliable, in order to instill

confidence in the development teams, contain and fix

issues before being deployed and make deployment to the

users more more frequent and frequent. It is always

relevant for Angular applications that depend on REST

APIs because it makes a guarantee that changes to the

frontend do not harm the backend services during the

development and deployment phases.

12. Future Trends and Considerations

12.1 GraphQL as an Alternative to REST

 Because web applications are becoming increasingly

common, development professionals are always in search

of innovative methods to work with data retrieval and

processing. GraphQL is an up-and-coming newer API that

was developed by Facebook and can execute as an

alternative to the RESTful API. GraphQL works in

contrast to REST which often uses a number of endpoints

for various data requirements in a singular call for data.

 Therefore, switching to use GraphQL as a data access

technique in Angular applications can enhance the loading

of data, minimize the instance of overloading data in the

application and enhance the flexibility in the design of

APIs more than using libraries. Such libraries as Apollo

Client help to use GraphQL in Angular more comfortably,

offer functions such as caching, optimistic updates,

working with real-time data using subscriptions. There is

a great tendency that new projects, and software

developers and organizations in general will turn their

backs to REST APIs as a protocol and switch to GraphQL,

at least for specific types of applications that require a lot

of data, or where the bandwidth consumption is a problem.

 But before that let me remind you that GraphQL is not the

silver bullet that solves all problems. REST APIs are not

entirely anachronistic yet; while APIs are increasingly

being developed with GraphQL, it is still practical to use

REST architecture for very basic applications or where a

lot of work has already been invested in REST. For any

organisation, the adoption of GraphQL should stem from

the projects requirements, the skills within the project

team, and the architecture of the system.

12.2 Micro Frontends

 Micro frontends are becoming popular as a concept to

grow the frontend in large organizations. Building upon

the microservices architecture on the backend, micro

frontends similar to microservices is the idea of

decomposing a large web application into micro frontends

that are more manageable, testable and can be deployed

independently.

 In terms of micro frontend architecture for Angular

applications that consumes REST APIs means breaking

down the application as different Angular applications

each serving a sub-application or feature. These micro

frontends could possibly be developed to use a different

REST APIs or microservices and hence, the freedom to

make changes is now not limited to Front End

development alone but can equally apply to the back End

developers.

 The use of micro frontends in Angular can be done in

various approaches including web components, iframes,

and runtime through JavaScript. Some of the micro

frontend frameworks discussed above include, Angular

Elements where developers can build Angular component

as a custom element which makes it easy in deploying

them in large scale applications.

 For all its virtues where scalability and team autonomy

are concerned, micro frontends do present pertinent

problems with regard to consistency of the user interface,

state sharing, and build/deploy operations. With this trend,

more technical and efficient solutions as well as

benchmarking practices can be foreseen in handling these

issues.

12.3 Web Components and Angular Elements

 Web Components can be described as the collection of

web platform APIs designed for the purpose of enabling

application of custom elements in a reusable manner.

These components are enclosed or can be reused with any

web framework or even with applications that do not

employ the use of frameworks. Angular Elements,

appeared in v6 of Angular, allows to package Angular

components as Web Components and vice versa.

 This shift of more interoperable and reuse component

may have a big impact on how Angular applications are

constructed and how they interact with REST APIs. New

modules could be built dedicated to interaction with API,

to be used in various projects or even in non-Angular

applications. This might translate into more efficient

developmental circumstances and even improved

reusability of codes.

 In addition, as Web Components gain popularity we

might find that Angular apps are better built as a

composition of loosely coupled reusable components that

can be easily composed in to complex apps. This can

probably transform the way state management and API

integration is done in Angular applications.

 Angular developers would also need to acquaint

themselves with such trends as they continue to progress

in theikut market. It is for this reason that more developers

are expected to turn to web components in the future,

creating applications as a composite result of components

that are as high-performing as possible and which are

easily reusable and composable from similarly high-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(2), 81–98 | 98

quality components no matter their origin. The importance

of REST APIs will not be debated but the methods of

dealing with them and positioning the applications will

probably be different. Keeping track of these trends and

comprehending their effects will be important for

developers who want to establish current, proficient, and

adaptable Angular applications.

 Certainly. Here is a conclusion to your research paper that

is titled “Integrating REST APIs in Single Page

Applications using Angular and TypeScript. :

13. Conclusion

 The use of the REST APIs in Single Page Applications of

Angular using TypeScript is one of the most important

trends in web development. The aim of this research has

been to identify the definitions, standards, and trends of

the development in this particular field. In this post, we

have discussed the great aspects about angular framework,

advantages of using typescript for large application and

basics of restful architecture. The paper has analyzed key

areas of the framework those include state management,

performance, securing and deployment.

 More often than not, web technologies are rapidly

trending as more innovational pieces surface, including

the latest ones such as GraphQL, micro frontends, and

Web Components. These innovations will certainly

revolutionalise how web applications and the associated

services are developed and connected. Still, it can be

stated that the fundamentals of how to efficiently,

securely, and simply maintain applications do not

evaporate.

 In the development of future web sites, which are web

applications, modularity, performance and

interoperability should be further promoted. Indeed, as we

have analyzed using Angular and TypeScript forms a

strong ground for developing such applications and

especially when it comes to working with RESTful APIs.

Application of recommended practices in design of APIs,

state management, and security allows developers to

design SPAs that offer capabilities of a modern application

while also being designed to scale with changing needs.

 It is evident that web development has steadily grown and

will not follow a more complex paradigm like some

industries; thus, the web development principles and

practices analyzed in this paper will be paramount to

future developers. The use of REST APIs in the Angular

applications enhanced by TypeScript and Angular’s

capabilities will remain the major focus area for the

upcoming years of web development.

References

[1] Angular. (2021). Angular - Introduction to the

Angular Docs. https://angular.io/docs

[2] Buna, S. (2019). REST API Design Rulebook:

Designing Consistent RESTful Web Service

Interfaces. O'Reilly Media.

[3] Dayley, B. (2020). Learning Angular: A Hands-On

Guide to Angular 2 and Angular 4. Addison-Wesley

Professional.

[4] Fain, Y., & Moiseev, A. (2020). Angular

Development with TypeScript. Manning

Publications.

[5] Fielding, R. T. (2000). Architectural Styles and the

Design of Network-based Software Architectures.

University of California, Irvine.

[6] Freeman, A. (2018). Pro Angular 6. Apress.

[7] GraphQL Foundation. (2021). GraphQL: A query

language for your API. https://graphql.org/

[8] IETF. (2014). RFC 7519: JSON Web Token (JWT).

https://tools.ietf.org/html/rfc7519

[9] Jain, N., Mangal, P., & Mehta, D. (2020). AngularJS:

Novice to Ninja. SitePoint.

[10] Microsoft. (2021). TypeScript Documentation.

https://www.typescriptlang.org/docs/

[11] Mozilla Developer Network. (2021). Cross-Origin

Resource Sharing (CORS).

https://developer.mozilla.org/en-

US/docs/Web/HTTP/CORS

[12] NgRx. (2021). NgRx: Reactive State for Angular.

https://ngrx.io/

[13] OWASP. (2021). OWASP Top Ten.

https://owasp.org/www-project-top-ten/

[14] Panda, S. (2018). Angular 6 for Enterprise-Ready

Web Applications. Packt Publishing.

[15] Podila, P. (2018). REST API Design Best Practices

Handbook. API-University Press.

[16] Rozentals, N. (2020). Mastering Angular: Explore

powerful techniques to build Enterprise-grade

applications. Packt Publishing.

[17] Seemann, M. (2019). Dependency Injection

Principles, Practices, and Patterns. Manning

Publications.

[18] Smith, S. (2020). Angular Security: Implementing

Best Practices. Packt Publishing.

[19] Wasson, M. (2020). ASP.NET Core and Angular:

Full-stack web development with .NET 5 and

Angular 11. Packt Publishing.

[20] W3C. (2021). Web Components.

https://www.w3.org/standards/techs/components#w

3c_all

https://angular.io/docs
https://graphql.org/
https://tools.ietf.org/html/rfc7519
https://www.typescriptlang.org/docs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://ngrx.io/
https://owasp.org/www-project-top-ten/
https://www.w3.org/standards/techs/components#w3c_all
https://www.w3.org/standards/techs/components#w3c_all

