

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4749–4758 | 4749

Web Vulnerabilities: Issues and Analysis

Dishant Modi1, Karan Bhatt2, Shivangkumar Patel3, Viral Patel4, Ashvinkumar Prajapati5, Nitinkumar
Raval6, , Yogendra Tank7

Submitted: 29/01/2024 Revised : 12/03/2024 Accepted : 21/03/2024

Abstract: Pervasive and exploitable, software vulnerabilities pose a continuous threat to system security, empowering cybercriminals to

disrupt operations, steal data, or compromise critical infrastructure. This paper leverages the OWASP Top 10, a recognized standard for

web application security risks, to provide a comprehensive analysis of the top five most critical vulnerabilities. It delves into the technical

details, potential consequences, and mitigation strategies for each of these vulnerabilities. The paper also offers a brief overview of the

remaining OWASP Top 10 categories, equipping readers with a well-rounded understanding of prevalent web application security threats.

By understanding these vulnerabilities and their analysis methods, organizations can proactively safeguard their web applications and

enhance their overall cyber defense posture.

Keywords: Open Web Application Security Project (OWASP), Vulnerability Disclosure, Vulnerability Research, Common Weakness

Enumeration (CWE), Vulnerability Scoring Systems, Exploit Analysis, Exploit Development.

1. Introduction

The digital world thrives on interconnected systems, but

with this connectivity comes inherent vulnerabilities. A

vulnerability is a weakness or flaw in the design,

implementation, or operation of software that can be

exploited by malicious actors to gain unauthorized access,

steal data, disrupt operations, or cause other damage. These

vulnerabilities can exist in various parts of a system, from

the application layer down to the underlying hardware. The

constant evolution of technology and the increasing

sophistication of cyber-attacks necessitate a proactive

approach to web application security. [1] The Open Web

Application Security Project (OWASP) is a non-profit

organization that plays a crucial role in web application

security by providing free and open re-sources for

developers and security professionals. A key contribution

of OWASP is the OWASP Top 10, a widely recognized

standard that identifies and categorizes the most critical web

application security risks. The OWASP Top 10 is updated

periodically to reflect the evolving threat landscape. Here's

a list of the current Top 10 vulnerabilities (2021):

Table 1. OWASP TOP 10 Vulnerabilities

A01: 2021 Broken Access Control

A02: 2021 Cryptographic Failure

A03: 2021 Injection

A04: 2021 Insecure Design

A05: 2021 Security Misconfiguration

A06: 2021 Vulnerable and Outdated Components

A07: 2021 Identification and Authentication Failure

A08: 2021 Software and Data Integrity Failure

A09: 2021 Security Logging and Monitoring Failure

A10: 2021 Server-Side Request Forgery

2. Comprehensive analysis of the top ten most critical

vulnerabilities listed in the OWASP Top 10.

2.1. A01:2021-Broken Access Control (BAC):

• Broken Access Control (BAC): Broken access control

vulnerabilities arise when security mechanisms fail to

restrict access to authorized users only. This allows attacker

to bypass intended access controls and potentially view

sensitive data, modify information, or perform unauthorized

actions. For in-stance, a 2019 vulnerability in YouTube

allowed attackers to access specific frames of videos

marked as private. While a single frame might not reveal the

1Department of Computer Science & Engineering (Data Science),

Vishwakarma Government Engineering College, Chandkheda

Email: dsmodi484@gmail.com
2Assistant Professor, Department of Computer Engineering,

Vishwakarma Government Engineering College, Chandkheda

Email: kpbhatt@vgecg.ac.in
3Assistant Professor, Department of Computer Engineering,

⁠Government Engineering College, Modasa

Email: shivang.patel@gecmodasa.ac.in
4Assistant Professor, Department of Computer Engineering,

Government Engineering College, Sector-28, Gandhinagar

Email: viralpatel@gecg28.ac.in
5Assistant Professor, Department of Computer Engineering,

Government Engineering College, Sector-28, Gandhinagar

Email: ashvinkumar@gecg28.ac.in
6 Assistant Professor, Department of Computer Engineering,

Government Engineering College, Sector-28, Gandhinagar

Email: nitinraval@gecg28.ac.in
7Assistant Professor, Department of Computer Engineering,

Government Engineering College, Sector-28, Gandhinagar

Email: yogendratank@gecg28.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4749–4758 | 4750

entire content, an attacker could potentially reconstruct the

video by requesting multiple frames sequentially. This

highlights how seemingly minor access control flaws can

have significant consequences, as users expect their private

data to be truly inaccessible [2].

• Insecure Direct Object Reference (IDOR): Insecure

Direct Object References (IDOR) represent a type of access

control vulnerability where an attacker can access resources

beyond their intended access privileges. This often occurs

when an application exposes "direct object references,"

which are essentially identifiers pointing to specific objects

on the server. These objects could be files, user accounts,

bank accounts, or any other data entity. For example,

consider a banking application where a user successfully

logs in and is directed to a URL like

https://xyz.com/account?id=11. This page displays the

user's account details. However, if the application is

vulnerable to IDOR, an attacker could potentially modify

the id parameter in the URL (e.g., changing it to 22). A

vulnerable application might then grant the attacker access

to another user's bank information due to improper access

control checks. This scenario underscores the importance of

robust access control mechanisms to prevent unauthorized

access to sensitive data.

To bridge the gap between theory and practice, we will

examine a real-world example: As part of the practical

exploration using TryHackMe [3], the first step is to access

the provided website's login page.

In Fig.1. Login the user interface transitions to a new page

displaying. Use parentheses to avoid ambiguities in

denominators. Punctuate equations when they are part of a

sentence, as in

Fig. 1. Website homepage

Put id=0 (http://machine-ip/note.php?note_id=0) and you

will get the flag as in Fig. 2:

Fig. 2. Exploitation of Broken Access Control

By exploiting a BAC vulnerability like IDOR, an attacker

could potentially gain unauthorized access to sensitive

pages or data.

2.2. A02:2021-Cryptographic Failures

• Cryptographic Failures and Sensitive Data Exposure:

Web applications often rely on cryptography to safe-guard

sensitive user information, such as names, dates of birth, and

financial data. However, crypto-graphic failures can arise

due to the misuse or lack of proper implementation of

encryption algorithms. These failures can lead to accidental

data exposure, compromising user security and potentially

violating privacy regulations.

• Flat-File Database Vulnerabilities: Databases are

essential for web applications to efficiently manage large

amounts of data accessible from multiple locations. While

production environments typically utilize dedicated

database, servers managed by software like MySQL or

MariaDB, smaller applications might resort to storing data

in flat-file databases. These databases are stored as single

files on the computer, eliminating the complexity of setting

up a dedicated server. However, this simplicity can

introduce security vulnerabilities.

Consider a scenario where a flat-file database, potentially

containing sensitive user information, is mistakenly stored

within the web application's root directory. This reliability

accessible location makes it possible for an attacker to

download the database file and access its contents using a

dedicated client like sqlite3 on their own machine. This

exposes sensitive data, posing a significant security risk.

• Simulation:

In Fig. 3, A hypothetical scenario involves an attacker

gaining access to a ‘/assets’ page and identifying a

downloadable file named "webapp.db". This file, potentially

containing sensitive database information, could be

downloaded and analyzed using a SQLite database

management tool like sqlite3. By examining the database

schema using the .tables command and issuing appropriate

SQL queries, the attacker could potentially retrieve all data

stored within dataset.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4749–4758 | 4751

Fig. 3. Exploiting Cryptographic Failure

2.3 A03:2021-Injection

• Injection Vulnerabilities: A Threat to Modern

Applications: Injection vulnerabilities are a prevalent

security threat in modern applications. These vulnerabilities

arise when user supplied data is misinterpreted as code or

commands by the application. The specific nature of the

injection attack depends on the underlying technologies

used by the application and how they handle user input.

• Common Injection Vulnerabilities:

SQL Injection (SQLi): This vulnerability occurs when

untrusted user input is directly incorporated into SQL

queries [4]. Malicious actors can exploit this weakness by

crafting specially crafted input that injects malicious SQL

code [5]. This injected code can then manipulate the

intended query, potentially allowing attackers to:

Access sensitive data: Attackers can retrieve confidential

information stored in the database, such as personal details

and credentials.

Modify data: Malicious actors can alter data with-in the

database, potentially causing disruption or corrupting

critical information.

Delete data: Attackers can erase data stored in the database,

leading to data loss and potential system instability.

• Command Injection: This vulnerability occurs when

user-controlled input is passed directly to operating system

commands. Attackers can exploit this weakness by injecting

malicious commands that will be executed on the server.

This can potentially grant them unauthorized access to the

server's resources or even allow them to compromise the

entire system. Attackers can leverage command injection to

perform various malicious activities, including:

System Enumeration: They can identify files, directories,

and running processes on the server.

Data Exfiltration: Attackers can steal sensitive data stored

on the server.

Privilege Escalation: They can attempt to gain higher

privileges on the server, potentially leading to complete

system control.

• Preventing Injection Attacks: The primary defence

against injection attacks is to ensure that user-supplied input

is never treated as executable code or commands. Several

techniques can achieve this:

Input Validation: Implement robust validation

mechanisms to sanitize user input and remove any

potentially dangerous characters before processing.

Parameterized Queries: Utilize parameterized queries

instead of string concatenation when constructing database

queries. This ensures clear separation between data and

code, preventing malicious SQL injection attempts.

Escaping User Input: When user input must be included

within commands or queries, implement proper escaping

mechanisms to neutralize potentially harmful characters.

Whitelisting: Limit acceptable user input to a predefined

set of safe characters or values. Any input that falls outside

this whitelist should be rejected [6].

By implementing these security measures, developers can

significantly reduce the risk of injection vulnerabilities in

their applications [7].

• Simulation:

Fig, 4 shows to simulate a directory listing attack, the input

field was injected with the string '$(ls)'. This attempted to

exploit a potential command injection vulnerability by

injecting a command to list directory contents. Upon

submission, the response revealed the presence of an

unexpected file named 'drpepper.txt' within the website's

root directory, suggesting a potential security weakness.

Fig. 4. Exploiting Injection

2.4 A04: Insecure Design:

Insecure design vulnerabilities are weaknesses embedded

within an application's fundamental architecture. They

differ from implementation or configuration flaws by being

inherent to the core design concept. These vulnerabilities

often stem from inadequate threat modeling during the

application's planning phase, potentially impacting the

entire application. Alternatively, insecure design flaws can

be introduced by developers seeking shortcuts to streamline

testing. For instance, a developer might disable two-factor

authentication (2FA) during development for easier testing,

neglecting to re-enable it before deployment [8].

• Insecure Password Resets: A Case Study: A classic

example of insecure design is a vulnerability that once

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4749–4758 | 4752

existed on Instagram's password reset functionality. The

platform relied on SMS delivery of a 6-digit code for

password resets. An attacker could attempt to brute-force

this code; however, Instagram implemented rate-limiting to

prevent such attacks, blocking users after 250 attempts.

The critical design flaw here lies in the rate-limiting

mechanism being restricted to individual IP addresses. An

attacker with access to numerous IP addresses could

circumvent this protection. With 250 attempts per IP and a

million possible codes, an attacker would need

approximately 4,000 IP addresses to cover all possibilities.

While a large number, cloud services make acquiring such

resources relatively inexpensive, rendering the attack

viable.

This vulnerability highlights how insecure design flaws can

arise from assumptions about user behavior. In this case, the

design presumed users wouldn't have access to thousands of

IP addresses. The issue stemmed from the core design, not

the code implementation itself.

• Addressing Insecure Design: Due to their early

introduction in the development process, resolving insecure

design vulnerabilities often necessitates refactoring or

rebuilding the affected application components. This makes

them more challenging to rectify compared to traditional

code-based vulnerabilities. The most effective approach to

mitigating these risks involves thorough threat modeling

during the initial development stages. You can explore

resources like the Secure Software Development Lifecycle

(SSDL) room for further guidance on implementing secure

development practices.

Simulation Example:

To illustrate the design flaw in the password reset

mechanism, let's revisit Joseph's account. By navigating to

the password reset page, we can attempt to provide a guess

for the security question answer. In a scenario where the

security questions lack sufficient complexity or rely on

easily obtainable information (e.g., favorite color), an

attacker might successfully guess the answer. In this

hypothetical example, by correctly guessing "green" as the

answer to Joseph's security question in Fig. 5, we could

potentially gain unauthorized access to his account. It's

crucial to emphasize that this scenario highlights a

vulnerability and is not a recommendation to exploit such

weaknesses in real-world situations.

Fig. 5. Exploiting Insecure Design

2.5 A05: Security Misconfiguration

Security misconfigurations differ from other OWASP Top

10 vulnerabilities because they arise from improper

configuration, even with up-to-date software. These

misconfigurations can create exploitable weaknesses within

systems [9].

Common examples of security misconfigurations

include:

• Improper Permission Management: Inadequate access

controls on cloud storage (e.g., overly permissive S3 bucket

permissions) can expose sensitive data.

• Unnecessary Features: Leaving unused services, pages,

accounts, or privileges enabled creates unnecessary attack

surfaces.

• Weak Default Credentials: Failure to change default

usernames and passwords creates easy entry points for

attackers.

• Information Leakage: Excessively verbose error

messages can unintentionally reveal sensitive system details

to attackers.

• Missing Security Headers: Omission of essential HTTP

security headers (e.g., Content Security Policy) leaves

applications vulnerable to various attacks.

These misconfigurations can have cascading effects,

potentially leading to vulnerabilities like:

• Exploiting Default Credentials: Gaining unauthorized

access to sensitive data using unchanged default logins.

• XML External Entity (XXE) Attacks: Leveraging

misconfigured XML parsers to inject malicious code for

unauthorized access.

• Command Injection Vulnerabilities: Executing

arbitrary commands on the system through vulnerable

admin pages.

For a deeper understanding, refer to the OWASP Top 10

entry for Security Misconfiguration.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4749–4758 | 4753

Debugging Interfaces

A prevalent security misconfiguration involves exposing

debugging features in production environments. These

features, intended for development purposes, offer

advanced functionalities to developers but can be misused

by attackers if left accessible.

Case Study: Patreon Hack (2015) [10]

The incident highlights the potential dangers of exposed

debugging interfaces. In 2015, Patreon reportedly suffered

a security breach allegedly linked to an open debugging

interface. A security researcher had previously notified

Patreon about a vulnerable Werkzeug console accessible via

a URL path (/console).

Werkzeug, a core component in many Python web

applications, provides a web server interface for executing

Python code. It includes a built-in debug console accessible

through a specific URL or automatically during application

exceptions. Both scenarios present a Python console

allowing attackers to execute arbitrary commands on the

system, potentially compromising sensitive data or

functionality.

This case study demonstrates the critical importance of

disabling debugging features before deploying applications

to production environments.

• Simulation:

This vulnerable machine demonstrates a Security Mis-

configuration, a critical vulnerability listed in the Table 1.

To exploit this misconfiguration in Fig. 6, we attempt to

gain unauthorized access to the application's source code by

navigating to the following URL: http://machine-ip/console

Fig. 6. Checking For python working or not

Our investigation reveals that the console is accessible

without proper authentication, suggesting a security

misconfiguration. To capitalize on this vulnerability, we

execute a simple Python code snippet: import os; print

(os.popen("ls -l").read()). This code successfully executes

and displays the directory listing of the server, potentially

revealing sensitive information such as file-names and

permissions, as you can see from Fig 7.

Fig. 7. Exploiting Security Misconfiguration

2.6 A06: Vulnerable and Outdated Components

The sixth vulnerability in Table 1 is "Vulnerable and

Outdated Components" (A06:2021). This vulnerability

arises when an application uses component such as libraries,

frameworks, and other software modules that are outdated

or have known security vulnerabilities. These components

may come from open-source projects, third party vendors,

or even from within the organization.

• Outdated Versions: Applications using components

that are no longer supported or updated by their developers

are prone to known vulnerabilities that attackers can easily

exploit.

• Unpatched Vulnerabilities: When known security

vulnerabilities in components are not patched, they become

entry points for attackers, potentially leading to data

breaches or system compromises.

• Insecure Configuration: Even updated components can

be vulnerable if not configured securely, leading to potential

exploitation.

• Lack of Inventory Management: Organizations may

not have a comprehensive inventory of all components used

in their applications, making it difficult to track and update

them, thereby increasing security risks.

• Transitive Dependencies: Vulnerabilities may exist in

dependencies that are indirectly included in the application,

further complicating security management.

Prevention Strategies: To mitigate the risks associated

with Vulnerable and Outdated Components, organizations

can implement the following security measures:

• Regular Updates: Keep all software components,

including libraries and frameworks, up to date with the latest

security patches and versions to reduce the risk of

exploitation.

• Vulnerability Scanning: Use automated tools to

regularly scan for known vulnerabilities in your

application’s dependencies and take immediate action to

address any issues found.

• Component Inventory: Maintain a comprehensive

inventory of all components, including direct and transitive

http://machine-ip/console

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4749–4758 | 4754

dependencies, to ensure that each component is tracked and

updated as needed.

• Automated Dependency Management: Use automated

tools for dependency management and security analysis to

detect and mitigate vulnerabilities early in the development

process.

• Secure Configuration Practices: Ensure that all

components are configured securely according to best

practices and that any default configurations are reviewed

and hardened.

• Risk Assessment of Dependencies: Regularly assess the

security risks associated with using specific components,

especially those that are widely used or critical to the

application’s functionality.

By incorporating these preventive strategies, organizations

can significantly reduce the risks associated with vulnerable

and outdated components, thereby improving the overall

security posture of their applications.

2.7 A07: Identification and Authentication Failures

Modern web applications rely heavily on robust

authentication and session management mechanisms to

ensure secure access for legitimate users. Authentication

verifies user identities, typically through username and

password combinations. Upon successful verification, the

server issues a session cookie to the user's browser. This is

necessary because HTTP(S) communication is stateless,

requiring session cookies for the server to maintain user

context and track user actions.

Vulnerabilities in Authentication Mechanisms:

Weaknesses in authentication mechanisms can be exploited

by attackers, potentially leading to Broken Authentication

(A07:2021) within the OWASP Top 10 (see Table 1). Some

common vulnerabilities include:

• Brute Force Attacks: These attacks involve repeatedly

attempting to guess usernames and passwords. Weak

password policies and a lack of lockout mechanisms can

make applications susceptible to brute force attacks [11].

• Weak Credentials: If web applications allow users to set

weak passwords like "password1" or common dictionary

words, attackers can easily guess them and gain

unauthorized access. Applications should enforce strong

password policies, including minimum length, character

complexity, and regular password changes.

• Weak Session Cookies: Session cookies are how the

server keeps track of users. If session cookies lack sufficient

randomness or predictability in their values, attackers can

potentially steal or forge them, enabling unauthorized

access to user accounts.

Mitigation Strategies:

There can be various mitigation strategies for broken

authentication mechanisms depending on the exact flaw.

Here are some common approaches:

• Enforce Strong Password Policies: Minimum password

length, character complexity (uppercase/lowercase letters,

numbers, symbols), and regular password changes can

significantly increase password strength.

• Limit Login Attempts: Implement lockout mechanisms

that automatically lock user accounts after a certain number

of failed login attempts. This thwarts brute force attacks by

significantly increasing the number of attempts required for

success.

• Implement Multi-Factor Authentication (MFA): MFA

adds an additional layer of security by requiring users to

provide a second authentication factor beyond a username

and password. This could involve a code sent to a registered

phone number, a fingerprint scan on a mobile device, or a

hardware token.

By implementing these mitigation strategies, organizations

can significantly strengthen their authentication

mechanisms and reduce the risk of unauthorized access to

web applications.

2.8 A08: Software and Data Integrity Failures

Software and Data Integrity Failures (A08:2021 in the

OWASP Top 10) encompass vulnerabilities that arise when

software and its underlying infrastructure lack proper

mechanisms to safeguard against unauthorized

modifications. This can manifest in various ways, such as:

• Untrusted Dependencies: Applications relying on

plugins, libraries, or modules from untrusted sources,

repositories, or content delivery networks (CDNs) create a

vulnerability.

• Insecure CI/CD Pipelines: Weaknesses in the

Continuous Integration and Continuous Delivery (CI/CD)

pipeline can introduce vulnerabilities. These could involve

unauthorized access, the injection of malicious code during

the build process, or system compromise.

• Unverified Auto-Updates: Many applications now

feature automatic update functionality. If these updates lack

sufficient integrity verification before being applied,

attackers can potentially upload their own malicious updates

to compromise systems.

• Insecure Deserialization: When objects or data are

encoded or serialized into a vulnerable structure, attackers

can potentially exploit this weakness to modify the data and

potentially gain unauthorized access.

Prevention Strategies: To mitigate Software and Data

Integrity Failures, organizations can implement the

following security measures:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4749–4758 | 4755

• Digital Signatures: Utilize digital signatures or similar

mechanisms to verify the authenticity and integrity of

software or data. This ensures that the source is legitimate

and the data has not been tampered with during

transmission.

• Trusted Repositories: Ensure that libraries and

dependencies are obtained from trusted repositories

managed by reputable organizations. If the risk profile is

high, consider hosting an internal, vetted repository for

critical components.

• Software Supply Chain Security Tools: Leverage

software supply chain security tools like OWASP

Dependency Check or OWASP CycloneDX. These tools

help identify and manage vulnerabilities within software

components used by your application.

• Code and Configuration Review: Implement a

thorough review process for code and configuration

changes. This helps minimize the risk of introducing

malicious code or insecure configurations into the software

development pipeline.

• CI/CD Pipeline Security: Fortify the CI/CD pipeline by

ensuring proper segregation of duties, secure configuration,

and robust access controls. These measures safe-guard the

integrity of code throughout the build and deployment

processes.

• Data Serialization Protection: Avoid sending unsigned

or unencrypted serialized data to untrusted clients.

Implement integrity checks or digital signatures to detect

any tampering or replay of sensitive serialized data.

By incorporating these preventive strategies, organizations

can significantly enhance software and data integrity,

reducing the attack surface for malicious actors.

2.9 A09: Security Logging and Monitoring Failures

The Importance of Web Application Logging and

Monitoring: Web application security relies heavily on

proper logging and monitoring practices. When a user

interacts with a web application, every action performed

should be meticulously logged. This data becomes

invaluable in the event of a security incident, as it allows

for:

Essential Log Information: To facilitate effective incident

response and threat detection, application logs should

capture critical information, including:

• HTTP Status Codes: These codes indicate the success or

failure of a user request (e.g., 200 for successful requests,

404 for page not found errors).

• Timestamps: Time stamps provide a chronological

record of user activity, aiding in incident timeline creation

and attack sequence analysis.

• Usernames: Identifying the user associated with each

action simplifies log analysis and helps assess potential

compromised accounts.

• API Endpoints/Page Locations: Logging the specific

web application resources accessed allows for a clear

understanding of the attacker's target and potential areas of

compromise.

• IP Addresses: Capturing the source IP address of each

user request can help identify suspicious activity originating

from unusual locations or known malicious actors.

Log Security and Retention: While logs contain valuable

data, it's equally crucial to ensure their security. Sensitive

information within logs should be encrypted at rest and in

transit. Additionally, it's recommended to maintain multiple

copies of logs in diverse locations for redundancy and

disaster recovery purposes.

Beyond Logging: Implementing Security Monitoring:

Although logging is critical for incident response and

forensic analysis, it's most effective when coupled with real-

time security monitoring practices. Security monitoring

systems actively analyze log data and user activity to

identify suspicious patterns that might suggest ongoing

attacks. This proactive approach allows security teams to

detect and potentially stop attackers before significant

damage occurs.

Examples of Suspicious Activity:

Security monitoring systems can be configured to identify

various indicators of potential threats, including:

• Brute-Force Attacks: Multiple failed login attempts

within a short timeframe suggest brute-force attacks

targeting user accounts.

• Anomalous IP Addresses/Locations: Access attempts

originating from unusual locations or known malicious IP

addresses warrant investigation.

• Automated Tools: Certain automated tools used by

attackers can be identified based on patterns within user-

agent headers or request speeds.

• Exploit Attempts: Security systems can be configured to

detect known malicious payloads or exploit signatures

within user requests.

Prioritizing Suspicious Activity:

Not all suspicious activity is equally concerning. Security

monitoring systems should categorize alerts based on their

potential impact. High-risk activities, such as attempts to

access critical resources, should trigger immediate alerts

and require swift response. Lower-risk incidents may

necessitate further investigation but might not necessitate

immediate action.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4749–4758 | 4756

By implementing comprehensive logging and monitoring

strategies, organizations can significantly enhance their web

application security posture. Early detection and rapid

response are paramount for mitigating the impact of security

incidents and safeguarding sensitive data.

2.10 A10: Server-Side Request Forgery (SSRF)

Server-Side Request Forgery (SSRF) is a web application

vulnerability that allows an attacker to manipulate a web

application into making unauthorized requests to an external

server under the attacker's control. This manipulation

typically involves exploiting functionalities within the

application that interact with external services [12].

Understanding the Vulnerability:

Imagine a web application that uses an external API to send

SMS notifications to users. This application likely sends

requests to the SMS provider's server with the message

content and an authentication token (e.g., API key) to

identify the sender. If the application allows user input to

specify the server address of the SMS provider, a

vulnerability can arise.

This would trick the vulnerable application into sending a

request to the attacker’s-controlled server at:

https://attacker.thm/api/send?msg=Test%20Message

As part of the forwarded message, the attacker might be able

to steal the application's API key embedded in the request.

This stolen key could then be used to send SMS messages

at the application owner's expense.

Potential Impacts:

SSRF vulnerabilities can have various consequences

depending on the application's functionalities and the

attacker's goals. Here are some potential impacts:

• Internal Network Enumeration: Attackers can exploit

SSRF to identify internal network addresses and ports,

potentially aiding further attacks (see Fig 8).

Fig. 8. Exploring Backend API Handling

• Abuse of Trust Relationships: SSRF can be used to

exploit trust relationships between the application server

and other internal services, potentially leading to

unauthorized access to restricted resources.

• Remote Code Execution (RCE): In some cases, SSRF

can be chained with other vulnerabilities to achieve remote

code execution on the victim server, allowing complete

control.

By understanding SSRF vulnerabilities and implementing

proper security measures, organizations can significantly

reduce the risk of unauthorized actions and data breaches.

3. Analysis of the OWASP Top 10 vulnerabilities

1. Exploitability: Exploitability in the context of

vulnerability analysis, refers to the ease with which an

attacker can leverage a specific vulnerability to gain

unauthorized access to a system or data. It essentially

reflects the technical difficulty and resources required for an

attacker to successfully exploit the vulnerability.

Fig. 9. Exploitability of vulnerabilities

From Fig. 9, a higher exploitability rating indicates a greater

risk, as it suggests a wider range of attackers could

potentially take advantage of the vulnerability. This is often

factored into vulnerability scoring systems and

prioritization for patching.

2. Incident Rate: This factor delves into the frequency of

reported incidents associated with each vulnerability. A

high incident rate indicates a vulnerability that is actively

exploited by attackers in the real world. This information is

crucial for prioritizing remediation efforts.

Fig. 10. Incident Rate of vulnerabilities

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4749–4758 | 4757

Fig. 10, it’s crucial to remember that even a low incident

rate doesn't guarantee a vulnerability is not dangerous.

Attackers may be constantly evolving their tactics, and a

seemingly obscure vulnerability could be weaponized in the

future.

3. Criticality Ratio: This metric divides the exploitability

score by the impact score, giving a higher value for

vulnerabilities that are both easy to exploit and have a high

impact. Criticality Ratio of a vulnerability refers to the level

of risk it poses to a system or organization.

Fig. 11. Criticality Ratio of Vulnerabilities

Higher criticality indicates a more severe vulnerability (Fig.

11). This means it has the potential to cause significant

damage and is also relatively easy for attackers to exploit.

Conversely, a vulnerability with lower criticality might have

a less severe potential impact or be more difficult to exploit,

making it less urgent to address.

4. Conclusion

In today's digital landscape, web applications are the

backbone of countless operations. However, these

applications are vulnerable to exploitation by malicious

actors, potentially leading to data breaches, disrupted

services, and reputational damage. The OWASP Top 10

serves as a vital resource by identifying and categorizing the

most critical web application security risks.

This report conducted an in-depth analysis of the top five

vulnerabilities within the Table 1, providing a

comprehensive examination of their technical details,

potential consequences, and mitigation strategies. The

remaining five vulnerabilities were covered with a basic

introduction, highlighting their key characteristics and

potential risks. By understanding the criticality ratio,

incident rate, and exploitability for each vulnerability,

organizations can prioritize their security efforts and address

the most pressing threats.

By implementing robust security practices, leveraging the

insights provided by the OWASP Top 10, and continuously

monitoring and updating their defenses, organizations can

significantly strengthen their web application security

posture and safeguard their valuable assets.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] “OWASP Top Ten | OWASP Foundation.” Accessed: Jul.

13, 2023. [Online]. Available: https://owasp.org/www-

project-top-ten/

[2] M. M. Hassan, M. A. Ali, T. Bhuiyan, M. H. Sharif, and S.

Biswas, “Quantitative Assessment on Broken Access

Control Vulnerability in Web Applications”, 2018.

[3] “OWASP Top 10 - 2021,” TryHackMe. Accessed: Aug.

13, 2023. [Online]. Available:

https://tryhackme.com/r/room/owasptop102021

[4] D. A. Kindy and A.-S. K. Pathan, “A survey on SQL

injection: Vulnerabilities, attacks, and prevention

techniques,” in 2011 IEEE 15th International Symposium

on Consumer Electronics (ISCE), Singapore, Singapore:

IEEE, Jun. 2011, pp. 468–471. doi:

10.1109/ISCE.2011.5973873.

[5] S. Tyagi and K. Kumar, “Evaluation of Static Web

Vulnerability Analysis Tools,” in 2018 Fifth International

Conference on Parallel, Distributed and Grid Computing

(PDGC), Solan Himachal Pradesh, India: IEEE, Dec. 2018,

pp. 1–6. doi: 10.1109/PDGC.2018.8745996.

[6] I. Balasundaram and E. Ramaraj, “An Authentication

Mechanism to prevent SQL Injection Attacks,”

International Journal of Computer Applications, vol. 19,

2011.

[7] “OWASP Top 10–2021 | Tryhackme

Writeup/Walkthrough | By Md Amiruddin | by Md

Amiruddin | InfoSec Write-ups.” Accessed: Aug. 13, 2023.

[Online]. Available: https://infosecwriteups.com/owasp-

top-10-2021-tryhackme-writeup-walkthrough-by-md-

amiruddin-913e477c0ea1

[8] B. Schneier, “Cryptographic design vulnerabilities,”

Computer, vol. 31, no. 9, pp. 29–33, Sep. 1998, doi:

10.1109/2.708447.

[9] B. Eshete, A. Villafiorita, and K. Weldemariam, “Early

Detection of Security Misconfiguration Vulnerabilities in

Web Applications,” in 2011 Sixth International Conference

on Availability, Reliability and Security, Vienna, Austria:

IEEE, Aug. 2011, pp. 169–174. doi:

10.1109/ARES.2011.31.

[10] Detectify, “How Patreon got hacked - Frans Rosén,”

Labs Detectify. Accessed: Aug. 13, 2023. [Online].

Available: https://labs.detectify.com/writeups/how-

patreon-got-hacked-publicly-exposed-werkzeug-debugger/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4749–4758 | 4758

[11] C. J. Mok and C. W. Chuah, “An Intelligence Brute

Force Attack on RSA Cryptosystem,” vol. 1, no. 1, 2019.

[12] A. Younis, Y. K. Malaiya, and I. Ray, “Assessing

vulnerability exploitability risk using software properties,”

Software Qual J, vol. 24, no. 1, pp. 159–202, Mar. 2016,

doi: 10.1007/s11219-015-9274-6.

