International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
LJISAE ENGINEERING

ISSN:2147-6799 www.ijisae.org Original Research Paper

Web Vulnerabilities: Issues and Analysis

Dishant Modi!, Karan Bhatt?, Shivangkumar Patel?, Viral Patel*, Ashvinkumar Prajapati®, Nitinkumar
Raval®, , Yogendra Tank’

Abstract: Pervasive and exploitable, software vulnerabilities pose a continuous threat to system security, empowering cybercriminals to
disrupt operations, steal data, or compromise critical infrastructure. This paper leverages the OWASP Top 10, a recognized standard for
web application security risks, to provide a comprehensive analysis of the top five most critical vulnerabilities. It delves into the technical
details, potential consequences, and mitigation strategies for each of these vulnerabilities. The paper also offers a brief overview of the
remaining OWASP Top 10 categories, equipping readers with a well-rounded understanding of prevalent web application security threats.
By understanding these vulnerabilities and their analysis methods, organizations can proactively safeguard their web applications and
enhance their overall cyber defense posture.

Keywords: Open Web Application Security Project (OWASP), Vulnerability Disclosure, Vulnerability Research, Common Weakness
Enumeration (CWE), Vulnerability Scoring Systems, Exploit Analysis, Exploit Development.

1. Introduction e . .
standard that identifies and categorizes the most critical web

The digital world thrives on interconnected systems, but application security risks. The OWASP Top 10 is updated
with this connectivity comes inherent vulnerabilities. A periodically to reflect the evolving threat landscape. Here's

vulnerability is a weakness or flaw in the design, g3 |ist of the current Top 10 vulnerabilities (2021):
implementation, or operation of software that can be

exploited by malicious actors to gain unauthorized access,
steal data, disrupt operations, or cause other damage. These A01: 2021 Broken Access Control
vulnerabilities can exist in various parts of a system, from

Table 1. OWASP TOP 10 Vulnerabilities

the application layer down to the underlying hardware. The A02: 2021 Cryptographic Failure
constant evolution of technology and the increasing A03: 2021 Injection
sophistication of cyber-attacks necessitate a proactive A04: 2021 Insecure Design
approach to web application security. [1] The Open Web AO5: 2021 Security Misconfiguration

Application Security Project (OWASP) is a non-profit _
organization that plays a crucial role in web application A06: 2021 Vulnerable and Outdated Components

security by providing free and open re-sources for AQ07:2021 Identification and Authentication Failure

developers and security professionals. A key contribution A08: 2021 Software and Data Integrity Failure
of OWASP is the OWASP Top 10, a widely recognized

Department of Computer Science & Engineering (Data Science),
Vishwakarma Government Engineering College, Chandkheda A10: 2021 Server-Side Request Forgery
Email: dsmodi484@gmail.com

2pssistant Professor, Department of Computer Engineering,

Vishwakarma Government Engineering College, Chandkheda 2 Comprehensive analysis of the top ten most critical

Email: kpbhatt@vgecg.ac.in s . .
3Assistant Professor, Department of Computer Engineering, vulnerabilities listed in the OWASP Top 10.

Government Engineering College, Modasa 21. A01:2021-Broken Access Control (BAC)'
Email: shivang.patel@gecmodasa.ac.in o : :
“Assistant Professor, Department of Computer Engineering,
Government Engineering College, Sector-28, Gandhinagar

A09: 2021 Security Logging and Monitoring Failure

» Broken Access Control (BAC): Broken access control

Email: viralpatel @gecg28.ac.in vulnerabilities arise when security mechanisms fail to
*Assistant Professor, Department of Computer Engineering, restrict access to authorized users only. This allows attacker
Government Engineering College, Sector-28, Gandhinagar . . .
Email: ashvinkumar@gecg28.ac.in to bypass intended access controls and potentially view
® Assistant Professor, Department of Computer Engineering, sensitive data, modify information, or perform unauthorized
Government Engineering College, Sector-28, Gandhinagar actions. For in-stance, a 2019 vulnerability in YouTube
Email: nitinraval@gecg28.ac.in . i
"Assistant Professor, Department of Computer Engineering, allowed attackers to access specific frames of videos
Government Engineering College, Sector-28, Gandhinagar marked as private. While a single frame might not reveal the

Email: yogendratank@gecg28.ac.in
International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4749-4758 | 4749

entire content, an attacker could potentially reconstruct the
video by requesting multiple frames sequentially. This
highlights how seemingly minor access control flaws can
have significant consequences, as users expect their private
data to be truly inaccessible [2].

 Insecure Direct Object Reference (IDOR): Insecure
Direct Object References (IDOR) represent a type of access
control vulnerability where an attacker can access resources
beyond their intended access privileges. This often occurs
when an application exposes "direct object references,"
which are essentially identifiers pointing to specific objects
on the server. These objects could be files, user accounts,
bank accounts, or any other data entity. For example,
consider a banking application where a user successfully
logs in and is directed to a URL like
https://xyz.com/account?id=11. This page displays the
user's account details. However, if the application is
vulnerable to IDOR, an attacker could potentially modify
the id parameter in the URL (e.g., changing it to 22). A
vulnerable application might then grant the attacker access
to another user's bank information due to improper access
control checks. This scenario underscores the importance of
robust access control mechanisms to prevent unauthorized
access to sensitive data.

To bridge the gap between theory and practice, we will
examine a real-world example: As part of the practical
exploration using TryHackMe [3], the first step is to access
the provided website's login page.

In Fig.1. Login the user interface transitions to a new page
displaying. Use parentheses to avoid ambiguities in
denominators. Punctuate equations when they are part of a
sentence, as in

1110
o o
Ll "O o

THM Note Server

Fig. 1. Website homepage

Put id=0 (http://machine-ip/note.php?note_id=0) and you
will get the flag as in Fig. 2:

THM Note Server

Fig. 2. Exploitation of Broken Access Control

By exploiting a BAC vulnerability like IDOR, an attacker
could potentially gain unauthorized access to sensitive
pages or data.

2.2. A02:2021-Cryptographic Failures

« Cryptographic Failures and Sensitive Data Exposure:
Web applications often rely on cryptography to safe-guard
sensitive user information, such as names, dates of birth, and
financial data. However, crypto-graphic failures can arise
due to the misuse or lack of proper implementation of
encryption algorithms. These failures can lead to accidental
data exposure, compromising user security and potentially
violating privacy regulations.

- Flat-File Database Vulnerabilities: Databases are
essential for web applications to efficiently manage large
amounts of data accessible from multiple locations. While
production environments typically utilize dedicated
database, servers managed by software like MySQL or
MariaDB, smaller applications might resort to storing data
in flat-file databases. These databases are stored as single
files on the computer, eliminating the complexity of setting
up a dedicated server. However, this simplicity can
introduce security vulnerabilities.

Consider a scenario where a flat-file database, potentially
containing sensitive user information, is mistakenly stored
within the web application's root directory. This reliability
accessible location makes it possible for an attacker to
download the database file and access its contents using a
dedicated client like sqglite3 on their own machine. This
exposes sensitive data, posing a significant security risk.

» Simulation:

In Fig. 3, A hypothetical scenario involves an attacker
gaining access to a ‘/assets’ page and identifying a
downloadable file named "webapp.db". This file, potentially
containing sensitive database information, could be
downloaded and analyzed using a SQLite database
management tool like sqlite3. By examining the database
schema using the .tables command and issuing appropriate
SQL queries, the attacker could potentially retrieve all data
stored within dataset.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(21s), 4749-4758 | 4750

~/Downloads

webapp.db
SQLite version 3.44.0 2023-11-01 11:23:50
Enter ".help" for usage hints.
sqlite> .tables
sessions users
sqlite> select * from users;
4413096d9¢933359b898b6202288a650 | admin | 6eeagb7ef19179a06954eddof6co5ceb|1
23023b67a32488588db1e28579ced7ec | Bob|ad0234829205b9033196ba818f7a872b|1
4e8423b514eef575394ff78caed3254d|Alice|268b38ca7b84f44faabedc86e6301e0|0

sqlite> J

Fig. 3. Exploiting Cryptographic Failure
2.3 A03:2021-Injection

 Injection Vulnerabilities: A Threat to Modern
Applications: Injection vulnerabilities are a prevalent
security threat in modern applications. These vulnerabilities
arise when user supplied data is misinterpreted as code or
commands by the application. The specific nature of the
injection attack depends on the underlying technologies
used by the application and how they handle user input.

« Common Injection Vulnerabilities:

SQL Injection (SQLi): This vulnerability occurs when
untrusted user input is directly incorporated into SQL
queries [4]. Malicious actors can exploit this weakness by
crafting specially crafted input that injects malicious SQL
code [5]. This injected code can then manipulate the
intended query, potentially allowing attackers to:

Access sensitive data: Attackers can retrieve confidential
information stored in the database, such as personal details
and credentials.

Modify data: Malicious actors can alter data with-in the
database, potentially causing disruption or corrupting
critical information.

Delete data: Attackers can erase data stored in the database,
leading to data loss and potential system instability.

« Command Injection: This vulnerability occurs when
user-controlled input is passed directly to operating system
commands. Attackers can exploit this weakness by injecting
malicious commands that will be executed on the server.
This can potentially grant them unauthorized access to the
server's resources or even allow them to compromise the
entire system. Attackers can leverage command injection to
perform various malicious activities, including:

System Enumeration: They can identify files, directories,
and running processes on the server.

Data Exfiltration: Attackers can steal sensitive data stored
on the server.

Privilege Escalation: They can attempt to gain higher
privileges on the server, potentially leading to complete
system control.

* Preventing Injection Attacks: The primary defence
against injection attacks is to ensure that user-supplied input
is never treated as executable code or commands. Several
techniques can achieve this:

Input Validation: Implement robust validation
mechanisms to sanitize user input and remove any
potentially dangerous characters before processing.
Parameterized Queries: Utilize parameterized queries
instead of string concatenation when constructing database
queries. This ensures clear separation between data and
code, preventing malicious SQL injection attempts.
Escaping User Input: When user input must be included
within commands or queries, implement proper escaping
mechanisms to neutralize potentially harmful characters.
Whitelisting: Limit acceptable user input to a predefined
set of safe characters or values. Any input that falls outside
this whitelist should be rejected [6].

By implementing these security measures, developers can
significantly reduce the risk of injection vulnerabilities in
their applications [7].

* Simulation:

Fig, 4 shows to simulate a directory listing attack, the input
field was injected with the string '$(Is)'. This attempted to
exploit a potential command injection vulnerability by
injecting a command to list directory contents. Upon
submission, the response revealed the presence of an
unexpected file named 'drpepper.txt’ within the website's
root directory, suggesting a potential security weakness.

Cowsay Online

Choose your cow: [SETITE

Submit

< css drpepper.txt index.php js >

\ (o00)\
()X IAVA
[]===-w |
| I

Fig. 4. Exploiting Injection
2.4 AD4: Insecure Design:

Insecure design vulnerabilities are weaknesses embedded
within an application's fundamental architecture. They
differ from implementation or configuration flaws by being
inherent to the core design concept. These vulnerabilities
often stem from inadequate threat modeling during the
application's planning phase, potentially impacting the
entire application. Alternatively, insecure design flaws can
be introduced by developers seeking shortcuts to streamline
testing. For instance, a developer might disable two-factor
authentication (2FA) during development for easier testing,
neglecting to re-enable it before deployment [8].

* Insecure Password Resets: A Case Study: A classic
example of insecure design is a vulnerability that once

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(21s), 4749-4758 | 4751

existed on Instagram's password reset functionality. The
platform relied on SMS delivery of a 6-digit code for
password resets. An attacker could attempt to brute-force
this code; however, Instagram implemented rate-limiting to
prevent such attacks, blocking users after 250 attempts.
The critical design flaw here lies in the rate-limiting
mechanism being restricted to individual IP addresses. An
attacker with access to numerous IP addresses could
circumvent this protection. With 250 attempts per IP and a
million possible codes, an attacker would need
approximately 4,000 IP addresses to cover all possibilities.
While a large number, cloud services make acquiring such
resources relatively inexpensive, rendering the attack
viable.

This vulnerability highlights how insecure design flaws can
arise from assumptions about user behavior. In this case, the
design presumed users wouldn't have access to thousands of
IP addresses. The issue stemmed from the core design, not
the code implementation itself.

* Addressing Insecure Design: Due to their early
introduction in the development process, resolving insecure
design vulnerabilities often necessitates refactoring or
rebuilding the affected application components. This makes
them more challenging to rectify compared to traditional
code-based vulnerabilities. The most effective approach to
mitigating these risks involves thorough threat modeling
during the initial development stages. You can explore
resources like the Secure Software Development Lifecycle
(SSDL) room for further guidance on implementing secure
development practices.

Simulation Example:

To illustrate the design flaw in the password reset
mechanism, let's revisit Joseph's account. By navigating to
the password reset page, we can attempt to provide a guess
for the security question answer. In a scenario where the
security questions lack sufficient complexity or rely on
easily obtainable information (e.g., favorite color), an
attacker might successfully guess the answer. In this
hypothetical example, by correctly guessing "green™ as the
answer to Joseph's security question in Fig. 5, we could
potentially gain unauthorized access to his account. It's
crucial to emphasize that this scenario highlights a
vulnerability and is not a recommendation to exploit such
weaknesses in real-world situations.

Password Reset

1 2 Piease answer 0ne of your SECUSRY GUESIONS 1 CONMM your Kerty

Security

o What's your trvourte coloar?

Fig. 5. Exploiting Insecure Design

2.5 A05: Security Misconfiguration

Security misconfigurations differ from other OWASP Top
10 vulnerabilities because they arise from improper
configuration, even with up-to-date software. These
misconfigurations can create exploitable weaknesses within
systems [9].

Common examples of security misconfigurations
include:

» Improper Permission Management: Inadequate access
controls on cloud storage (e.g., overly permissive S3 bucket
permissions) can expose sensitive data.

» Unnecessary Features: Leaving unused services, pages,
accounts, or privileges enabled creates unnecessary attack
surfaces.

* Weak Default Credentials: Failure to change default
usernames and passwords creates easy entry points for
attackers.

» Information Leakage: Excessively verbose error
messages can unintentionally reveal sensitive system details
to attackers.

» Missing Security Headers: Omission of essential HTTP
security headers (e.g., Content Security Policy) leaves
applications vulnerable to various attacks.

These misconfigurations can have cascading effects,
potentially leading to vulnerabilities like:

» Exploiting Default Credentials: Gaining unauthorized
access to sensitive data using unchanged default logins.

« XML External Entity (XXE) Attacks: Leveraging
misconfigured XML parsers to inject malicious code for
unauthorized access.

+ Command Injection Vulnerabilities: Executing
arbitrary commands on the system through vulnerable
admin pages.

For a deeper understanding, refer to the OWASP Top 10
entry for Security Misconfiguration.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(21s), 4749-4758 | 4752

Debugging Interfaces

A prevalent security misconfiguration involves exposing
debugging features in production environments. These
features, intended for development purposes, offer
advanced functionalities to developers but can be misused
by attackers if left accessible.

Case Study: Patreon Hack (2015) [10]

The incident highlights the potential dangers of exposed
debugging interfaces. In 2015, Patreon reportedly suffered
a security breach allegedly linked to an open debugging
interface. A security researcher had previously notified
Patreon about a vulnerable Werkzeug console accessible via
a URL path (/console).

Werkzeug, a core component in many Python web
applications, provides a web server interface for executing
Python code. It includes a built-in debug console accessible
through a specific URL or automatically during application
exceptions. Both scenarios present a Python console
allowing attackers to execute arbitrary commands on the
system, potentially compromising sensitive data or
functionality.

This case study demonstrates the critical importance of
disabling debugging features before deploying applications
to production environments.

 Simulation:

This vulnerable machine demonstrates a Security Mis-
configuration, a critical vulnerability listed in the Table 1.
To exploit this misconfiguration in Fig. 6, we attempt to
gain unauthorized access to the application's source code by
navigating to the following URL.: http://machine-ip/console

Interactive Console

[console ready]
>>> print('TryHackMe!")
TryHackMe!

Fig. 6. Checking For python working or not

Our investigation reveals that the console is accessible
without proper authentication, suggesting a security
misconfiguration. To capitalize on this vulnerability, we
execute a simple Python code snippet: import os; print
(os.popen(”ls -I").read()). This code successfully executes
and displays the directory listing of the server, potentially
revealing sensitive information such as file-names and
permissions, as you can see from Fig 7.

Interactive Console

In this co

cute Python expressions in the context of the application, The initial

namespace the debugger automatically.

[console ready]
>>> import os; print(os.popen(*ls -1").read())
total 24

“rWeleeles 1 root root
“PWeleelee 1 root root
“TWer-=F-~ 1 root root
drwxr-xr-x 2 root root
“IWeFeeFee 1 root root

249 Sep 15 05:07 Dockerfile

1411 Feb 3 04:28 app.py

137 Sep 15 05:05 requirements.txt
4096 Sep 15 05:06 templates
8192 Sep 15 05:07

Fig. 7. Exploiting Security Misconfiguration

2.6 A06: Vulnerable and Outdated Components

The sixth wvulnerability in Table 1 is "Vulnerable and
Outdated Components” (A06:2021). This vulnerability
arises when an application uses component such as libraries,
frameworks, and other software modules that are outdated
or have known security vulnerabilities. These components
may come from open-source projects, third party vendors,
or even from within the organization.

+ Outdated Versions: Applications using components
that are no longer supported or updated by their developers
are prone to known vulnerabilities that attackers can easily
exploit.

+ Unpatched Vulnerabilities: When known security
vulnerabilities in components are not patched, they become
entry points for attackers, potentially leading to data
breaches or system compromises.

« Insecure Configuration: Even updated components can
be vulnerable if not configured securely, leading to potential
exploitation.

» Lack of Inventory Management: Organizations may
not have a comprehensive inventory of all components used
in their applications, making it difficult to track and update
them, thereby increasing security risks.

» Transitive Dependencies: Vulnerabilities may exist in
dependencies that are indirectly included in the application,
further complicating security management.

Prevention Strategies: To mitigate the risks associated
with Vulnerable and Outdated Components, organizations
can implement the following security measures:

* Regular Updates: Keep all software components,
including libraries and frameworks, up to date with the latest
security patches and versions to reduce the risk of
exploitation.

* Vulnerability Scanning: Use automated tools to
regularly scan for known vulnerabilities in your
application’s dependencies and take immediate action to
address any issues found.

« Component Inventory: Maintain a comprehensive
inventory of all components, including direct and transitive

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(21s), 4749-4758 | 4753

http://machine-ip/console

dependencies, to ensure that each component is tracked and
updated as needed.

« Automated Dependency Management: Use automated
tools for dependency management and security analysis to
detect and mitigate vulnerabilities early in the development
process.

» Secure Configuration Practices: Ensure that all
components are configured securely according to best
practices and that any default configurations are reviewed
and hardened.

» Risk Assessment of Dependencies: Regularly assess the
security risks associated with using specific components,
especially those that are widely used or critical to the
application’s functionality.

By incorporating these preventive strategies, organizations
can significantly reduce the risks associated with vulnerable
and outdated components, thereby improving the overall
security posture of their applications.

2.7 A07: ldentification and Authentication Failures

Modern web applications rely heavily on robust
authentication and session management mechanisms to
ensure secure access for legitimate users. Authentication
verifies user identities, typically through username and
password combinations. Upon successful verification, the
server issues a session cookie to the user's browser. This is
necessary because HTTP(S) communication is stateless,
requiring session cookies for the server to maintain user
context and track user actions.

Vulnerabilities in Authentication Mechanisms:
Weaknesses in authentication mechanisms can be exploited
by attackers, potentially leading to Broken Authentication
(AQ07:2021) within the OWASP Top 10 (see Table 1). Some
common vulnerabilities include:

» Brute Force Attacks: These attacks involve repeatedly
attempting to guess usernames and passwords. Weak
password policies and a lack of lockout mechanisms can
make applications susceptible to brute force attacks [11].

* Weak Credentials: If web applications allow users to set
weak passwords like "password1l" or common dictionary
words, attackers can easily guess them and gain
unauthorized access. Applications should enforce strong
password policies, including minimum length, character
complexity, and regular password changes.

* Weak Session Cookies: Session cookies are how the
server keeps track of users. If session cookies lack sufficient
randomness or predictability in their values, attackers can
potentially steal or forge them, enabling unauthorized
access to user accounts.

Mitigation Strategies:

There can be various mitigation strategies for broken
authentication mechanisms depending on the exact flaw.
Here are some common approaches:

» Enforce Strong Password Policies: Minimum password
length, character complexity (uppercase/lowercase letters,
numbers, symbols), and regular password changes can
significantly increase password strength.

« Limit Login Attempts: Implement lockout mechanisms
that automatically lock user accounts after a certain number
of failed login attempts. This thwarts brute force attacks by
significantly increasing the number of attempts required for
success.

* Implement Multi-Factor Authentication (MFA): MFA
adds an additional layer of security by requiring users to
provide a second authentication factor beyond a username
and password. This could involve a code sent to a registered
phone number, a fingerprint scan on a mobile device, or a
hardware token.

By implementing these mitigation strategies, organizations
can significantly strengthen their authentication
mechanisms and reduce the risk of unauthorized access to
web applications.

2.8 A08: Software and Data Integrity Failures

Software and Data Integrity Failures (A08:2021 in the
OWASP Top 10) encompass vulnerabilities that arise when
software and its underlying infrastructure lack proper
mechanisms to safeguard against unauthorized
modifications. This can manifest in various ways, such as:

* Untrusted Dependencies: Applications relying on
plugins, libraries, or modules from untrusted sources,
repositories, or content delivery networks (CDNs) create a
vulnerability.

* Insecure CI/CD Pipelines: Weaknesses in the
Continuous Integration and Continuous Delivery (CI/CD)
pipeline can introduce vulnerabilities. These could involve
unauthorized access, the injection of malicious code during
the build process, or system compromise.

* Unverified Auto-Updates: Many applications now
feature automatic update functionality. If these updates lack
sufficient integrity verification before being applied,
attackers can potentially upload their own malicious updates
to compromise systems.

e Insecure Deserialization: When objects or data are
encoded or serialized into a vulnerable structure, attackers
can potentially exploit this weakness to modify the data and
potentially gain unauthorized access.

Prevention Strategies: To mitigate Software and Data
Integrity Failures, organizations can implement the
following security measures:

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(21s), 4749-4758 | 4754

- Digital Signatures: Utilize digital signatures or similar
mechanisms to verify the authenticity and integrity of
software or data. This ensures that the source is legitimate
and the data has not been tampered with during
transmission.

» Trusted Repositories: Ensure that libraries and
dependencies are obtained from trusted repositories
managed by reputable organizations. If the risk profile is
high, consider hosting an internal, vetted repository for
critical components.

« Software Supply Chain Security Tools: Leverage
software supply chain security tools like OWASP
Dependency Check or OWASP CycloneDX. These tools
help identify and manage vulnerabilities within software
components used by your application.

+ Code and Configuration Review: Implement a
thorough review process for code and configuration
changes. This helps minimize the risk of introducing
malicious code or insecure configurations into the software
development pipeline.

» CI/CD Pipeline Security: Fortify the CI/CD pipeline by
ensuring proper segregation of duties, secure configuration,
and robust access controls. These measures safe-guard the
integrity of code throughout the build and deployment
processes.

+ Data Serialization Protection: Avoid sending unsigned
or unencrypted serialized data to untrusted clients.
Implement integrity checks or digital signatures to detect
any tampering or replay of sensitive serialized data.

By incorporating these preventive strategies, organizations
can significantly enhance software and data integrity,
reducing the attack surface for malicious actors.

2.9 A09: Security Logging and Monitoring Failures

The Importance of Web Application Logging and
Monitoring: Web application security relies heavily on
proper logging and monitoring practices. When a user
interacts with a web application, every action performed
should be meticulously logged. This data becomes
invaluable in the event of a security incident, as it allows
for:

Essential Log Information: To facilitate effective incident
response and threat detection, application logs should
capture critical information, including:

« HTTP Status Codes: These codes indicate the success or
failure of a user request (e.g., 200 for successful requests,
404 for page not found errors).

» Timestamps: Time stamps provide a chronological
record of user activity, aiding in incident timeline creation
and attack sequence analysis.

« Usernames: Identifying the user associated with each
action simplifies log analysis and helps assess potential
compromised accounts.

« API Endpoints/Page Locations: Logging the specific
web application resources accessed allows for a clear
understanding of the attacker's target and potential areas of
compromise.

+ IP Addresses: Capturing the source IP address of each
user request can help identify suspicious activity originating
from unusual locations or known malicious actors.

Log Security and Retention: While logs contain valuable
data, it's equally crucial to ensure their security. Sensitive
information within logs should be encrypted at rest and in
transit. Additionally, it's recommended to maintain multiple
copies of logs in diverse locations for redundancy and
disaster recovery purposes.

Beyond Logging: Implementing Security Monitoring:
Although logging is critical for incident response and
forensic analysis, it's most effective when coupled with real-
time security monitoring practices. Security monitoring
systems actively analyze log data and user activity to
identify suspicious patterns that might suggest ongoing
attacks. This proactive approach allows security teams to
detect and potentially stop attackers before significant
damage occurs.

Examples of Suspicious Activity:

Security monitoring systems can be configured to identify
various indicators of potential threats, including:

» Brute-Force Attacks: Multiple failed login attempts
within a short timeframe suggest brute-force attacks
targeting user accounts.

» Anomalous IP Addresses/Locations: Access attempts
originating from unusual locations or known malicious IP
addresses warrant investigation.

e Automated Tools: Certain automated tools used by
attackers can be identified based on patterns within user-
agent headers or request speeds.

+ Exploit Attempts: Security systems can be configured to
detect known malicious payloads or exploit signatures
within user requests.

Prioritizing Suspicious Activity:

Not all suspicious activity is equally concerning. Security
monitoring systems should categorize alerts based on their
potential impact. High-risk activities, such as attempts to
access critical resources, should trigger immediate alerts
and require swift response. Lower-risk incidents may
necessitate further investigation but might not necessitate
immediate action.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(21s), 4749-4758 | 4755

By implementing comprehensive logging and monitoring
strategies, organizations can significantly enhance their web
application security posture. Early detection and rapid
response are paramount for mitigating the impact of security
incidents and safeguarding sensitive data.

2.10 A10: Server-Side Request Forgery (SSRF)

Server-Side Request Forgery (SSRF) is a web application
vulnerability that allows an attacker to manipulate a web
application into making unauthorized requests to an external
server under the attacker's control. This manipulation
typically involves exploiting functionalities within the
application that interact with external services [12].

Understanding the Vulnerability:

Imagine a web application that uses an external API to send
SMS notifications to users. This application likely sends
requests to the SMS provider's server with the message
content and an authentication token (e.g., APl key) to
identify the sender. If the application allows user input to
specify the server address of the SMS provider, a
vulnerability can arise.

This would trick the vulnerable application into sending a
request to the attacker’s-controlled server at:
https://attacker.thm/api/send?msg=Test%20Message

As part of the forwarded message, the attacker might be able
to steal the application's API key embedded in the request.
This stolen key could then be used to send SMS messages
at the application owner's expense.

Potential Impacts:

SSRF vulnerabilities can have various consequences
depending on the application's functionalities and the
attacker's goals. Here are some potential impacts:

* Internal Network Enumeration: Attackers can exploit
SSRF to identify internal network addresses and ports,
potentially aiding further attacks (see Fig 8).

[o meice Server=srva.sas thamg=he o] 000 |

)
* *Sending SMS
)

m Llo

1. Send request
CET /sms?server=srv3.sms. thmémsg=hello

2. Build query to:
hEEps://sry3. sus

tha/api/send?msg=hello

W . mysite.com

3. Forward lo SMS provider using the AP1 key

- GET /api/send7msg=hello

Srvd.sns.the X-API-Key: MySekretKdy

Fig. 8. Exploring Backend APl Handling

» Abuse of Trust Relationships: SSRF can be used to
exploit trust relationships between the application server

and other internal services, potentially
unauthorized access to restricted resources.

» Remote Code Execution (RCE): In some cases, SSRF
can be chained with other vulnerabilities to achieve remote
code execution on the victim server, allowing complete
control.

By understanding SSRF vulnerabilities and implementing
proper security measures, organizations can significantly
reduce the risk of unauthorized actions and data breaches.

leading to

3. Analysis of the OWASP Top 10 vulnerabilities

1. Exploitability: Exploitability in the context of
vulnerability analysis, refers to the ease with which an
attacker can leverage a specific vulnerability to gain
unauthorized access to a system or data. It essentially
reflects the technical difficulty and resources required for an
attacker to successfully exploit the vulnerability.

Exploitability

Q;b

& & o’bo‘ &
P o 3 g
d P & &
& & Q7 %
o & = «‘—7\

S
&

f

Fig. 9. Exploitability of vulnerabilities

From Fig. 9, a higher exploitability rating indicates a greater
risk, as it suggests a wider range of attackers could
potentially take advantage of the vulnerability. This is often
factored into vulnerability scoring systems and
prioritization for patching.

2. Incident Rate: This factor delves into the frequency of
reported incidents associated with each vulnerability. A
high incident rate indicates a vulnerability that is actively
exploited by attackers in the real world. This information is
crucial for prioritizing remediation efforts.

Incident Rate

< o
< g 0 o ¢ $ 2
A &
L°° '§° g)) & \5} o(\': @‘\% ¢ o
K :
& & b & P o & Qo & X
& & 4 & & & o $
A /4 RS 5 e & o N o
o ot & o R 0 2 Pt

Fig. 10. Incident Rate of vulnerabilities

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(21s), 4749-4758 | 4756

Fig. 10, it’s crucial to remember that even a low incident
rate doesn't guarantee a vulnerability is not dangerous.
Attackers may be constantly evolving their tactics, and a
seemingly obscure vulnerability could be weaponized in the
future.

3. Criticality Ratio: This metric divides the exploitability
score by the impact score, giving a higher value for
vulnerabilities that are both easy to exploit and have a high
impact. Criticality Ratio of a vulnerability refers to the level
of risk it poses to a system or organization.

Criticality Ratio

Fig. 11. Criticality Ratio of VVulnerabilities

Higher criticality indicates a more severe vulnerability (Fig.
11). This means it has the potential to cause significant
damage and is also relatively easy for attackers to exploit.
Conversely, a vulnerability with lower criticality might have
a less severe potential impact or be more difficult to exploit,
making it less urgent to address.

4. Conclusion

In today's digital landscape, web applications are the
backbone of countless operations. However, these
applications are vulnerable to exploitation by malicious
actors, potentially leading to data breaches, disrupted
services, and reputational damage. The OWASP Top 10
serves as a vital resource by identifying and categorizing the
most critical web application security risks.

This report conducted an in-depth analysis of the top five
vulnerabilities within the Table 1, providing a
comprehensive examination of their technical details,
potential consequences, and mitigation strategies. The
remaining five vulnerabilities were covered with a basic
introduction, highlighting their key characteristics and
potential risks. By understanding the criticality ratio,
incident rate, and exploitability for each wvulnerability,
organizations can prioritize their security efforts and address
the most pressing threats.

By implementing robust security practices, leveraging the
insights provided by the OWASP Top 10, and continuously
monitoring and updating their defenses, organizations can
significantly strengthen their web application security
posture and safeguard their valuable assets.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] “OWASP Top Ten | OWASP Foundation.” Accessed: Jul.
13, 2023. [Online]. Awvailable: https://owasp.org/www-
project-top-ten/

[2] M. M. Hassan, M. A. Ali, T. Bhuiyan, M. H. Sharif, and S.
Biswas, “Quantitative Assessment on Broken Access
Control Vulnerability in Web Applications”, 2018.

[3] “OWASP Top 10 - 2021,” TryHackMe. Accessed: Aug.
13, 2023. [Online]. Available:
https://tryhackme.com/r/room/owasptop102021

[4] D. A. Kindy and A.-S. K. Pathan, “A survey on SQL
injection: Vulnerabilities, attacks, and prevention
techniques,” in 2011 IEEE 15th International Symposium
on Consumer Electronics (ISCE), Singapore, Singapore:
IEEE, Jun. 2011, pp. 468-471. doi:
10.1109/1SCE.2011.5973873.

[5] S. Tyagi and K. Kumar, “Evaluation of Static Web
Vulnerability Analysis Tools,” in 2018 Fifth International
Conference on Parallel, Distributed and Grid Computing
(PDGC), Solan Himachal Pradesh, India: IEEE, Dec. 2018,
pp. 1-6. doi: 10.1109/PDGC.2018.8745996.

[6] I. Balasundaram and E. Ramaraj, “An Authentication
Mechanism to prevent SQL Injection Attacks,”
International Journal of Computer Applications, vol. 19,
2011.

[7] “OWASP Top 10-2021 | Tryhackme
Writeup/Walkthrough | By Md Amiruddin | by Md
Amiruddin | InfoSec Write-ups.” Accessed: Aug. 13, 2023.
[Online]. Available: https://infosecwriteups.com/owasp-
top-10-2021-tryhackme-writeup-walkthrough-by-md-
amiruddin-913e477c0eal

[8] B. Schneier, “Cryptographic design vulnerabilities,”
Computer, vol. 31, no. 9, pp. 29-33, Sep. 1998, doi:
10.1109/2.708447.

[9] B. Eshete, A. Villafiorita, and K. Weldemariam, “Early
Detection of Security Misconfiguration Vulnerabilities in
Web Applications,” in 2011 Sixth International Conference
on Availability, Reliability and Security, Vienna, Austria:
IEEE, Aug. 2011, pp. 169-174. doi:
10.1109/ARES.2011.31.

[10] Detectify, “How Patreon got hacked - Frans Rosén,”
Labs Detectify. Accessed: Aug. 13, 2023. [Online].
Available: https://labs.detectify.com/writeups/how-
patreon-got-hacked-publicly-exposed-werkzeug-debugger/

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(21s), 4749-4758 | 4757

[11] C. J. Mok and C. W. Chuah, “An Intelligence Brute
Force Attack on RSA Cryptosystem,” vol. 1, no. 1, 2019.

[12] A. Younis, Y. K. Malaiya, and 1. Ray, “Assessing
vulnerability exploitability risk using software properties,”
Software Qual J, vol. 24, no. 1, pp. 159-202, Mar. 2016,
doi: 10.1007/s11219-015-9274-6.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4749-4758 | 4758

