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Abstract  Over the past few years, medical image processing has increased in use of deep learning algorithms, especially in the analysis 

of magnetic resonance (MR) scans. MRI is a crucial diagnostic tool for Alzheimer's disease (AD), a prevalent type of dementia that ranks 

seventh among fatal illnesses globally. As there is no known cure for Alzheimer's disease, early detection and intervention are vital to 

prevent its irreversible progression. This study proposes a comprehensive framework for detecting Alzheimer's disease that employs 

convolutional neural networks (CNNs) and deep learning approaches. We applied transfer learning to pretrained deep learning models 

rather than training them from scratch. Three distinct pretrained CNN models (VGG-19, ResNet-50, and Inception V3) with a fine-tuned 

transfer learning approach were used for five-way classification of AD. We employed the ADNI dataset, which includes MRI scans from 

608 patients across five classes: Alzheimer's disease (AD), early mild cognitive impairment (EMCI), mild cognitive impairment (MCI), 

late mild cognitive impairment (LMCI), and normal control (NC). The models' performance was evaluated based on eight metrics: 

accuracy, precision, sensitivity/recall, specificity, error rate, false positive rate, F1-score, and kappa. Our findings indicate that the ResNet-

50 architecture outperformed other pretrained models, achieving the highest overall accuracy of 98.7% for multiclass AD classification. 

Additionally, the ResNet-50 model excelled in classifying the EMCI category with an accuracy of 99.25%, indicating its effectiveness in 

detecting early signs of memory impairment. The proposed framework surpasses the performance of previous studies in terms of overall 

accuracy, sensitivity, and specificity, setting a new benchmark for five-way AD classification. The outcomes of this study will contribute 

significantly to early prevention efforts by enabling Alzheimer's disease to be detected before it progresses irreversibly. Furthermore, this 

research represents a promising approach for improving the early detection and classification of Alzheimer's disease using deep learning 

methods with MRI data.  

Keywords: Deep Neural Network (DNN), Transfer Learning (TL), Convolutional Neural Network (CNN), VGG, Inception, ResNet, 

Magnetic Resonance Imaging (MRI). 

1. Introduction 

Alzheimer's disease (AD) is a progressive neurological 

illness that gradually hampers cognitive ability, leading to a 

decline in thought processes and consciousness in affected 

individuals. This disease has a direct impact on cognitive 

abilities and overall neurocognition [1], which makes it the 

leading cause of cognitive impairment, accounting for up to 

80% of all dementia cases [2]. Approximately 10 million 

people are diagnosed with dementia each year worldwide, 

with more than 55 million individuals affected in 2020. 

Forecasts indicate an increase to 78 million by 2030 and a 

staggering increase to 139 million by 2050 [3]. AD 

dementia accounts for 60–90% of all cases of 

neurodegenerative diseases [4]. 

Despite advances in medical research, a specific cure for AD 

has not been identified [5]. Dementia usually develops 

gradually over time and tends to worsen progressively, 

beginning with MCI and culminating in AD. The onset of 

mild cognitive impairment often serves as an early indicator 

that an individual is at risk of developing AD [6]. Early 

recognition of MCI serves as a vital indicator of the risk of 

developing Alzheimer's disease. Timely diagnosis is crucial 

for comprehending the progressive nature of the disease and 

its significant impact on individuals with Alzheimer's 

disease [7, 8]. Although identifying AD symptoms using 

clinical measures is feasible, identifying symptoms is a 

labor-intensive process that requires specialized expertise. 

Early diagnosis is often difficult for experts unless 

symptoms are evident. 

Advances in neuroimaging methods such as positron 

emission tomography (PET) and magnetic resonance 

imaging (MRI) have aided in identifying biological markers 

linked to AD [9]. MRI, in particular, is widely employed for 

screening, identifying, and distinguishing Alzheimer's 

disease [10–12]. MRI provides detailed brain structure 

information, allowing researchers and doctors to detect 

irregularities, monitor disease development, and support 

accurate AD diagnosis. However, these advances have 

resulted in a vast amount of complex, multidimensional data 

that requires comprehensive analysis. Computer-aided 
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machine learning techniques are becoming increasingly 

popular for this purpose. Medical imaging and computer-

aided techniques are the most reliable methods for detecting 

AD in its early stages. Although most related research has 

focused on binary classification, distinguishing patients 

with or without AD, precise classification of patients into 

different categories, such as cognitively normal (CN), early 

mild cognitive impairment (EMCI), mild cognitive 

impairment (MCI), late mild cognitive impairment (LMCI), 

and Alzheimer's disease (AD), is necessary for effective 

Alzheimer's disease treatment. While this represents a 

significant challenge, we are confident that ongoing 

research will lead to the full resolution of this issue. 

With remarkable advancements in technology, we now have 

a tremendous opportunity to improve the diagnosis of 

diseases significantly. Significant progress has recently 

been made in image processing because of the abundance of 

large-scale and labeled image datasets. ImageNet [13], a 

dataset containing more than 1.2 million labeled images, has 

played a critical role in this growth. Convolutional neural 

networks (CNNs) have achieved remarkable accuracy and 

improved the categorization of medical images by 

leveraging these datasets during training [14]. These 

networks excel at classifying medical images when trained 

on extensive datasets such as ImageNet, which consists of 

more than 1000 different data classes. They can be utilized 

for this task in various ways [15, 16], including training a 

pretrained network on a vast dataset and tuning it to the 

specific dataset to be classified. Traditional image 

descriptors based on primitives have also shown promising 

performance. To further optimize the process, a more 

efficient method is to use transfer learning to fine-tune a 

pretrained CNN on smaller datasets [17, 18]. Such networks 

are frequently employed in tasks related to computer vision, 

particularly those involving the detection of objects. This 

technique has also been proven to be exceptionally effective 

in cross-domain classification tasks where a CNN trained on 

natural images is subsequently used to classify medical 

images [19]. 

AD is a complex condition that progresses through different 

stages and can be challenging to diagnose accurately. Close 

observation by a radiologist and careful clinical assessment 

are needed but can be time-consuming and costly. We aimed 

to develop a more efficient and cost-effective method for 

diagnosing AD in its initial stages using deep CNN models 

(VGG-19, ResNet-50, and Inception V3) and transfer 

learning (TL). This approach will not only help to slow the 

progression of the illness but also reduce the participation of 

radiologists and the overall cost of diagnosis. This study 

presents a framework that uses deep neural networks 

(DNNs) to predict Alzheimer's disease from MRI scans. The 

framework captures essential visual features crucial for 

distinguishing between five different AD stages: cognitively 

normal, early mild cognitive impairment, mild cognitive 

impairment, late mild cognitive impairment, and 

Alzheimer's disease. By identifying the disease in its early 

stages, we can overcome the shortcomings of conventional 

machine learning approaches and improve the effectiveness 

of treatment. 

The primary research contributions are outlined below: 

• We propose and evaluate a fine-tuned transfer learning-

based multiclass (five-way) classification framework for 

the early diagnosis of AD. 

• MRI images from the ADNI dataset were analyzed using 

second-generation DNNs to differentiate between the 

stages of cognitive decline, including CN, EMCI, MCI, 

LMCI, and AD. 

• Resampling techniques such as oversampling and 

downsampling are used to overcome the imbalance of 

the acquired dataset classes. 

• To improve the transfer learning technique, we also used 

several data augmentation methods to increase the 

diversity of the input data and extract more robust and 

distinctive features. 

• Using eight different performance measures, ResNet-50 

provided the highest overall accuracy of 98.7%, 

representing a new benchmark for the five-way 

classification of AD. 

The remaining sections of the paper are structured as 

follows. Section 2 reviews the existing related research. 

Section 3 describes the proposed method. Section 4 presents 

the experimental setup and results. Section 5 discusses the 

proposed work, and finally, section 6 presents the research 

conclusions and outlines possible future directions. 

2. Previous Works 

AbdulAzeem et al. [20] developed a CNN model from 

scratch for binary classification of Alzheimer's disease. The 

model consists of three sets of convolution and pooling 

layers trained using the Adam optimizer. The final 

classification layer of the model features the SoftMax 

activation function. The researchers tested the model's 

performance using different image sizes, 128 × 128 and 64 

× 64, and applied various data augmentation methods with 

and without dropout. The best results were obtained with 

images resized to 128 × 128 and dropout disabled images. 

Model validation was performed by arbitrarily partitioning 

the dataset into training and testing sets with ratios ranging 

from 0.1–0.5. Increasing the batch size resulted in better 

training accuracy, although the accuracy decreased when 

the batch size exceeded 64. Their model achieved an 

accuracy of 95.6% in categorizing images into two 

categories 

A study by Liu et al. [21] introduced a novel framework for 

AD classification. The researchers constructed a CNN with 
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three convolutional layers, three pooling layers, and two 

fully connected layers, with SoftMax activation in the final 

layer. To improve the classification accuracy and prevent 

overfitting, researchers have also employed transfer 

learning with the GoogLeNet and AlexNet models. 

However, the models achieved only moderate accuracy. The 

GoogLeNet and AlexNet models were subjected to 5-fold 

cross-validation and 500 epochs of training during the 

transfer learning process. The GoogLeNet, AlexNet, and 

CNN models achieved classification accuracy rates of 

93.02%, 91.4%, and 78.02%, respectively. 

Al-Adhaileh [22] conducted a study to compare the 

diagnostic performance of two pretrained convolutional 

neural networks, AlexNet and ResNet50, in detecting AD. 

The study used the Kaggle Alzheimer's disease dataset, 

which was partitioned into four classes, and the images were 

resized to 224 × 224 pixels. The study results showed that, 

with 34 layers and five max pooling layers, AlexNet 

achieved a high accuracy rate of 94.53%. ResNet50, which 

has 177 layers and five max pooling layers, uses the 

RMSprop optimizer and achieves an accuracy rate of 

58.07%. Both models implemented ReLU activation 

functions and SoftMax for classification. The study showed 

that AlexNet outperformed ResNet50 in diagnosing AD. 

Helaly et al. [23] developed deep CNN models to 

differentiate between the four stages of AD. The authors 

employed different approaches: basic CNNs (2D and 3D) 

and transfer learning. The model's classification accuracy 

rates are 93.61% for 2D and 95.17% for 3D multiclass AD 

stage classifications. After fine-tuning, the pretrained VGG-

19 model achieved an even higher accuracy of 97% for the 

four-way classification of AD. 

Savaş et al. [24] conducted a study using various CNN 

models to classify 2182 images in the ADNI dataset. They 

developed a framework to evaluate the performance of 29 

pretrained models on these images. Preprocessing steps 

included formatting, cleaning the data, and splitting the 

images before they were fed into the models. During testing, 

the EfficientNetB0 model was the best performing model, 

with an impressive accuracy of 92.98%. The EfficientNetB2 

and EfficientNetB3 models displayed the best precision, 

specificity, and sensitivity for AD, with 94.42% and 

97.28%, respectively, based on the confusion matrix from 

the comparison stage. 

A study conducted by Antony et al. [25] used VGG-16 and 

VGG-19 models to detect AD using 780 MR images from 

the ADNI database. These images were preprocessed 

through skull removal and augmentation and then resized to 

224×224 pixels. The sigmoid function for binary 

classification activated the last layer of VGG-16, while 

VGG-19 utilized the softmax activation function. 

In a recent study conducted by Raza et al. [26], a DenseNet 

DL model and transfer learning were used to analyze brain 

MRI scans for Alzheimer's disease staging via gray matter 

(GM) measurements. The scans were preprocessed using 

SPM12 to divide the brain into GM, white matter, and CSF 

sections. The GM slices were then turned into 2D slices for 

model training and evaluation. The study successfully 

modified a pretrained DenseNet model and retrained the 

final two blocks, achieving an outstanding accuracy of 

97.84% in accurately classifying Alzheimer's disease stages. 

Hazarika et al. [27] conducted a study to assess the 

effectiveness of different DNN models in classifying 

Alzheimer's disease. This study focused on models such as 

DenseNet-121, Inception-V1/V2/V3, ResNet-50, 

EfficientNet-B0, VGG-16, MobileNet-V1, AlexNet, VGG-

19, LeNet, and Xception. The study showed that DenseNet-

121 outperformed the other models in terms of accuracy, 

recall, precision, and F1 score, despite having the longest 

computing time. The model achieved an accuracy rate of 

86.55%. However, due to the computational complexity of 

the model, the authors introduced a hybrid approach that 

combined LeNet and AlexNet, which achieved an overall 

accuracy of 93.58% and outperformed DenseNet. 

A study conducted by Mujahid et al. [28] reported a 

remarkable deep learning ensemble model that utilized 

transfer learning methods to identify AD cases from a 

multiclass dataset. To achieve these goals, researchers have 

employed various models, including DenseNet-121, 

EfficientNet-B2, CNN, Xception, and VGG-16. They 

utilized adaptive synthetic oversampling (ADASYN) to 

address dataset imbalances. The proposed model achieved 

an impressive accuracy of 97.35% in detecting disease 

cases. Notably, combining the DenseNet-121 and Xception 

models (DenseNet-121+Xception) resulted in better 

performance than did the individual models, with an 18% 

improvement in accuracy. Another ensemble model also 

showed a 1.46% improvement over the individual 

EfficientNet models. 

A recent study by Fathi et al. [29] proposed an ensemble 

approach for stage classification of Alzheimer's disease. The 

researchers conducted a comparative analysis of various 

ensemble scenarios and selected six leading CNN-based 

classifiers for the ensemble model, namely, DenseNet201, 

Inception-ResNet V2, DenseNet121, ResNet50, 

DenseNet169, and VGG-19. The effectiveness of the 

ensemble model was assessed using accuracy, sensitivity, 

and specificity metrics. The results showed that the 

ensemble achieved an impressive accuracy of 93.88% for 4-

way AD classification and 93.82% for 3-way AD 

classification. 

Table 1 summarizes recent research on the classification of 

AD using DNN models. Current studies have focused 

mainly on classifying AD stages into three or four 

categories. However, many of these studies have 
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encountered challenges related to class imbalance in 

detecting AD. Unbalanced datasets often lead to overfitting, 

imprecise results, and lower accuracy in deep learning 

models. Additionally, the inadequate data availability for 

training deep learning models poses another obstacle. Our 

study addresses these challenges by focusing on the five-

way classification of Alzheimer's disease using pretrained 

deep learning architectures and transfer learning techniques. 

3. Proposed Methodology 

We present a multiclass classification system for the early 

detection of Alzheimer's disease using deep neural networks 

and transfer learning. Figure 1 shows the workflow of the 

proposed model. The proposed method involves various 

steps, such as dataset acquisition, preprocessing, feature 

extraction, training, and classification. Our approach uses 

data augmentation and fine-tuned feature extraction to train 

three CNN architectures (VGG-19, Inception V3, and 

ResNet-50). We apply fine-tuned transfer learning by 

replacing the final layers of pretrained CNNs to fine-tune 

the models to target classes present within our ADNI 

dataset. 

First, we preprocess and augment the data by converting 

DICOM and single-channel images to PNG and three 

channels while removing any extra surrounding area. 

Additionally, we apply various data augmentation 

techniques to improve the representation of the input space 

for the classifier. Next, we retrain the pretrained CNNs on 

the target dataset using their weights. Once the training 

process is complete, we evaluate the models' effectiveness 

using previously unseen data. The subsequent subsections 

provide a detailed discussion of our methodology. 

3.1. Data Preparation 

3.1.1. Dataset acquisition 

We conducted our study using ADNI data, available at 

http://adni.loni.usc.edu/. The main aim of the ADNI is to 

develop more precise and sensitive methods for diagnosing 

AD in its initial phases. We obtained baseline T1-weighted 

structural MRI (sMRI) scans in the NIFTI (.nii) format for 

our experiments. The dataset comprises 608 subjects (292 

males and 316 females) separated into five classes: AD, 

EMCI, MCI, LMCI, and CN. According to our data, 

multiple scans were taken at different times, with varying 

numbers of scans per subject—at least three and up to 

fifteen. The images were distributed among the classes as 

follows: AD (1648 images), EMCI (1184 images), MCI 

(1527 images), LMCI (1098 images), and NC (1648 

images). More information on the subjects can be found in 

Table 2. 

The dataset summary provides essential information about 

the data. The figure shows the number of individuals in each 

category, the breakdown of male and female individuals, 

and the average ages, along with their corresponding 

standard deviations (STDs). Moreover, as shown in Figure 

2, sample MRI scans were obtained from all five classes. 

Table 1. Summary of the literature related to AD classification using DNN models 

Author(s) 
Dataset & Image 

count 
Modality Classifier(s) Classification Accuracy 

AbdulAzeem et 

al. [20] 

ADNI (2,11,655 

after DA) 
MRI CNN from scratch 2-way (AD/CN) 95.60% 

Liu et al.  [21] ADNI (–) MRI 

CNN from scratch 

AlexNet 

GoogLeNet 

3-way (CN/MCI/AD) 

78.02% 

91.40% 

93.02%, 

Al-Adhaileh  

[22] 
ADNI (1279) MRI 

AlexNet 

ResNet50 
3-way (CN/MCI/AD) 

94.53% 

58.07% 

Helaly et al. 

[23] 

ADNI (48000 

after DA) 
MRI 

2D CNN 

3D CNN 

Fine-tuned VGG-

19 

4-way 

(CN/EMCI/LMCI/AD) 

93.61% 

95.17% 

97.0% 

Savaş  [24] ADNI (2182) MRI 

EfficientNet-B0 

EfficientNet-B2 

EfficientNet-B3 

3-way (CN/MCI/AD) 

92.98% 

94.42%, 

97.28% 

Antony et al. ADNI (780) MRI Random forest 2-way (AD/CN) 68.0% 
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Author(s) 
Dataset & Image 

count 
Modality Classifier(s) Classification Accuracy 

[25] VGG-16 

VGG-19 

81.0% 

84.0% 

Raza et al. [26] 
ADNI (5016 after 

DA) 
MRI CNN from scratch 4-way (CN/MCI/LMCI/AD) 97.84% 

Hazarika et al. 

[27] 

ADNI (11000 

after DA) 
MRI 

Hybrid model 

(LeNet + AlexNet) 
3-way (CN/MCI/AD) 93.58% 

Mujahid et al. 

[28] 

ADNI (12,846 

using ADASYN) 
MRI Ensemble model 4-way (CN/EMCI/MCI/AD) 

97.35% (VGG-

16 

+EfficientNet-

B2) 

Fathi et al. [29] ADNI (14,241) MRI 
Ensemble Model 

using WPBEM 

3-way (NC/MCI/AD) 

4-way 

(NC/EMCI/LMCI/AD) 

93.92% 

93.88% 

DA- Data Augmentation, ADASYN- Adaptive synthetic technique, weighted probability-based ensemble method (WPBEM) 

 

Fig. 1. Workflow of the proposed model 

Table 2. Demographic Data 

Alzheimer Stages CN EMCI MCI LMCI AD 

Count 128 124 131 119 106 

Male/female 57/71 59/65 63/68 64/55 49/57 

Age (mean ± STD) 76.78±0.48 75.84±0.86 75.81±0.79 76.89±1.21 76.21±0.90 

Total Image Scans 1261 1184 1527 1098 1648 

 

3.1.2. Data Preprocessing 

Accurate data input is crucial for learning-based 

technologies to provide reliable predictions. Therefore, data 

preprocessing that enhances image contrast and pixel 

intensity is a critical stage in improving the effectiveness of 

these models. In the initial data preprocessing phase, we 

transformed the images from NIFTI to PNG format. 

However, the images obtained were in single-channel 

format and different in dimensions, which is unsuitable for 

deep learning models. To overcome this issue, we converted 

the images from single-channel to 3-channel format (RGB), 

which is necessary for all deep learning models. 
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We noticed that the dataset we collected had a significant 

imbalance in the number of instances across different 

classes. We implemented two resampling methods to 

address this issue: oversampling and undersampling. In the 

oversampling approach, we duplicated instances from 

underrepresented classes, namely, CN, EMCI, and LMCI. 

Conversely, in the undersampling approach, we removed 

instances from overrepresented classes, namely, AD and 

MCI. After applying these resampling methods, we ensured 

that all the AD classes contained 1500 MR images, which 

led to an expanded dataset of 7500 images. 

The MRI scans were subjected to spatial normalization to 

the Montreal Neurological Institute (MNI) space. This was 

achieved using Statistical Parametric Mapping (SPM12) 

software (available at HTTP://WWW.FIL.ION.UCL.AC. 

UK/SPM/) and the Diffeomorphic Anatomical Registration 

Exponentiated Lie Algebra (DARTEL) registration process. 

The intensity values of the MRI scans were adjusted to fall 

within the range of [0, 1] through normalization. A 

denoising process was also performed on the images using 

a nonlocal means algorithm. This step introduces image 

blurring to lessen the impact of noise in the images. 

3.1.3. Data Augmentation 

Deep neural networks (DNNs) enhance model performance, 

especially when trained with larger datasets. Data 

augmentation is a technique that involves generating more 

images to expand the original dataset. Introducing 

modifications to the images boosts a model's ability to 

classify more accurately. As a result, the model can become 

more generalized and less prone to overfitting. 

A large dataset is crucial for training deep neural networks 

effectively. However, when the dataset is small, such as in 

the case of MRI, data augmentation techniques can 

significantly diversify the data for neural network training. 

In our study, we compiled a dataset of images from 608 

patients. Unfortunately, the dataset was insufficient for 

practical deep neural network training and optimal 

performance. To address this issue, we used image rotation 

(90°, 180°, and 270°), flipping/reflection (both horizontal 

and vertical flipping), and zooming in and out techniques to 

expand the dataset. As a result of implementing these 

techniques, we enlarged the dataset from 7500 to 39,980 

images. Figure 3 displays the outcomes of the data 

augmentation procedure. The dataset was then split into 

three sets for training (80%), validation (10%), and testing 

(10%). Table 3 provides a summary of the dataset used in 

our study. 

3.1.4. Cross-Validation 

Cross-validation is a popular method for evaluating the 

effectiveness of deep learning models. It involves 

partitioning the available data into several subsets, typically 

two or more, with one subset chosen for model training and 

the other for performance assessment. K-fold cross-

validation is one of the most commonly used 

 

Fig. 2. Stages of AD: (a) CN, (b) EMCI, (c) MCI, (d) 

LMCI, and (d) AD 

 

Fig. 3. Results of data augmentation 

Table 3. Description of the training, validation, and test 

datasets 

Class Label CN EMCI MCI LMCI AD Total 

Image count 7886 8058 8031 7894 8111 39980 

Train set 6308 6446 6425 6316 6489 31984 

Validation 

set 
789 806 803 789 811 3998 

Test set 789 806 803 789 811 3998 

methods in deep learning [30]. It partitions the dataset into 

k subsets, or folds, of approximately the same size. The 

model undergoes training k times, with each fold acting as 

the validation set and the remaining folds serving as the 

training set. Finally, the results from these k-fold models are 

averaged to derive a final estimate of the model's 

performance. 

3.2. Network Architecture 

3.2.1. Convolution Neural Networks (CNNs) 

Our work uses deep neural network models constructed 

using the CNN algorithm to examine the data effectively. 

Unlike traditional machine learning techniques, which 

involve three fundamental steps, CNNs combine all these 

stages, and the feature extraction process can be automated. 

However, in real-world scenarios, gathering sufficient data 

for training CNN models can be challenging and can lead to 

difficulties such as overfitting and convergence during deep 

CNN training. In such cases, researchers often opt for the 

transfer learning method, which utilizes pretrained models 

and their weights to mitigate data scarcity and address 

potential training challenges effectively [31]. An example of 

a CNN structure is shown in Figure 4. Three layers are used: 

the convolution layer performs feature extraction, the 

pooling layer reduces dimensionality, and the fully 

connected layer performs the classification task with two-

dimensional matrices from the previous layers. 

In a convolutional neural network, the convolutional layer 
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Rotation 
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applies a learnable filter (kernel) to an input image, which 

allows the network to identify and extract pertinent features 

from the provided data. The following is a breakdown of the 

dimensions involved: 

Input image: H × W × C, where H, W, and C denote the 

height, width, and number of channels, respectively. 

Filter (Kernel): FH × FW × FC, where FH, FW, and FC 

denote the height, width, and number of channels of the 

filter, respectively. 

Output activation map: AH × AW, where AH is the 

activation height and AW is the activation width. The 

dimensions of the output activation map are dictated by the 

convolution operation and chosen hyperparameters, 

including the stride and padding. 

We slide a filter across the input image to obtain the output 

activation map. At each position between the filter and the 

corresponding input image patch, we calculate the 

elementwise dot product. The resulting product is then 

passed through an activation function. This process occurs 

across the entire input image, resulting in the output 

activation map. The stride and padding parameters affect the 

dimensions of the output activation map. 

The stride parameter dictates the pixel displacement that 

occurs as the filter moves. Padding involves adding extra 

pixels around the input image, maintaining the spatial 

properties of the resulting feature maps. By adjusting these 

parameters, we can control the spatial size of the output 

activation map. 

Fig. 4. Structure of a CNN 

The following formulas can be used to determine the spatial 

size of the output activation map: 

𝐴𝐻 =  (𝐻 −  𝐹𝐻 +  2 ∗  𝑝𝑎𝑑𝑑𝑖𝑛𝑔) / 𝑠𝑡𝑟𝑖𝑑𝑒 +  1 (1) 

𝐴𝑊 =  (𝑊 −  𝐹𝑊 +  2 ∗  𝑝𝑎𝑑𝑑𝑖𝑛𝑔) / 𝑠𝑡𝑟𝑖𝑑𝑒 +  1

 (2) 

Activation functions are an essential component of neural 

networks. They introduce nonlinearity to the model by 

nonlinearly modifying the output of neurons. The 

nonlinearity added by activation functions is crucial because 

it empowers the network to learn complex relationships 

between inputs and outputs. The network would remain 

limited to linear models without these functions, even with 

multiple layers. Therefore, activation functions play a 

crucial role in the success of neural networks, enabling them 

to model complex relationships and achieve high accuracy. 

An activation function may include one or more of the 

following: 

ReLU (rectified linear unit):  𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) 

 (3) 

Sigmoid: 𝑓(𝑥)  =  1 / (1 +  𝑒𝑥𝑝(−𝑥))  

 (4) 

Tanh (Hyperbolic Tangent): 

𝑓(𝑥)  =  (𝑒𝑥𝑝(𝑥)  −  𝑒𝑥𝑝(−𝑥)) / (𝑒𝑥𝑝(𝑥)  +  𝑒𝑥𝑝(−𝑥))

 (5) 

Leaky ReLU: 𝑓(𝑥)  =  𝑚𝑎𝑥(𝑎𝑥, 𝑥), where 'a' is a slight 

positive slope for negative inputs.  (6) 

The proposed multiclassifier uses the SoftMax function. 

Based on the likelihood specified by Eq. (7), the data points 

are assigned to various classes. 

𝑓(𝑣𝑖)  =  
𝑒𝑣𝑖

∑ 𝑒
𝑣𝑗𝐾

𝑗=1

 For i=1, 2……, K and v= [v1, v2…vk]

 (7) 

where v denotes the input vector, ev
i is the standard 

exponential function for the input vector, K denotes the 

number of classes in the multiclass classifier, and ev
j is the 

standard exponential function for the output vector. 

Overfitting occurs when a model learns to perform 

exceptionally well on the training data but fails to generalize 

to new, unseen data. To address this issue, a regularization 

technique called dropout is used. Dropout randomly 

deactivates or drops out some neurons during each training 

cycle, ensuring that the network does not rely heavily on 

specific neurons. This forces the network to learn more 

diverse and robust features that are not tied to the presence 

of particular neurons. By doing so, the network becomes 

more capable of generalizing to new inputs and improving 

its overall performance. 

Deep learning models are often designed for specific tasks, 

but their true potential lies in their ability to handle various 

problems. Over time, there has been a shift toward using 

pretrained models as a starting point for new investigations. 

Recently, the use of these established models has increased. 

These approaches involve using the learned weights from 

pretrained models or adding additional layers to these 

models via transfer learning methods. Our research uses 

pretrained CNN models, namely, Inception V3, ResNet-50, 

and VGG-19. 

The process of hyperparameter tuning in deep learning often 

involves a combination of trial and error, domain 

knowledge, and insights gained from previous studies. No 

single approach fits all the scenarios, and finding the correct 

hyperparameter values usually requires experience and 

experimentation. In this study, hyperparameters were 

established through an iterative process involving multiple 

alternatives to identify optimal choices that enhance 
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performance without altering the core structure of the 

pretrained models. 

To adapt the final layers of the pretrained models for the 

classification of images as AD, CN, EMCI, MCI, or LMCI, 

the output data were gradually reduced, and additional dense 

layers were added to the network structure, with sizes of 512 

and 3. To prevent overfitting, we incorporated dropout 

layers between these layers, with a dropout rate of 0.5 

chosen to ensure stable outcomes. We selected the 

stochastic gradient descent method (SGDM) as an 

optimizer, with the default learning rate set at 1e-4. For the 

loss parameter, categorical cross-entropy was adopted, and 

accuracy was designated as the chosen metric. 

The models underwent training processes lasting for a 

standard 100 epochs. This specific number of epochs was 

established through repeated experimentation to optimize 

the hyperparameters before encountering a situation of 

overfitting. The framework for model training and testing is 

outlined in Figure 5, and the training choices and 

hyperparameters utilized for training the various network 

architectures are summarized in Table 4. 

 

Fig. 5. Framework for model training, testing, and comparison 

Table 4. Hyperparameters adopted 

Parameter Value 

Optimization Algorithm SGDM 

Momentum 0.9 

Loss Function 
Categorical Cross 

Entropy 

Initial Learning Rate 1e-4 

Maximum Number of 

Epochs 
100 

Dropout Rate 0.5 

Two platforms were used to utilize deep learning models for 

analyzing MRI data: Kaggle and Google Colaboratory 

(Colab). Kaggle is a collaborative platform that supports 

data science problem solving, while Colab is a platform that 

facilitates writing and executing ML and data analytics tasks 

using resources such as GPUs. The Keras deep learning 

library module, which was implemented with TensorFlow, 

was used to train the DL models. After the model operations, 

graphics and weights were systematically documented, and 

the models' accuracy and loss parameters were visually 

depicted. Confusion matrices were generated to assess 

model performance. 

3.2.2. VGG-19 

The VGG-19 model is a framework that uses a deep CNN 

architecture. It was first introduced in 2014 in "Very Deep 

Convolutional Networks for Large-Scale Image 

Recognition" by Karen Simonyan and Andrew Zisserman 

[32]. Figure 6 shows the architecture of VGG-19. 

Key characteristics of the VGG-19 architecture 

Depth: VGG-19 is characterized by its depth. It 

encompasses nineteen layers, sixteen of which are 

convolutional and three of which are fully connected. This 

approach provides the capacity to comprehend intricate 

patterns and features present within images. 

Convolutional Layers: VGG-19 uses a downsampling 

scheme that consists of a max pooling layer that comes after 

each convolutional layer. Using small 3 × 3 filters in the 

convolutional layers combined with max pooling leads to a 

consistent receptive field size and a more accessible 

architecture. 

Filter size: All the convolutional layers in VGG-19 use 3 × 

3 filters, which helps to maintain a compact architecture. 

This results in fewer parameters than larger filters, making 

the model computationally efficient. 

Fully Connected Layers: VGG-19 comprises three fully 

connected layers after the convolutional and pooling layers, 
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culminating in a softmax layer for classification. 

VGG-19 is frequently employed as a pretrained model for 

TL approaches due to its performance in image recognition 

tasks. It can be fine-tuned on specific datasets or used to 

extract distinctive features by eliminating terminal layers 

and adding new features tailored to a particular task. 

3.2.3. ResNet-50 

ResNet-50 belongs to the ResNet family of CNNs. It was 

developed by Kaiming He et al. [33] in 2016 and emerged 

as the winner of the ILSVRC 2015, with an error rate of 

3.6%. ResNet-50 was created by Microsoft Research 2015 

to address the challenge of vanishing gradients in neural 

networks with a significant depth. The key features of 

ResNet-50 are its depth and the use of residual blocks, 

which enable the training of networks with greater depths 

without suffering from degradation. Figure 7 depicts the 

structural design of ResNet-50. 

Key features of ResNet-50: 

Identity Shortcut Connections (Skip Connections): ResNet-

50 represents the novel notion of incorporating identity 

shortcut connections or skip connections. Instead of the 

conventional approach where layers stack sequentially, the 

input to a layer is fused with the output of a later layer in a 

residual block. Identity mapping alleviates the challenge of 

the vanishing gradient problem, consequently facilitating 

the training of networks with significantly deep 

architectures. 

Bottleneck Architecture: Each residual block in ResNet-50 

employs a bottleneck architecture. Initially, the network 

consists of a 1 × 1 convolutional layer, followed by a 3 × 3 

convolutional layer and a 1 × 1 convolutional layer. The 

computational complexity is minimized by utilizing 1 × 1 

convolutions to reduce the number of channels, thus 

improving the efficiency. 

Skip Connections: Skip connections provide a path for the 

gradient to flow more directly during backpropagation. If a 

residual block learns an identity function, the gradients can 

flow unimpeded through the shortcut connections, making 

training more accessible. 

Pooling Layers: Average pooling in ResNet-50 before the 

final fully connected layer diminishes the spatial dimensions 

and quantity of parameters in the model, thereby 

augmenting the model's ability to generalize. 

Global average pooling: ResNet-50 uses global average 

pooling as a replacement for the fully connected layers for 

the ultimate classification process, thereby reducing 

overfitting and parameter count in the model. 

Pretrained models, such as ResNet-50, are widely used for 

transfer learning. These models are trained on extensive 

image datasets such as ImageNet. During transfer learning, 

the lower layers of the pretrained model are utilized to 

extract features, while the upper layers are modified 

according to specific tasks. ResNet-50 was a significant 

breakthrough in deep learning. Its depth and residual blocks 

enabled the creation of even deeper architectures. The 

ResNet model proved that expanding the neural network 

depth can lead to poorer performance. Instead, this approach 

can enhance results when appropriately designed. 

3.2.4. Inception v3 

Inception v3 [34] is a cutting-edge CNN framework created 

by Google researchers that significantly improves the 

performance and effectiveness of DL models for image 

recognition tasks. Building upon the existing Inception 

models, Inception v3 enhances efficiency and delivers 

superior results. The architecture of Inception v3 is 

presented in Figure 8. 

Key features of Inception-v3: 

Multiple Pathways (Parallel Convolutions): Inception V3 

employs a unique structure called "Inception modules." 

These modules consist of multiple convolutional layers with 

diverse filter sizes (1 × 1, 3 × 3, and 5 × 5) and max pooling 

layers. These pathways run in parallel, capturing features at 

multiple spatial scales and abstraction levels. The idea is to 

allow the network to acquire fine-grained and high-level 

features simultaneously. 

1×1 Convolutions: Inception V3 heavily uses 1×1 

convolutions to diminish the dimensionality of the source 

feature maps. This approach mitigates the computational 

complexity and allows for efficient parallel processing. 

Bottleneck Layers: To further improve efficiency, Inception 

V3 often incorporates bottleneck layers, which use 1×1 

convolutions to diminish the number of input channels 

before larger filters are applied. The computational load is 

reduced without sacrificing the model's capacity to identify 

intricate features. 

Auxiliary Classifiers: Training is carried out with auxiliary 

classifiers at intermediate layers in Inception V3, which 

serve as extra branches to the main classification layer. They 

help to combat the vanishing gradient problem during 

training, ultimately improving convergence and gradient 

flow. 

Global average pooling: Inception V3 uses global average 

pooling in place of completely connected layers at the end. 

This technique replaces the traditional flattening and fully 

connected layers with a single average pooling layer that 

generates predictions directly from spatial feature maps. 

Regularization Techniques: Inception V3 incorporates 

batch normalization and dropout techniques to enhance 

generalization and reduce overfitting. 

Inception V3 is a popular pretrained model for transfer 
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learning. It captures generic image features in its lower 

layers, which remain unchanged, while the top layers are 

customized for specific tasks. Its outstanding performance 

and efficient use of resources have made it a standard 

benchmark in image recognition competitions. 

 

Fig. 6. VGG-19 architecture 

 

Fig. 7. ResNet-50 architecture 

 

Fig. 8. Inception V3 architecture 

3.3. Transfer Learning Framework 

Transfer learning is a machine learning technique that 

leverages knowledge acquired from one task to enhance the 

performance of another related but nonidentical task. In 

mathematical terms, transfer learning can be defined as 

follows. 

Domain: A domain 

 𝔇 =  {𝑋, (𝑋)}      (8) 

is delineated by two constituents: 

• A feature space 𝑋 

• A marginal probability distribution 𝛲(𝑋) where 𝑋 = {𝑥₁, 

𝑥₂, 𝑥₃, …, 𝑥n} ∈ 𝑋 

If two domains exhibit dissimilarity, it follows that they 

possess disparate feature spaces (𝑋t ≠ 𝑋s) or separate 

marginal distributions ((𝑋t) ≠ (𝑋s)). 

Task: Two components make up a task 𝒯 = {𝑌, (. )}, given 

a specific domain D: 

• Y denotes the label space 

• A predictive function, 𝑓(.) can be learned from training 

data, even though it is not observed 

{(𝑥ᵢ, 𝑦ᵢ) | i ∈ {1, 2, 3… N}, where 𝑥ᵢ ∈ 𝑋 and 𝑦ᵢ ∈ 𝑌}. 

Given that (𝑥ᵢ) can alternatively be expressed as p(𝑦ᵢ|𝑥ᵢ) 

from a probabilistic perspective, we can reformulate task 𝒯 

as 

𝒯 =  {𝑌, (𝑌|𝑋)}     (9) 

If two tasks exhibit dissimilarity, then possess disparate 

label spaces (𝑌t ≠ 𝑌s) or dissimilar conditional probability 

distributions (P(𝑌t|𝑋t) ≠ P(𝑌s|𝑋s)). 

The objective of transfer learning is to enhance the learning 

of a conditional probability distribution denoted by (𝑌t|𝑋t) 

by leveraging the knowledge obtained from a source domain 

𝔇s and a matching learning task 𝒯s. This knowledge is then 

applied to a target domain 𝔇t and learning task 𝒯t such that 

 𝔇𝑡 ≠  𝔇𝑠 𝑜𝑟 𝒯𝑡 ≠  𝒯𝑠    (10)  

3.4. Performance analysis 

Evaluation metrics refer to the numerical measures utilized 

to assess the effectiveness of a model in addressing a 

specific task. Our study used various evaluation metrics: 

accuracy, precision, error, false positivity rate, kappa, 

sensitivity/recall, specificity, and F-measure. The confusion 

matrix complements these metrics, as it visually represents 

the classification model's performance across various 

classes. The model is organized with actual class labels 

forming the rows and predicted class labels forming the 

columns. Table 5 shows this information. 

Table 5. Confusion matrix 

 
Predicted Positive 

(P) 

Predicted Negative 

(N) 

Actual Positive 

(P) 
True Positive (TP) 

False Negative 

(FN) 

Actual Negative 

(N) 
False Positive (FP) True Negative (TN) 

Table Description 

Positive (P): indicates that the patient suffers from dementia 

Negative (N): indicates that the patient has a normal 

cognitive status 

True Positive (TP): Correctly predicted positive instances. 

True Negative (TN): Correctly predicted negative instances. 

False Positive (FP): Incorrectly predicted positive instances 

(Type I error). 

False Negative (FN): Incorrectly predicted negative 

instances (Type II error). 
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Accuracy: Accuracy measures the proportion of correctly 

predicted instances among all instances. It is calculated as 

follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (11) 

Accuracy Error: The accuracy error, often called the 

misclassification error, calculates the proportion of 

instances a machine learning model has about the number of 

cases incorrectly classified, calculated as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐸𝑟𝑟𝑜𝑟 =  1 −  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  

 (12) 

Precision: The precision of a prediction is the ratio of true 

positives to all positive predictions. It is calculated as 

follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (13) 

Sensitivity (recall or true positive rate): Sensitivity 

measures how well positive instances are predicted from 

actual instances. It is calculated as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙)  =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =

 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)   

  (14) 

Specificity: Specificity, also referred to as the selectivity of 

a network, is a measure that indicates the ratio of accurately 

detected negative instances to those that are negative. The 

true negative rate represents this parameter and can be 

calculated using the following formula: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)

   (15) 

False positive rate: The false positive rate, or fall-out rate, 

pertains to the frequency of positive predictions generated 

by a network that is not correct. This is calculated as the 

ratio of incorrectly predicted positives to negatives 

observed. This metric helps assess the model's tendency to 

incorrectly classify negative instances as positive. 

𝐹𝑃𝑅 (1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)  =  𝐹𝑃/(𝑇𝑁 + 𝐹𝑃)  (16) 

F-Measure (F1-Score): The F1-Measure is the mean of 

precision and recall, weighted harmonically. It is calculated 

as 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  (2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙)/

(𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)    

  (17) 

The F1 score is a valuable metric for evaluating the accuracy 

of a classifier's predictions in machine learning, especially 

when there is an imbalance in the class distribution. It 

considers both false positives and false negatives equally. 

Kappa: The kappa coefficient, or Cohen's kappa score, is a 

valuable metric in machine learning evaluation considering 

the possibility of random agreement. Moreover, this 

approach is beneficial in scenarios with imbalanced datasets 

or disparate class probabilities, providing insights into the 

performance of classification models beyond simple 

accuracy. The higher the kappa coefficient is, the more 

consistent the model's predictions are with the results. 

𝐾𝑎𝑝𝑝𝑎 =  (2 ∗ (𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑁 ∗ 𝐹𝑃))/((𝑇𝑃 + 𝐹𝑃) ∗

(𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁) ∗ (𝐹𝑁 + 𝑇𝑁))   

 (18) 

4. Experimental Setup and Results 

Training a CNN from scratch can be challenging for medical 

image analysis tasks due to the unavailability of large-scale 

datasets. To overcome this, a common approach is to use 

CNNs that have been pretrained on a vast dataset, such as 

ImageNet. Transfer learning adapts this pretrained 

knowledge to a new task, significantly accelerating the 

learning process. In our work, we improved upon our 

model's ability to learn using a fine-tuning method. We first 

trained a deep neural network (CNN) on a large dataset of 

images (ImageNet) and then fine-tuned this pretrained CNN 

on a different dataset (ADNI) for a specific task. This 

approach involves two datasets: the "source" dataset 

(ImageNet) and the "target" dataset (ADNI). We utilized 

pretrained deep CNN models on the given dataset. The input 

images were processed through multiple convolutional 

layers acting as feature extractors. The convolutional layers 

apply kernels or convolutional matrices to the input, 

extracting relevant features. This process updates the layer 

weights and stores them in a vector. Subsequently, the 

weights were utilized by fully connected and soft-max 

layers to classify the images into distinct AD classes (CN, 

EMCI, MCI, LMCI, and AD). 

For our study, pretrained CNNs, such as VGG-19, ResNet-

50, and Inception V3, were employed to classify 

Alzheimer's disease into five categories. We used the 

ImageNet dataset as the pretraining dataset for all these 

models. We employed transfer learning techniques to 

distinguish between the AD classes and fine-tuned these 

pretrained networks on the target dataset (ADNI). Table 6 

details the pretrained CNN models we used in our study. 

We adjusted the size of the input images to use different 

image classification models. Specifically, we used 299 × 

299 pixels for the inception V3 model and 224 × 224 pixels 

for the VGG-19 and ResNet-50 models. We kept the 

parameters identical during the training process for all the 

experiments. We split the dataset into three parts: training 

(80%), validation (10%), and testing (10%). We ran five 

experiments for each model, both on the original and 

augmented datasets. We used various data augmentation 

methods to increase the dataset size, which resulted in 

different sample representations. 

Since training CNNs from scratch is challenging and 

requires large-scale datasets for optimal prediction via 

transfer learning fine-tuning, we augmented the dataset to 
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39,980 images. After augmentation, we trained deep 

convolutional neural networks using the same data split and 

other parameters. We focused on 608 participants from the 

ADNI dataset. Patients were categorized into five classes: 

AD, EMCI, MCI, LMCI, and CN. Our primary goal was to 

make predictions and establish the effectiveness of the fine-

tuned networks as a benchmark. We tested the fine-tuned 

networks on the ADNI dataset to evaluate their 

performance. 

4.1. Training Progress 

We used a specific training dataset, and predetermined 

settings were used to train three network architectures: 

VGG-19, ResNet-50, and Inception V3. The objective was 

to compare the performance of these methods in terms of 

accuracy and other relevant metrics. The training process 

involved fine-tuning the pretrained networks with the same 

training parameters for a fixed number of epochs. Figure 9 

visually displays the improvement in the performance of the 

network architectures during the training process. This helps 

us understand how well each architecture optimized and 

enhanced its performance with increasing training epochs. 

According to the plot, VGG-19 and ResNet-50 performed 

better in terms of optimization than Inception-V3. 

Additionally, ResNet-50 exhibited better optimization 

performance than VGG-19. This is indicated by the 

accuracy or performance metrics on the vertical axis 

increasing more steeply for VGG-19 and ResNet-50 than for 

Inception V3, suggesting faster and more efficient learning. 

Moreover, the plot shows that Inception V3 required more 

than 50 epochs to achieve optimal performance. The 

performance of the Inception-v3 model continued to 

improve even after 50 training epochs, indicating that 

additional epochs may be needed to achieve its optimal 

accuracy. More complex AI models, such as Inception V3, 

typically require more training time to reach their full 

potential. Thus, it is crucial to adjust the training duration 

based on the model's complexity and performance during 

the training process. 

Table 6. Details of the pretrained CNN architectures 

Model 

Depth  

(in 

layers) 

Input 

dimensions 

Parameter 

Count  

(in 

millions) 

Size  

(in MB) 

VGG-19 19 224 x 224 144 549 MB 

ResNet-

50 
50 224 x 224 25.6 98 MB 

Inception 

V3 
42 299 x 299 27 92 MB 

 

(a) Accuracy      (b) Loss 

Fig. 9. Accuracy and loss across different epochs 

 

4.2. Evaluation of the Proposed Model 

4.2.1. Performance analysis of the pretrained 

networks for AD classification 

4.2.1.1. Performance at baseline without data 

augmentation 

We assessed the performance of each model based on the 

original dataset without any data augmentation techniques. 

We conducted various tests to measure the accuracy, 

precision, recall, specificity, error rate, false positive rate, 

F1 score, and kappa coefficient of several pretrained 

networks on the original dataset. The results of our analysis 

are presented in Table 7, where ResNet-50 achieved the 

highest accuracy (93.39%), followed by Inception-V3 
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(93.42%) and VGG-19 (92.19%). It is worth noting that 

ResNet-50 uses fewer parameters than the VGG-19 and 

Inception V3 models. 

4.2.1.2. Augmented data for enhanced performance 

In our research, we faced the challenge of limited data, 

which could have negatively impacted our models' 

performance and generalization accuracy. However, we 

implemented data augmentation methods to overcome this 

limitation. Before training, we applied rotation, zooming, 

and horizontal and vertical flipping to the original images to 

expand our dataset. The performance of our models was 

then tested using the augmented data. The results, which are 

presented in Table 8, are impressive. Among the pretrained 

networks, ResNet-50 was the most effective, achieving an 

average accuracy of 98.7%, outperforming VGG-19 

(97.16%) and Inception V3 (97.54%). Additionally, 

ResNet-50 demonstrated superior performance in several 

other key metrics, including precision, recall, specificity, 

error rate, false positive rate, F1 score, and kappa. Overall, 

our study highlights the effectiveness of data augmentation 

methods and the superiority of ResNet-50 in producing 

consistently better results than the other two pretrained 

networks. 

4.2.2. Confusion Matrices 

The confusion matrices for three network models, VGG-19, 

ResNet-50, and Inception V3, are shown in Figures 10-12, 

with and without data augmentation. 

The VGG-19 model had 81% accuracy in predicting cases 

before implementing data augmentation. The accuracy rate 

was similar for the CN, EMCI, and AD classes. However, 

the accuracy rates were slightly lower at 80% and 79% for 

the MCI and LMCI classes, respectively. Following data 

augmentation, the accuracy rates for the CN class, EMCI 

and MCI classes, and LMCI and AD classes improved to 

97%, 93%, 92%, and 90%, respectively. These results 

indicate a significant improvement in the model's prediction 

capabilities. 

The ResNet-50 model was able to accurately predict 84% of 

the CN and EMCI patients, 83% of the MCI and AD 

patients, and 82% of the LMCI patients using the original 

dataset. However, upon using the augmented dataset, the 

model's performance improved significantly, achieving 

accuracy rates of 99% for the CN and EMCI classes, 98% 

for the MCI and LMCI classes, and 91% for the AD class. 

Moreover, the Inception-v3 model also delivered 

remarkable results. Initially, it accurately predicted 82% of 

the CN, EMCI, and AD subjects; 80% of the MCI subjects; 

and 79% of the LMCI subjects in the original dataset. 

However, after data augmentation, the model's performance 

improved even further, with accuracy rates of 96% for the 

CN, EMCI, and MCI classes; 92% for the LMCI class; and 

90% for the AD class. 

Table 7. Overall performance of the pretrained networks 

on the original dataset 

Metric VGG-19 
ResNet-

50 

Inception 

V3 

Accuracy 92.19 93.39 92.42 

Accuracy Error 7.81 6.61 7.58 

Sensitivity/Recall 80.47 83.47 81.05 

Specificity 95.12 95.87 95.26 

Precision 80.48 83.47 81.06 

False Positive Rate 4.88 4.13 4.74 

F1-Score 80.47 83.47 81.04 

Kappa 75.58 79.33 76.30 

Table 8. Overall performance of the pretrained networks 

on the augmented dataset 

Metric VGG-19 ResNet-50 
Inception 

V3 

Accuracy 97.16 98.70 97.54 

Accuracy Error 2.84 1.30 2.46 

Sensitivity/Recall 92.90 96.90 93.80 

Specificity 98.23 99.15 98.48 

Precision 92.96 96.65 93.93 

False Positive Rate 1.78 0.85 1.53 

F1-Score 92.89 96.73 93.84 

Kappa 91.12 95.92 92.31 
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(a) (b) 

Fig. 10. Confusion matrix results for VGG-19: (a) Original dataset and (b) Augmented dataset 

  

(a) (b) 

Fig. 11. Results of the ResNet-50 confusion matrix for the (a) original dataset and (b) augmented dataset 

  

(a) (b) 

Fig. 12. Confusion matrix results for Inception-v3: (a) original dataset and (b) augmented dataset 

Upon analyzing the confusion matrices, it is evident that 

data augmentation generally improves the accuracy of all 

three models (VGG-19, ResNet-50, and Inception V3) 

during the transfer learning process. 

 

 

 

4.2.3. Classwise performance of individual fine-tuned 

deep learning models 

Confusion matrices were generated for all the pretrained 

models during the final testing phase. This helped us 

analyze each model's performance using images from each 

class. We computed the accuracy, error rate, recall, 

specificity, precision, false positive rate, and F1-score for 

each model in each class. The results of these parameters are 

presented in Table 9 for the original dataset and Table 10 for 
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the augmented dataset. 

Table 9. Class-based performance metrics for the original dataset 

Model Predicted Class Accuracy Precision Recall Specificity F1-score 
Error 

Rate 
False Positive Rate 

VGG-19 

CN 92.67 81.47 81.37 95.45 81.42 7.33 4.55 

EMCI 92.27 80.87 80.77 95.18 80.82 7.73 4.82 

MCI 92.05 79.98 80.57 94.93 80.27 7.95 5.07 

LMCI 91.90 78.60 80.99 94.58 79.78 8.10 5.42 

AD 92.05 81.48 78.67 95.45 80.05 7.95 4.55 

ResNet-50 

CN 93.65 84.43 83.14 96.23 83.78 6.35 3.77 

EMCI 93.65 83.91 84.74 95.90 84.32 6.35 4.10 

MCI 93.32 83.17 83.69 95.74 83.43 6.68 4.26 

LMCI 93.20 82.35 83.40 95.61 82.87 6.80 4.39 

AD 93.12 83.50 82.37 95.86 82.93 6.88 4.14 

Inception 

V3 

CN 92.95 82.29 81.88 95.67 82.08 7.05 4.33 

EMCI 92.57 81.61 81.51 95.36 81.56 7.43 4.64 

MCI 92.20 80.12 81.32 94.93 80.72 7.80 5.07 

LMCI 92.15 79.28 81.50 94.76 80.38 7.85 5.24 

AD 92.22 81.97 79.04 95.58 80.48 7.78 4.42 

Note: Bold-marked entries represent the highest values 

Table 10. Class-based performance metrics for the augmented dataset 

Model 
Predicted 

Class 

Accurac

y 
Precision Recall 

Specificit

y 
F1-score 

Error 

Rate 

False Positive 

Rate 

VGG-19 

CN 97.35 90.26 97.25 97.38 93.62 2.65 2.63 

EMCI 97.55 94.43 93.25 98.63 93.84 2.45 1.38 

MCI 97.45 94.63 92.5 98.69 93.55 2.55 1.31 

LMCI 97.25 94.34 91.75 98.63 93.03 2.75 1.38 

AD 96.2 91.12 89.75 97.81 90.43 3.8 2.19 

ResNet-50 

CN 98.65 94.94 98.5 98.69 96.69 1.35 1.31 

EMCI 99.15 96.59 99.25 99.13 97.9 0.85 0.88 

MCI 98.95 96.56 98.25 99.13 97.4 1.05 0.88 

LMCI 98.9 96.78 97.75 99.19 97.26 1.1 0.81 

AD 97.85 98.37 90.75 99.63 94.41 2.15 0.38 

Inception 

V3 

CN 97.15 90.74 95.5 97.56 96.69 2.85 2.44 

EMCI 98.25 95.29 96 98.81 97.9 1.75 1.19 

MCI 98.4 96.23 95.75 99.06 97.4 1.6 0.94 

LMCI 97.55 95.35 92.25 98.88 97.26 2.45 1.13 

AD 96.35 92.03 89.5 98.06 94.41 3.65 1.94 
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Note: Bold text represents the highest values 

The top-performing models for all the classes were 

identified based on the confusion matrix values. 

Considering the accuracy parameter, the ResNet-50 model 

produced the highest results for all the classes, with scores 

of98.65% for CN, 99.15% for EMCI, 98.95% for MCI, 

98.9% for LMCI, and 97.85% for AD. Inception V3 and 

VGG-19 followed in second and third place, respectively. 

The ResNet-50 model was applied in terms of precision, 

achieving first place for all classes, with scores of 94.94% 

for the CN, 96.59% for the EMCI, 96.56% for the MCI, 

96.78% for the LMCI, and 98.37% for the AD. Inception V3 

and VGG-19 came in second and third place, respectively. 

Inception V3 ranked second, with scores of 90.74% for the 

CN, 95.29% for the EMCI, 96.23% for the MCI, 95.35% for 

the LMCI, and 92.03% for the AD. VGG-19 ranked third, 

with scores of 90.26% for the CN, 94.43% for the EMCI, 

94.63% for the MCI, 94.34% for the LMCI, and 91.12% for 

the AD. 

Finally, in terms of sensitivity/recall, the ResNet-50 model 

was the top-performing model for all the classes, with scores 

of 98.5% for CN, 99.25% for EMCI, 98.25% for MCI, 

97.75% for LMCI, and 90.75% for AD. Inception V3 and 

VGG-19 ranked second and third, respectively. Inception 

V3 ranked second, with 95.5% for the CN, 96% for the 

EMCI, 95.75% for the MCI, 92.25% for the LMCI, and 

89.5% for the AD. VGG-19 ranked third, with 97.25% for 

the CN, 93.25% for the EMCI, 92.5% for the MCI, 91.75% 

for the LMCI, and 89.75% for the AD. 

The models that exhibited the highest results for all the 

classes were identified based on the values in the confusion 

matrix. Considering the accuracy parameter, the ResNet-50 

model produced the highest results for all the classes (CN–

98.65%, EMCI–99.15%, MCI–98.95%, LMCI–98.9%, 

AD–97.85%), Inception V3 (CN–97.15%, EMCI–98.25%, 

MCI–98.4%, LMCI–97.55%, AD–96.35%), and VGG–19 

(CN–97.35%, EMCI–97.55%, MCI–97.45%, LMCI–

97.25%, AD–96.2%). 

Considering the precision parameter, the ResNet-50 model 

secured first place for all the classes (CN–94.94%, EMCI–

96.59%, MCI–96.56%, LMCI–96.78%, AD–98.37%). 

Inception V3 was the second most common (CN–90.74%, 

EMCI–95.29%, MCI–96.23%, LMCI–95.35%, AD–

92.03%), followed by VGG-19 (CN–90.26%, EMCI–

94.43%, MCI–94.63%, LMCI–94.34%, AD–91.12%). 

Finally, in terms of sensitivity/recall, ResNet-50 was the 

top-performing model for all the classes (CN–98.5%, 

EMCI–99.25%, MCI–98.25%, LMCI–97.75%, AD–

90.75%). Again, Inception V3 was the second most 

common form (CN–95.5%, EMCI–96%, MCI–95.75%, 

LMCI– 92.25%, AD–89.5%), followed by VGG-19 (CN–

97.25%, EMCI–93.25%, MCI–92.5%, LMCI–91.75%, 

AD– 89.75%). 

Based on our findings, the ResNet-50 model outperformed 

other pretrained models (VGG-19 and Inception V3) in 

analyzing brain MR images. Although there were slight 

variations in accuracy across the different categories, the 

overall difference between them was trivial. The ResNet-50 

model achieved the highest accuracy (99.25%) in 

classifying the "EMCI" category, indicating its exceptional 

ability to identify early signs of memory impairment. 

Additionally, the Inception-v3 model also produced 

promising results for specific categories. Therefore, using 

the ResNet-50 model directly or through transfer learning in 

future clinical studies is highly recommended and holds 

enormous potential for improved outcomes. 

5. Discussion 

Alzheimer's disease is a prevalent form of irreversible 

dementia that has a high mortality rate and ultimately leads 

to death. Detecting AD in its early stages can significantly 

improve patient survival and increase the effectiveness of 

drug interventions. Researchers have extensively researched 

Alzheimer's disease detection using several parameters and 

ADNI samples with one or more CNN architectures. To 

detect AD via a fine-tuned TL approach, we examined three 

deep neural network architectures (VGG-19, ResNet-50, 

and Inception V3) by applying the same parameters and 

using the same dataset samples from the ADNI database. 

Convolutional neural networks are robust tools for computer 

vision jobs, but training them from scratch can be difficult. 

Transfer learning leverages pretrained models for new data, 

significantly reducing training time while achieving 

superior results without overfitting. However, for optimal 

performance, fine-tuning via transfer learning necessitates 

extensive datasets. Gathering sufficient data in the relevant 

field is challenging, making data augmentation a valuable 

tool. To improve the performance and usability of the 

model, we utilized data augmentation methods to expand the 

dataset. 

Data augmentation addresses issues such as imbalanced 

classes and overfitting, improving the model's robustness 

and tuning capabilities. In this study, we augmented the 

original dataset to include 39,980 images and retrained the 

CNN using the same data split and parameters. To assess the 

performance of the proposed AD detection framework, we 

conducted two separate studies on the original dataset and 

the augmented dataset. The performances of the fine-tuned 

deep learning models were tested on the original and 

augmented datasets. Table 7 and Table 8 present the results 

of the pretrained DNNs on the original and augmented 

datasets, respectively. Table 7 shows lower results for all the 

models because we needed to enhance the dataset. We 

applied rotation, flipping, scaling, zooming, and exclusion 
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techniques during preprocessing to increase the dataset size 

and improve accuracy. These steps are essential for 

enhancing image quality. We used data augmentation to 

create a broader range of data points, which reduced the gap 

between the training and validation sets. Table 8 shows the 

improved performance of the deep neural networks trained 

on the expanded dataset. By comparing the confusion 

matrices of the three pretrained networks, it can be found 

that data augmentation positively impacts their overall 

effectiveness during the transfer learning process. 

Remarkably, ResNet-50 boasts an impressive average 

accuracy of 98.7%, surpassing the performances of VGG-

19 (97.16%) and Inception V3 (97.54%). 

We used a leave-one-out cross-validation technique to 

assess our models. This involved training the model on all 

the data except for one instance, making a prediction based 

on that instance, and repeating this process for all the cases. 

We then calculated the average error to evaluate the models. 

We evaluated the models' performance based on sensitivity, 

specificity, and accuracy, as presented in Tables 4 and 5. 

The ResNet-50 model achieved the highest overall accuracy 

of 98.7% on the augmented dataset, representing the current 

state-of-the-art result for the five-way multiclass 

classification of Alzheimer's disease. Another significant 

aspect of the study is its emphasis on conducting genuine 

predictions. To ensure this, the model was trained without 

using the test data, preventing potential biases and 

overfitting that could compromise the credibility of the 

outcomes. 

Our study involved a comprehensive review of various deep 

learning techniques that utilize brain imaging scans for 

Alzheimer's disease classification. We analyzed articles that 

employed individual deep learning methods and ensemble 

approaches that combined multiple deep learning models for 

classification. The timely and accurate diagnosis of 

Alzheimer's disease is crucial for effective treatment and 

therapy, and these approaches are invaluable in advancing 

the understanding and management of this disease. Table 11 

compares our work's modalities, techniques, and accuracy 

with those found in the literature. All the approaches listed 

in the table employ the ADNI dataset. Among them, the 

ResNet-50 model yielded the best results, with an overall 

accuracy of 98.7% for 5-way classification 

(CN/EMCI/MCI/LMCI/AD) of AD stages. This model 

outperforms other methods, including those reported in the 

literature, in terms of accuracy. [20], [22], and [23] proposed 

a 4-way classification method using deep pretrained 

networks and transfer learning, which achieved accuracies 

of 97.5%, 94.53%, and 97%, respectively. Similarly, for 3-

way classification, [21, 25, 35, 36] reported accuracies of 

93.02%, 84%, 97.28%, and 95.23%, respectively. [28] and 

[29] proposed ensemble approaches for the 4-way 

classification of AD with accuracies of 97.35% and 93.88%, 

respectively. In our study, we employed deep pretrained 

models using a transfer learning approach, and the ResNet-

50 model achieved the highest overall accuracy (98.7%), 

setting a new state-of-the-art benchmark for five-way 

multiclass classification of AD. Additionally, the ResNet-

50 model classified the "EMCI" category with the highest 

accuracy, emphasizing that the model is particularly 

effective at identifying early signs of memory impairment, 

which is crucial for accurate and timely diagnosis of AD. 

The field of deep learning is constantly evolving, and the 

importance of transfer learning is becoming increasingly 

apparent. In biomedical image analysis and classification, it 

is crucial to identify the most effective models from a range 

of successful models used in various image classification 

tasks. Rather than creating individualized models for 

specific scenarios or subjects, the focus should be on 

developing universally applicable models that promote 

consistency and reliability across different research studies.  

Table 11. Evaluation of the proposed model against other CNNs employing transfer learning 

Reference Implemented Models Dataset Classification Accuracy 

[20] CNN from scratch ADNI 2-way (AD/CN) 95.6% 

[21] 

CNN from scratch 

AlexNet 

GoogLeNet 

ADNI 3-way (CN/MCI/AD) 

78.02% 

91.40% 

93.02%, 

[22] 
AlexNet 

ResNet50 
ADNI 3-way (CN/MCI/AD) 

94.53% 

58.07% 

[23] 

2D CNN 

3D CNN 

Fine-tuned VGG-19 

ADNI 4-way (CN/EMCI/LMCI/AD) 

93.61% 

95.17% 

97% 

[24] 

EfficientNet-B0 

EfficientNet-B2 

EfficientNet-B3 

ADNI 3-way (CN/MCI/AD) 

92.98% 

94.42%, 

97.28% 

[25] 

Random forest 

VGG-16 

VGG-19 

ADNI 2-way (AD/CN) 

68% 

81% 

84% 
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[26] CNN from scratch ADNI 4-way (CN/MCI/LMCI/AD) 97.84% 

[27] Hybrid model (LeNet + AlexNet) ADNI 3-way (CN/MCI/AD) 93.58% 

[28] Ensemble model ADNI 4-way (CN/EMCI/MCI/AD) 
97.35% (VGG-16 

+EfficientNet-B2) 

[29] Ensemble Model using WPBEM ADNI 
3-way (NC/MCI/AD) 

4-way (NC/EMCI/LMCI/AD) 

93.92% 

93.88% 

Proposed 

Method 

VGG-19, ResNet-50, and 

Inception V3 
ADNI 

5-way 

(CN/EMCI/MCI/LMCI/AD) 

VGG-19 (97.16) 

ResNet-50 (98.70) 

Inception V3 (97.54) 

 

This is especially relevant due to the difficulties of obtaining 

and processing medical scans and the limited availability of 

data. Identifying models that consistently produce reliable 

results across different imaging techniques is essential for 

advancing the field and improving the diagnosis and 

treatment of medical conditions such as Alzheimer's 

disease. 

6. Conclusion 

Detecting and classifying Alzheimer's disease in a 

multiclass setting is a difficult task, which emphasizes the 

need for classification frameworks and automated systems 

to effectively manage the disease and ease the burden on the 

healthcare system. This research aims to introduce a five-

way Alzheimer's disease classification system using 

pretrained deep learning convolutional neural network 

(CNN) architectures with transfer learning methods. To 

address the issue of a highly imbalanced Alzheimer's 

disease dataset, we employed resampling methods such as 

oversampling and undersampling to balance the classes. We 

also applied various data augmentation techniques to 

enhance the extraction of salient features from MR images, 

which helped us achieve impressive results despite our 

limited dataset. We used three fine-tuned deep learning 

architectures, VGG-19, ResNet-50, and Inception V3, 

which were pretrained on the ImageNet dataset. We 

leveraged transfer learning and data augmentation 

techniques despite our limited dataset to achieve impressive 

results. 

Our study used eight performance metrics to evaluate and 

compare the three models. We evaluated our method against 

existing state-of-the-art methods and found that the ResNet-

50 model outperformed all the others. On augmented 

images, ResNet-50 achieved an exceptional classification 

accuracy of 98.70% across all five classes, making it the 

current state-of-the-art model for five-way AD 

classification. 

We suggest exploring ensemble-based methods to further 

enhance these results. Given the exceptional performance of 

the proposed model compared to other state-of-the-art CNN 

models, there is potential for its application in detecting and 

classifying other diseases. 
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