

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3389–3396 | 3389

The Architectural Reengineering of Existing Web-based System

Enkhtuul Bukhsuren1, Adiyatumur Tsogtkhuu2*, Baatarbileg Altangerel3, Oyun-Erdene Namsrai1,

Munkhtsetseg Namsraidorj1, Amirlan Enkhtur4

Submitted: 03/05/2024 Revised: 16/06/2024 Accepted: 23/06/2024

Abstract: In this article, we discuss web-based system development, including its trends, stages of software architecture development,

comparison of service-oriented, microservices, and serverless architectures, and research on scalability. We also delve into software re-

engineering techniques, methods for migrating old web system architectures to new ones, and the new architecture's structure and

components. Our research and methodology aimed to improve the architecture of a web access system in need of change, and we

implemented a test using a case study on the SiSi system of the National University of Mongolia.

Keywords: forward engineering, microservices, monolithic, serverless system re-engineering, reverse engineering, system architecture,

web-based software development

1. Introduction

Any software is the best possible system existing at that

moment, built on good structure and business process based

on the latest platform and technology. However, as user

requirements and technologies are constantly changing and

evolving, there is always a need for maintenance and

modification in any system. Examples of these

modifications are the improvement of the system

architecture, making the system more flexible and more

accessible to develop, researching for ways to improve the

procedure and structure of offering services, the age/years

using the service being modified, and efficiency. When user

access to a web system increases, the inability to process the

high request load can cause system security loss, inability to

access the system, data loss, user frustration, and system

instability.

Based on these reasons, there is an urgent need to separate

existing systems into functional and system modules,

classify system users, and adopt a microservices

architecture consisting of integration of web applications

separated by each business activity that meets modern

development trends and security standards being deployed

in existing systems [1].

2. Web-based system development

Most systems that assist people in their daily activities are

web-based and are widely used in research and development

in computer science, information systems, web technology,

and other fields. Computer-based systems, especially web

platforms, are being used in many industries. For example,

information processing systems [2-3], supporting systems

for research and

analysis, training and educating [4], decision-making [5],

computerized medical, and knowledge management [6].

Web application architecture describes the software

components that comprise the system (client-side,

middleware, server-side, database, etc.) and how they

interact. For system monolithic, service-oriented, and

microservice architecture, HTTP is used to transmit requests

and responses. In contrast, message queue architecture

shows how to communicate between the "producer-

producer" or client and the "consumer-consumer" or server

using AMQP protocol. In addition, it ensures that all user

requests contain valid data. It creates and manages accounts

while providing permission-based access and

authentication. Choosing the exemplary system architecture

that meets business requirements determines the

organization's growth, reliability, interoperability, and

future IT needs. For this reason, the components that make

up the software architecture of a web-based system should

be carefully studied, and the architecture that suits the

organization should be chosen.

The software architecture of a web-based system consists of

3 main components:

• Web browser: The user-side component/front-end/ is the

main component that interacts with the user, receives

input, controls the user's interaction with the application,

and contains the user logic of the system.

• Web Server: The server-side component/backend/

processes user requests by handling business logic,

routing requests to the suitable component, and managing

__

1Department of Information and Computer Sciences, School of Information

Technology and Electronics, National University of Mongolia.

Email:enkhtuul@seas.num.edu.mn, oyunerdene@seas.num.edu.mn,

munkhtsetseg@seas.num.edu.mn

2Unimedia Solutions LLC, Mongolia. Email:adiyatumur@gmail.com
3Office for Digital Transformation Policy, National University of

Mongolia. Email: a_bbileg@num.edu.mn
4Student of Mongol Aspiration International School, Mongolia

Email:amirlan@gmail.com

*Corresponding Author Email: adiyatumur@gmail.com

mailto:enkhtuul@seas.num.edu.mn
mailto:oyunerdene@seas.num.edu.mn
mailto:munkhtsetseg@seas.num.edu.mn
mailto:adiyatumur@gmail.com
mailto:a_bbileg@num.edu.mn
mailto:amirlan@gmail.com
mailto:adiyatumur@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3389–3396 | 3390

the entire application process. Here, a variety of user

requests can be run and tracked.

• Database: A database server handles the data required by

an application and the tasks associated with that data. In a

multi-tier architecture, business logic can be managed by

stored procedures that execute database services.

2.1. Development trends

In a traditional 2-tier architecture, there are two

components: the user-side system, or user interface, and the

database server. The business logic is executed through the

user interface and the results are processed in the database

server. The downside of the 2-tier architecture is that

performance degrades as the number of users increases. In

addition, the direct interaction between the database and the

user's device creates certain security issues. The next step in

the development phase is the 3-tier architecture, with the

following layers [7]:

• Presentation layer/Client Layer

Enables users to interact with the server and server services

through a browser. It receives requests and provides the

necessary information to the user, as the necessary code

resides in the browser.

• Application Layer/Business Layer

It is a key component of a web application architecture that

receives user requests, executes business logic, and delivers

required data to front-end systems. This includes servers,

databases, web services, etc.

• Data Layer

A core component for storing and managing data in a 3-tier

architecture of web-based system software. This layer can

use SQL, a relational database, and NoSQL, a non-relational

unstructured database.

Fig. 1. General architecture of a three-tier web application.

In Figure 1, intermediate servers receive user requests and

process them by coordinating with subordinate servers using

business logic. The communication between the client and

the database is managed by a middle application layer,

which allows the client to access databases with many

different configurations. A 3-tier architecture is more secure

because the user does not directly access the data. Hosting

application servers on multiple machines allows for greater

scalability, better performance, and reusability. In addition,

it is horizontally expandable in each direction. It can

abstractly differentiate and separate the core operations

from the database server for efficient load balancing. Data

integrity means that all data passes through an application

server that decides how and who can access the data. This

modular design allows for changes to one hierarchy without

affecting other components. Based on this theory, the

following new Web-based architectures have emerged.

3. Software architecture of Web-based systems

Several web application architectures are based on software

development and deployment models.

Monolithic architecture

A monolithic architecture is a traditional software

development model where the entire software is developed

using a standard waterfall model. This means that all the

components are interdependent and interconnected; for one

component to run, the whole program must run. To

reprogram a function, it is necessary to recompile the entire

code, even if it is to change one part of the program.

Monolithic architecture [8] treats the whole code as a single

application, so creating a new project, selecting

frameworks, scripts, templates, testing, and deploying is

simple. It is more suitable for small-scale projects and for

organizations that want to save on the cost of developing

applications. There are many tools available to simplify the

development. All operations are performed with a single

control, which makes it easy to manage what goes in and to

where. Monolith saves a lot of time as developers can make

changes and updates simultaneously instead of separately.

Compared to applications with microservices architecture,

the performance is faster due to the small size of the app.

For example, in a microservice architecture, there are at

least 40 services, each with a user interface thus, the

performance is slower than monolithic architecture. The

downside is that the larger the code, the more difficult it

becomes to manage and understand the entire project code,

even for small changes.

Since each element is interdependent, scaling the

application is not easy. Furthermore, just one small error can

make the entire program unworkable.

Service-based architecture

Service-oriented architecture (SOA) is a style of software

architecture in which software agents are loosely connected

and separated by their role to perform the required

functionality.s

SOA has two leading roles: service provider and service

consumer. A software agent can perform both of these roles.

The application organizes its modules to integrate them

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3389–3396 | 3391

together in a way that makes them easy to reuse. Due to the

independent and loosely connected nature of the functional

components of service-oriented applications, these

components can be reused across multiple applications

without affecting other services. As each software service is

an independent unit in service-based architecture, it is easy

to update and maintain without damaging other services. For

example, large enterprise applications can be more easily

managed when broken down into services. A service is more

accessible to debug and test than a monolithic one, because

the code is fragmented. A service-oriented architecture is

layered, so parallelism is encouraged during development.

Individual services can be developed and completed

simultaneously.

Microservice architecture

Microservices are a type of service-based software

architecture that consists of several independent

components that make up an application. Unlike a

monolithic architecture where an application is built as a

single indivisible unit, microservices architecture has many

small separate components, each with its own APIs.

Microservices architecture is important because it adds

unique value by simplifying complexity in a system.

Decomposing your system or application into many smaller

parts reduces duplication, increases coherence, and shows

the connections between parts, making the overall parts

easier to understand, extensible, and modify.

Many companies have changed their architecture from the

monolithic approach and opted for a Microservices

architecture. The most popular companies are Netflix,

Amazon, Twitter, eBay, and PayPal.

Figure 2 shows a comparison of the above three

architectures.

Fig. 2. Monolithic, service-based, and microservice

architectures [9].

Serverless architecture

This architecture is a way to build, provide, and operate

systems without managing the infrastructure. Although the

application still runs on the server, the infrastructure

provider handles all server management. Software

companies can run their applications, databases, and system

resources without hosting or maintaining servers. The

advantages of this architecture are paying only for your

usage, focusing only on application development, scaling

automatically depending on application access and load,

high-cost process calculations, automatic deployment, and

fast loading of applications by end users. /redirects to a

server near the user's location/ etc. On the downside, it is

difficult to test and detect errors and data location problems

when backend applications are deployed, are not designed

for long-term processes, and may cause technical issues

when changing hosting. Serverless computing is not a

serverless solution but rather a solution in which third-party

cloud computing providers provide the infrastructure

without the need for developers to worry about server

infrastructure.

Amazon Web Services (AWS), Google Cloud, and

Microsoft Azure are the three major cloud computing

providers.

In serverless architecture, users can obtain two types of

services to produce a system architecture [10].

It includes:

• FaaS-Function as a Service – A cloud computing model

that allows developers to host parts of functions in the cloud

and execute these parts independently

 • BaaS-BackEnd as a Service (Server-side service) - A

cloud computing model that allows the backend of the

system to be managed as a service, such as database

management, cloud storage, hosting, user authentication,

etc.

Fig. 3. Serverless architecture services.

Figure 3 shows the system's scalability during high user

demand for Monolithic, Microservices, and Serverless

architectures. The monolithic architecture has an

infrastructure solution that allows the system to be cloned to

another server when the demand increases. At the same

time, microservices can be placed on a cloned server in

some parts, and in the case of serverless architecture, they

can be freely expanded when the load increases. Unlike

traditional apps, it is capable of handling multiple requests.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3389–3396 | 3392

4. Software Reengineering

Any software process has potential problems, such as

outdated designs and technologies, malfunctions, defects,

and development stalls. These require reengineering.

Reengineering is reengineering an existing design or

technology to be more efficient and durable [11].

Reasons for reengineering: Improve financial performance;

reduce costs/expenses; reduce pressure from external

competition; decrease market share; respond to emerging

market opportunities; improve customer satisfaction;

improve product and service quality, etc.

Reengineering has two levels:

1. Business Level: Done by business analysts;

2. Software level: Done by PC engineers;

Fig. 5. Frequency of software reengineering.

When the National University of Mongolia (NUM) first

moved from the traditional education management system

to the online system, it introduced the SISI system to the

"School of Information Technology" in the fall semester of

2009 and implemented it in other departments. It was a

significant transition in terms of operations, and it was quite

an enormous task to enter previous information into the

system and educate the users [12].

Around ten years later, in 2021, another major system

conversion started again. Two thousand twenty research and

testing activities were carried out, and in 2021, access to the

student section began. In spring 2021, the old and new

systems were run side-by-side, followed by a complete

transition to the new system in fall 2022. This migration on

the learner web was carried out using “Cascading” and

“Parallel” conversion methods. More specifically, the old

and new systems will run on separate servers in parallel,

with a single database in between. For the old system,

modules other than the course selection module will work,

but for the new system, the ready modules and course

selection module will work, and the modules that are not

ready and soon to be added will not work.

In this way, there are no differences in data, giving users

time to adapt and compare the correct operation of parallel

modules.

5. Experimental Results

5.1. Reengineering design on SiSi system

The SiSi system was first developed in 2009 with a 3-tier

web system architecture. In 2022, the system was divided

into modular subsystems, classifying students, teachers, and

teaching departments/others according to the main

stakeholders. At the architectural level, the single unified

structure of the SiSi system was divided into two parts based

on whether there were user interaction and business

operations, and the API for data output was transferred to a

microservice structure by dividing it into many small

services.

5.2. Architectural solutions

To transform the previous monolithic structure into a

service-based structure, it is necessary to divide the web

application into a backend and a user interface. Along with

this, it's essential to design the architecture for more

incredible speed and importance Figure 6.

Fig. 4. Scaling for Software architecture.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3389–3396 | 3393

The components of the web application are presented in five

parts, each of which can be hosted separately. When the user

accesses the system, the front-end application (1) that will

be pulled into the user's browser, the cache server (2), and

the backend application (3) that will receive the data of the

application, the data storage area (4), and the notification

application (5) that will send notifications to the front-end

application.

Following the law of Mongolia, the deployment of

applications is shown in such a way that the main data

storage and data release APIs are located on local servers,

following the provision of personal secret storage and

hosting of core systems in the territory of Mongolia [13].

• User interaction application

There are static HTML pages and pages containing JS, CSS,

and images (Single Page Application). This application can

be hosted on-premises or on a cloud server and have

multiple copies.

• Cache server

A cache server is used to reduce database access. If the user

changes the defined data, the data is designed to be updated

from the main database or to work without data

discrepancies with the main database. The data structure of

the cache server originates only from the main database, and

the data in the cache server is used only for display to the

user.

• Backend Application Authorization

There is a function to check if the user is logged in and has

access to that API. The user's JWT in the request is checked

to identify the user and whether the token is valid to

determine whether to access the next-level functions.

API: There are data transfer APIs for user interface

applications. After getting user requests, it executes only the

necessary services, enters the data into a structure, and

returns data in a JSON structure.

Services: By carefully analyzing the business process, it will

be possible to define the services appropriately and create a

structure that can be used again. Optimizing services will

reduce API usage and data overhead and reduce the rate of

database access.

Hub API: Hub APIs are for that front-end application only.

A hub API is a common bridge between these APIs and

other systems. In the example shown in the Figure 7, when

the system introduces a mobile application, there will be the

addition of APIs in Hub API that are redefined for mobile.

• Database

It is advisable to reorganize the database decentralized

depending on the application and user. Being separate has

the advantage of being located separately on different

servers and improving data security.

Fig. 6. Web architecture of system.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3389–3396 | 3394

• Notification application

A real-time notification application that sends notifications

to front-end applications without the user having to send a

request.

The student information API processes the services related

to the student's personal, official, and program information

and returns it in JSON format. Let's explain the architecture

in Figure 8 with an example.

User interface: Graphical user interface

Vue Prototype: A global variable accessible to all

components of the Vue framework. The example shows

how to store student data that can be used in most

components.

API - menulist: Get user interface menus

API - studmaininfo: Get student information

API - courselist: Get courses being studied in the

current term

API - newslist: Get news and announcements

API - getacademicinfo: Official information

API - getpersonalinfo: Personal information

API - getstudprograms: Study programs/plans/

API - getprograminfo: Program info

API - getcourseinfo: Course info

API - getnews: News and announcements

API - getcoursesched: Course schedule

In the student profile view, the student's information

is retrieved from the global variable with the help of

APIs related to study programs and plans.

API - studcurriculum: Get a student's curriculum

API - upperenglish: Get English-level information

API - getcomponents: Get plan packages

API - getgroups: Get subgroups

API - getcourses: Get the unit courses

API - getcourseinfo: Get course information

API - gettranscriptinfo: Get transcript information

API - getenglishinfo: Get English level information

Fig. 7. Web architecture example-1 (first access or home page).

Fig. 8. Web architecture example-2 (education plan).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3389–3396 | 3395

Comparison of previous and developed systems

Tables 1 and 2 compare system user requirements,

further development and changes, service availability,

technological improvements, security, user interface,

and user-friendliness.

System evaluation

The developed system is relatively better than the

previous system in terms of adaptability, architecture,

and development environment. The evaluation

highlights technical and development progress and

advantages.

Technical specifications

For web applications, the speed of loading in the

user's browser or response from the server (not

including network speed) is one of the most important

indicators, so the loading speed of the previous

system and the developed system is compared. On

average, loading speed is 2-4 times faster, depending

on the content, file size, and contents on the page.

Development indicator

Features related to development: Fast and straightforward to

implement changes. New modules can be developed

regardless of technology. Services are ready for data

exchange with external systems.

Unit testing and error detection are easy because they are

done by unit services. User interface and business operations

are developed separately.

Multiple front-ends can be used regardless of language and

framework. Data acquisition services are ready to create a

mobile version of the system. A small library has been

designed to develop a UI with a unified theme.

The dependency on the developer has lowered. The

downside is that maintaining many projects, writing complex

services, and doing integrated testing has become

complicated and time-consuming.

6. Conclusion

This article examines web-based software architecture's

structure, development, and future trends. It explores ways

to create new systems by improving existing systems with

good serviceability and easy-to-develop architecture.

As part of the testing and implementation work, the "Student

Information System" module of the NUM education

management system was selected and completed. Based on

the study of the system, the current situation of the system

was analyzed, and the business process of the system was

researched and designed to convert it to the new

architecture. Also, the user interface and business operations

sections, which contain the main modules that should be in

the student's information system (packaged in 9 categories

according to the actions to be performed), have separately

developed applications that can manage the access load.

It is concluded that the system created as a result of this

work is easy and flexible for further development and

modification in terms of basic parameters such as

architecture, functions, interfaces, development platform,

and data storage.

Table 1. Comparison of systems developed by converting 3-tier architecture to microservices architecture -1

Comparison Old system Developed system

Architecture 3-tier architecture,

Monolithic

Many small services and SPAs based on microservices

architecture.

Technology ASPX, CSS Asp.Net (DotNeCore, SignalR),
Vue(SPA), Bootstrap.

Programming language C# C#, Linq, Javascript

Stability Even if there is a tiny little error, the whole program

may not work because of it

Errors will be indicated only in that part, other parts will

work normally.

Structure of development One whole. Many modules and small services are separated from
Backend and Frontend

Loading status A response is sent to the user after the entire code is

ready /build/

The front end is a static web, so it pulls directly into the

browser and gets the data from the API. Faster

Table 2. Comparison of systems developed by converting 3-tier architecture to microservices architecture-2

Comparison Old system Developed system

Database

status

MSSQL; Uses a lot of functions and procedures to

perform calculations and operations on the database;

Data selection operations are
/high cost query/ linking multiple tables with large

amount of data;

MSSQL; Redis cache server /as addition/;

Many small services: Reduced the use of functions and

procedures on the database as well as the expensive
data access operations for data selection;

Data transfer XML and direct data access JSON
User interface Some modules are not suitable for mobile and small

screened devices

Fully flexible /responsive/;

Improved appearance, component placement, and color

coordination;
User login SiSi System Session Another system;

Unified Access Environment.

Deployment Internal server A combination of internal and cloud

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3389–3396 | 3396

References

[1] Ian Sommerville, Software Engineering (10th ed).

Pearson Education, 2016.

[2] J.T. Yao and Y.Y. Yao, “Web-based information

retrieval support systems: building research tools for

scientists in the new information age,” Proceedings of

the IEEE/WIC International Conference on Web

Intelligence, pp. 570-573, 2003.

[3] Y.Y. Yao, “Information retrieval support systems,”

Proceedings of FUZZ-IEEE’02, pp. 773-778, 2002.

[4] Samuel O. Adejumo Chinedu E. Mbonu, Samuel M.

Alade,Wole M. Olatokun, “Re-engineering a web-

based Student Information management System:

Development Perspective for the Offic of International

Programmes, University of Ibadan”, International

Research Journal of Computer Science (IRJCS), vol 8,

pp. 226-236, 2021.

[5] D.J. Power and S. Kaparthi, “Building Web-based

decision support systems,” Studies in Informatics and

Control, 11, pp. 291-302, 2002.

[6] Yao, Jingtao, “Design of Web-based Support

Systems,” Springer London, 2012.

[7] Roger S. Pressman, Software Engineering A

Practitioner’s Approach (7th ed)., 2010.

[8] M. Villamizar et al., "Evaluating the monolithic and

the microservice architecture pattern to deploy web

applications in the cloud," 10th Computing Colombian

Conference (10CCC), Bogota, Colombia, 2015, pp.

583-590, doi: 10.1109/ColumbianCC.2015.7333476.

[9] https://rubygarage.org/blog/monolith-soa-

microservices-serverless

[10] Sanjeev Sharma and Bernie Coyne, DevOps For

Dummies (2nd ed). John Wiley Sons, 2015.

[11] Manar Majthoub, Mahmoud H. Qutqut and Yousra

Odeh, “Software Re-engineering: An Overview”, 8th

International Conference on Computer Science and

Information Technology (CSIT), 11-12 July 2018,

Amman.

[12] Ouynzul.D, Study research for architecture of Sisi

system, 2021.

[13] Law on the protection of personal information of

Mongolia.

