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Abstract  Liver disease represents a significant global public health issue, with early detection playing a crucial role in the effective 

treatment and management of the condition. The utilization of Computed Tomography (CT) imaging has become increasingly important 

in liver detection, providing high-resolution images that facilitate precise diagnosis. Clinicians commonly seek information regarding the 

liver's shape for treatment planning in order to minimize harm to surrounding healthy tissues and hepatic vessels, underscoring the 

importance of developing a geometric model of the liver. Various methods for liver image segmentation have been developed over time. 

This article presents a thorough examination of Traditional segmentation techniques such as thresholding, region-based growing 

algorithm, Contour-based algorithm, as well as Machine Learning (ML) and Deep Learning (DL) methods for Segmentation utilizing CT 

images, shedding light on the different techniques, algorithms, and challenges associated with this domain. We explore diverse 

approaches to liver segmentation, assess the efficacy of different methods using established metrics, and conclude by outlining potential 

avenues for future research.  

Keywords: Computer aided diagnosis (CAD) system, Computed tomography,  Contour-Based Segmentation , Deep learning,, Liver 

segmentation, ,  Machine Learning, Region Based Segmentation. 

1. Introduction 

The liver is one of the most vital organs in the human 

body, playing a crucial role in metabolism, detoxification, 

and protein synthesis. When normal cells start multiplying 

excessively, it leads to the formation of a mass known as a 

tumor. Liver tumors can be either non-cancerous (benign) 

or cancerous (malignant). Benign tumors do not spread to 

surrounding tissues or other parts of the body, while 

malignant tumors are cancerous and have the ability to 

grow and spread throughout the body. Various types of 

tumors can develop in the liver. These tumors can have 

different visual features, and these features may change 

when a contrast agent is introduced [1]. 

Liver cancer is the 6th most common type of cancer, but 

the 3rd leading cause of cancer-related deaths globally in 

2020 [2].  Similar to other forms of cancer, early detection 

and prompt treatment are crucial for liver cancer. 

Screening for liver cancer typically involves the use of 

ultrasound and non-contrast computed tomography (CT) 

scans, while diagnosis often relies on multi-phase contrast-

enhanced CT scans. According to the Liver Imaging 

Reporting and Data System (LI-RADS) [3] guidelines, 

contrast-enhanced CT or MRI scans can effectively 

identify liver lesions in most cases.  Traditional manual 

delineation of the liver by radiologists is time-consuming 

and subject to inter- and intra-observer variability, 

necessitating the development of automated liver detection 

systems. Automated computer-aided diagnosis (CAD) 

systems offer a promising solution to address these 

limitations. 

Detecting and classifying liver lesions in CT images is a 

challenging task. The liver is a large and complex organ, 

with significant variations in the morphology of both the 

liver itself and any lesions present. Factors such as 

location, size, shape, intensity, and texture can all 

contribute to the difficulty in accurately identifying and 

localizing lesions. The intricate network of blood vessels 

and ducts within the liver, as well as the surrounding 

organs, further complicates the process. Additionally, 

changes in liver texture due to conditions like fat 

accumulation and fibrosis can create ambiguity in lesion 

detection. Finally, there are many different types of 

malignant and benign liver lesions, and some of these can 

appear quite similar in CT scans, making them hard to 

distinguish. 

Another challenge is the lack of suitable datasets. 

Specifically, there are no large-scale, high-quality datasets 

of liver CT scans that are publicly available to learn or 

extract comprehensive patterns. These datasets would need 

to cover various liver conditions and include labels for 

major tumor types, among other details. According to 

medical guidelines, radiologists require multi-phase 

contrast-enhanced liver CT images to determine tumor 
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types, and in some cases, pathology reports are necessary. 

The ideal dataset would have comprehensive, voxel-level 

annotations of related organs, vessels, and liver lesions, as 

well as clinically-confirmed lesion types for all lesions, 

which are difficult to obtain. Most existing studies rely on 

their own in-house datasets with limited labels, such as 

only bounding box annotations of lesions and/or without 

labels for lesion types. Additionally, creating a high-

quality liver lesion dataset involves sensitive, diagnosis-

related privacy information and clinical practices, making 

it challenging to make such datasets publicly available. 

2. Conventional Methods for Liver Segmentation 

Early approaches to liver detection relied heavily on 

traditional image processing techniques. These methods 

typically involve a series of preprocessing steps such as 

noise reduction, contrast enhancement, and edge detection, 

followed by thresholding, region-based or contour-based 

segmentation. 

A. Thresholding Approach 

Thresholding is one of the simplest methods where pixel 

intensity values are segmented based on a global or local 

threshold. However, due to the similar intensity values 

between the liver and its surrounding organs, thresholding 

alone often failed to provide accurate segmentation. 

Various studies propose different methods for automatic 

segmentation of liver lesions,  such as H-minima transform 

filter combined with Otsu global thresholds for liver 

segmentation [4], fuzzy logic and Shannon's entropy 

function for tumor segmentation [5], multilevel 

thresholding with electromagnetism optimization (EMO) 

for liver tumor segmentation [6], and histogram 

thresholding for distinguishing liver tissues in CT images 

[7] have been proposed. Additionally, a method utilizing 

thresholding of the Cahn-Hilliard solution for liver lesion 

segmentation has been introduced, which separates healthy 

liver tissue from lesions based on image intensities [8]. 

B. Region Based Segmentation 

Region-based segmentation methods, such as thresholding 

and region growing, have been widely used for liver 

detection. These techniques rely on the intensity values of 

the pixels to differentiate the liver from surrounding 

tissues. Various approaches have been proposed to 

enhance liver image segmentation, such as contrast 

enhancement algorithms, intensity distribution analysis, 

and boundary incorporation to improve accuracy and 

achieve high Dice scores [9]. Additionally, size selection 

region growing algorithms have been developed to 

accurately extract liver regions from CT images, utilizing 

preprocessing steps like thresholding, region growing, and 

morphological operations [10]. Furthermore, the utilization 

of region growing techniques, combined with contrast 

stretching and morphological operations, has shown 

promising results in segmenting liver regions from other 

organs with high accuracy, validated through similarity 

index and achieving an overall accuracy of 91.3% [11]. 

Moreover, liver level set algorithms have been introduced 

to automatically segment disconnected liver regions, 

ensuring accurate segmentation results with a Dice 

similarity coefficient percentage of 87.5% [12]. 

C. Conture Based Segmentation 

Contour-based methods, including active contour models 

(snakes) and level sets, focus on delineating the liver 

boundaries. These approaches are more robust to intensity 

variations but can be sensitive to the initial placement of 

the contour and may converge to local minima, leading to 

suboptimal segmentations. A novel method utilizes a multi 

Gabor feature map to describe patch homogeneity 

nonlocally, leading to robust segmentation results with a 

mean overlap error of less than 23.86% [13]. Additionally, 

an active contour model with an embedded classifier, 

based on a Gaussian mixture model, has been developed to 

accurately extract liver tumors and vessels, showcasing 

flexibility and accuracy in complex background scenarios 

[14]. Furthermore, the use of a multidistribution level set 

method has shown significant improvements in segmenting 

liver tumors with low contrast and blurred boundaries, 

outperforming traditional level set methods [15]. 

Table 1: Performance Analysis of Conventional Liver Segmentation Approaches 

References Methods Data Set Result Remarks 

Nazish, 

Khan et al. 

[4] 

H-minima transform 

filter combined with 

Otsu global 

thresholds for liver 

segmentation 

Private Data set 

from  Rahman 

Medical Institute, 

Pakistan 

Dice Score: 94% 

Sensitivity: 93%, specificity: 

87% 

Variability in size, shape, 

position of liver and lesions. 

Presence of other organs 

with similar intensities. 

Deepesh et 

al. [5] 

multilevel 

thresholding with  

fuzzy logic and 

Shannon's entropy 

Private Data Set Accuracy: 93% Execution time is too high 

when dealing with .jpg 

format image 

Lamia et al. 

[6] 

multilevel 

thresholding with 

Private Data Set Liver segmentation: 

Accuracy: 98.47% , 

Difficult to find Optimal 

threshold identification for 
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References Methods Data Set Result Remarks 

electromagnetism 

optimization 

Sensitivity: 97.05%, 

Specificity: 99.88%  

Liver tumor segmentation:  

Accuracy: 96.86% , 

Sensitivity: 94.15% 

Specificity: 99.57%  

image segmentation 

Tugce et al. 

[7] 

Watershed and 

histogram 

thresholding 

methods 

Private Data set: 

collected from 

Radiology 

Department of 

Başkent University, 

Adana 

Accuracy: 95.64% Data set is too small only 22 

images used for training 

Jana et al. [8] Thresholding based 

on Cahn-Hilliard 

phase separation. 

Public Data set:  

3Dircadb dataset 

LITS dataset 

3dircadb  

Dice: 0.61 ± 0.22 

Sensitivity: 0.64 ± 0.18 

Specificity: 0.99 ± 0.01 

LIST 

Dice: 0.53 ± 0.27 

Sensitivity: 0.70 ± 0.21 

Specificity: 0.98 ± 0.02 

High noise in CT scans Low 

contrast between liver and 

lesions 

Shima et al. 

[9] 

adaptive 3D region 

growing algorithm 

with probabilistic 

atlas 

Data set collected 

from Institutional 

Review Board (IRB)  

Dice: 92.56% Limited to liver 

segmentation only 

Shaimaa et 

al.[10] 

region growing and 

morphological 

operations. 

Data collected from 

the liver imaging 

Atlas 

Accuracy: 95% Limited to liver 

segmentation only  

Abdalla et 

al.[11] 

Region Growing 

algorithm 

Private data set Accuracy: 91.3% Some optimization 

techniques need to hybrid 

with proposed approach to 

improve result 

Puteri et al. 

[12] 

Liver level set 

algorithm 

enhancement of 

region growing 

Private data set Dice: 87.5% Choosing the wrong first 

slice, would lead to wrong 

segmentation result 

Chen et al. 

[13] 

nonlocal active 

contours with multi 

Gabor feature map 

Private Data set Mean overlap error less than 

23.86%. 

The proposed method's 

performance heavily relies 

on the quality of the initial 

segmentation, which can 

impact the final results  

Yanfeng et 

al. [14] 

active contour 

model with 

embedded Gaussian 

classifer 

Private data set Proposed method well 

performed compare with 

Geodesic Active Contour, C-

V (active contour without 

edges) 

The paper mentions that the 

developed model is accurate, 

flexible, and suited for 

extracting objects surrounded 

by a complicated 

background. Still, it does not 

provide specific quantitative 

metrics or results to support 

these claims, making it 

challenging to assess the 

model's performance 

objectively. 

Qianqian et multidistribution Public Data set:  Proposed model Computational Complexity is 
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al. [15] level set method 3Dircadb dataset outperformed the CV model 

and LSACM model. 

high 

 

3. Machine learning (ML)  based Liver Segmentation 

Machine learning techniques have introduced more 

sophisticated methods for liver detection by learning from 

annotated datasets. These approaches typically involve 

feature extraction, model training, and classification. 

A methodology which involves the iterative application of 

a multi-class Bayesian classification system introduced 

[16]. Initially, models are developed to represent the 

Intensity of liver, tumor, and other relevant areas. 

Subsequently, the posterior probabilities for individual 

voxels are determined based on the multi-class distribution 

acquired earlier, in conjunction with a uniform prior 

distribution model. A 3D liver tumor segmentation which 

combines watershed transform and SVM classification is 

applied [17]. After undergoing various preprocessing steps, 

such as segmenting the liver parenchyma and enhancing 

liver contrast, the CT volume is divided into numerous 

catchment basins using watershed transform. 

Subsequently, a support vector machines (SVM) classifier 

is utilized to train on seed points selected by the user for 

tumor extraction from the liver parenchyma, with the 

feature vector for training and prediction being calculated 

based on each small region generated by watershed 

transform. Lastly, morphological operations are applied to 

the entire segmented binary volume in order to enhance the 

initial segmentation outcome of SVM classification. A 

methodology for automated segmentation of the liver in 

three dimensions is developed [18].The approach involves 

the application of a clustering technique based on k-means 

for the creation of a region of interest. This is succeeded by 

the utilization of a region growing algorithm for the initial 

segmentation, followed by the implementation of a 

localized contouring algorithm to achieve a more precise 

segmentation. An automated segmentation approach in 

which the initial delineation of tumors is achieved through 

the utilization of a Support Vector Machine (SVM) 

classifier [19]. This is then succeeded by the application of 

a Markov random field-based omnidirectional deformable 

surface model to further enhance the accuracy of the 

segmentation process. A novel approach for liver 

segmentation, which involves the delineation of initial 

liver boundaries through artificial bee colony clustering 

followed by morphological operations introduced [20]. 

Subsequently, a region growing technique is employed to 

achieve a more precise segmentation. An automated 

method for identifying liver lesions using an initial 

detection of the liver based on blood vessel information 

and histogram fitting with a variational Bayesian Gaussian 

mixture model presented [21]. 

Table 2: Performance Analysis of Machine Learning based Liver Segmentation 

References Method Data set Result Remarks 

Moti et al. 

[16] 

multi-class 

Bayesian 

classification 

MDCT data 

set 

3Dircadb 

dataset 

Liver and tumor 

volume estimation 

correlation: 0.98 

and 0.99. 

Total score for the 

second database: 

67.87% 

It relies on user-defined voxel seeds for 

initialization, which may introduce 

variability based on seed selection 

Xing et al. 

[17] 

combines watershed 

transform and SVM 

MICCAI 

2008 data set 

averaged overlap 

error: 31.14% 

It does not address the potential user 

variability in selecting seed points for 

training the SVM classifier, which could 

introduce subjectivity and inconsistency 

in the segmentation results, 

Goryawala 

et al. [18] 

k-means based 

segmentation 

algorithm with 

region growing 

3Dircadb 

dataset 

Volume accuracy: 

97.22%, Dice 

Score:  0.92  

The algorithm's performance was 

evaluated using 34 liver CT scans, which 

may not fully represent the diversity of 

liver shapes and sizes in the general 

population 

Vorontsov et 

al. [19] 

deformable model 

and Texture based 

SVM 

Private Data 

set 

Dice score: 0.81 ± 

0.06 

It is semi-automatic approach indicating 

that some level of user interaction or 

intervention may be required during the 

segmentation process, 

Mostafa et Clustering based Private Data Accuracy: 93.73% The paper mentions the use of 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 375–384  |  379 

al. [20] artificial bee colony 

optimization 

algorithm 

set morphological operations to remove small 

objects in the segmented images, but it 

does not delve into the specific types of 

morphological operations employed or 

their impact on the segmentation results 

Maklad et al. 

[21] 

Bayesian Gaussian 

mixture Model 

MICCAI 

2008 data set 

Total Score: 79.7% The algorithm's performance was 

evaluated using 60  liver tumor CT scans, 

which may not fully represent the 

diversity of liver shapes and sizes in the 

general population 

 

4. Deep learning (DL) based Liver Segmentation 

In recent years, deep learning has revolutionized the field 

of medical imaging, offering unprecedented accuracy and 

robustness in liver detection. Fully Convolutional 

Networks (FCNs) and their variants have become the state-

of-the-art methods for this task. In a broader sense, FCN is 

a CNN with the FC layer replaced by deconvolutional (or 

transposed convolutional) layer to perform pixel wise 

classification. 

In [22], two FCNs based on the VGG-16 model were 

devised specifically for the detection of liver and lesions. 

Conventional data augmentation methods such as scaling, 

transformation, and rotation were applied in this process. 

In [23], a Cascade Two FCN based UNet Model was 

employed for the segmentation of liver and lesions, with 

the refinement of output through the use of refined 3D 

Conditional Random Fields. The Pre-processing stage 

involved HU Windowing to eliminate irrelevant details, 

contrast enhancement via Histogram equalization, and the 

utilization of traditional data augmentation techniques. In 

[24], variously sized patches extracted from abdominal CT 

images were utilized as input for five Convolutional 

Neural Networks (CNNs), with pre-processing steps 

involving Gaussian smoothing filtering and Z-score 

normalization. In [25], the application of two deep 

convolutional neural networks (DCNN) incorporated long-

range UNet and short-range ResNet skip connections, 

followed by the implementation of 3D connected 

component labeling on each DCNN output for result 

refinement. In [26], liver segmentation was conducted 

using Simple ResNet, followed by the development of a 

2D-DenseUNet that integrated densely connected paths 

and UNet connections to combine inter-slice and intra-slice 

features. Pre-processing included HU Windowing and data 

augmentation through mirroring and scaling. In [27], a 

Cascade 3D FCN structure was employed, comprising 

multiple Attention Hybrid Connection Blocks (3-

AHCBlocks) densely connected with long and short skip 

connections, as well as soft and hard self-attention 

modules, to achieve rapid and accurate semantic 

segmentation of medical images.  

In [28], an enhanced version of FCN was created by 

introducing a variable pooling kernel to enhance liver 

region delineation, followed by the replacement of pooling 

and convolution layers in the second FCN with dilated 

convolution for improved global feature extraction of small 

tumors. Post-processing involved the use of Conditional 

Random Fields (CRFs) to further refine the results 

obtained from cascaded FCNs. In [29], two Cascade Unet 

Models were trained for liver and tumor segmentation, 

with the final outputs of each network being upsampled to 

their original dimensions using Bi-linear interpolation. 

Image enhancement was carried out through Contrast 

Limited Adaptive Histogram Equalization (CLAHE). In 

[30], a modified UNet architecture was proposed, 

incorporating a residual path with deconvolution and 

activation operations in the skip connection to prevent the 

duplication of low-resolution feature information. 

Additional convolution layers were added to the skip 

connection to extract high-level global features from small 

object inputs and high-level features from high-resolution 

edge information of large object inputs. In [31], the 

development of Cascade U-ResNets, inspired by U-Net 

and ResNet, for liver and lesion segmentation was 

discussed. The performance was evaluated using five 

different loss functions: Weighted Cross Entropy (WCE), 

Dice Loss (DL), Weighted Dice Loss (WDL), Teversky 

Loss (TL), and Weighted Teversky Loss (WTL). 

Table 3: Performance Analysis of Deep Learning based Liver Segmentation 

References Method Data Set Result Remarks 

Ben-

Cohen et 

al. [22] 

Two FCN with 

Tradition Data 

Augmentation 

Private Data 

set: Sheba 

medical center 

Public Data 

set: 

Liver segmentation: 

Dice: 0.89 

Sensitivity: 0.86 

Precision: 0.95 

Lesion detection: 

Segmentation output of the liver may not 

include some boundary pixels that are 

darker and less similar to the liver 

parenchyma 
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SLIVER07 True Positive rate: 0.86 

False Positive rate: 0.6 

Christ et 

al. [23] 

Cascade Two FCN 

based UNet Model 

is utilized for Liver 

and lesion 

segmentation + 

Post processing-

Output are refined 

using refined 3D 

Conditional 

Random Fields 

Public Data 

set: 

3Dircadb 

dataset 

Dice: 94% In Native UNet, contextual information of 

the low-level encoder feature is 

insufficient, leading to poor performance 

for pixel-wise recognition when 

concatenating with the corresponding 

high-level decoder feature 

Wen Li et 

al. [24] 

5 CNN with Patch 

extraction from CT 

image  

Private Data 

set collected 

from Zhujiang 

Hospital 

affiliated with 

Southern 

Medical 

University 

Patch size 17 x 17 

Dice: 80.06% 

Precision: 82.67%  

Recall: 84.34% 

Poor Performance in case of segmenting 

tumor in with heterogeneous intensity and  

unclear boundary 

Han et al. 

[25] 

Two DCNN with a 

3D connected 

component 

labelling as Post 

processing  

Public Data 

set: 

LIST 2017 

Dice: 67% Training of each model took about 4 days 

using a single NVIDIA Titan X GPU with 

3584 cores and 12 GB memory. 

X. Li et al. 

[26] 

ResNet and 2d-

DenseUNet 

Public Data 

set: 

3Dircadb 

dataset 

LIST 2017 

3D IRCADb-01 

Liver segmentation: 

92.9% 

Tumor segmentation: 

82.4% 

LiTS 

Liver segmentation: 

96.5% 

Tumor segmentation: 

82.4% 

To  improve small tumor detection, 

perceptual generative adversarial 

networks (GANs) can be used 

H. Jiang et 

al. [27] 

3D FCN with 

attention modules 

Public Data 

set: 

3Dircadb 

dataset 

LIST 2017 

3D IRCADb-01 

Liver segmentation: 

95.9% 

Tumor segmentation: 

73.4% 

LiTS 

Liver segmentation: 

94.5% 

Tumor segmentation: 

62% 

To enhance tumor segmentation result 

post processing can be applied 

Yuwei 

Pang et al. 

[28] 

TWO FCN with 

Dilated 

Convolution  

Public Data 

set: 

3Dircadb 

dataset 

LIST 2017 

DICE coefficient for 3D 

IRCADb-01 dataset: 

Tumor segmentation: 

85.71% and LiST 

dataset: Tumor 

segmentation: 82.43% 

While the proposed modifications show 

improved performance in segmenting 

small tumors, the paper does not discuss 

the potential impact on the segmentation 

of larger or more complex tumors, 

Albishri et 

al. [29] 

Cascade two Unet 

with Bi-linear 

Public Data 

set: 

LiTS data set- Dice 

Value 

While the model achieved high Dice 

scores of 0.894 for liver segmentation and 
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interpolation LIST 2017 Liver segmentation: 

89.4% 

Tumor segmentation: 

59.5% 

0.595 for tumor detection, the evaluation 

was based on these metrics alone. 

Including additional metrics such as 

sensitivity, specificity, or false positive 

rate could provide a more comprehensive 

assessment of the model's performance. 

H. Seo et 

al. [30]  

Cascade two Unet 

with 

deconvoluation  

Public Data 

set: 

3Dircadb 

dataset 

LIST 2017 

3D IRCADb-01 

Liver segmentation: 

96.1% 

Tumor segmentation: 

68.14% 

LiTLiver segmentation: 

98.51% 

Tumor segmentation: 

89.72% 

The paper highlights that the conventional 

U-Net's duplication of low-resolution 

information through skip connections can 

cause smoothing of object boundary 

information, particularly problematic for 

objects with fuzzy boundaries. This 

limitation can impact the network's ability 

to precisely delineate object boundaries in 

CT images. 

X. Xi et al. 

[31] 

Cascade U-

ResNets (inspired 

by U-Net and 

ResNet) 

Public Data 

set: 

LIST 2017 

Liver segmentation: 

94.9% 

Tumor segmentation: 

75.2% 

The paper focuses on investigating the 

performance of different loss functions for 

liver and lesion segmentation but does not 

compare the computational efficiency or 

training time of these methods, which 

could be crucial for practical 

implementation. 

 

5. Publicly Available Data Set 

Publicly available datasets currently consist of the cancer 

imaging archive of the Frederick National Laboratory for 

Cancer Research [33], the 3Dircadb dataset from the 

Research Institute against Digestive Cancer [34] ,the 

MIDAS liver tumor dataset from the National Library of 

Medicines Imaging Methods Assessment and Reporting 

(IMAR) project [34] and the Sliver’07 dataset from The 

Medical Image Computing and Computer Assisted 

Intervention Society MICCAI liver segmentation challenge 

[35]. Manual outlining of liver (Sliver’07, 3Dircadb), liver 

tumor contours (MIDAS, 3Dircadb), and liver blood vessel 

contours (3Dircadb) by radiological experts was conducted 

on a slice-by-slice basis to establish the ground truth.  

Segmentation of the 3Dircadb and Sliver’07 datasets was 

performed by a single radiologist, whereas the MIDAS 

dataset underwent segmentation by five different 

radiologists. 

6. Challenges and Future Directions 

Despite significant advancements, several challenges 

remain in liver detection using CT images: 

1. Variability in Liver Appearance: The liver's 

appearance can vary widely due to differences in 

patient anatomy, pathology, and imaging conditions. 

2. Proximity to Other Organs: The liver is located near 

other organs with similar intensity values, making it 

difficult to distinguish boundaries. 

3. Limited Annotated Data: High-quality annotated 

datasets are essential for training robust models, but 

such data is often scarce. 

4. Noise and Artifact: CT images often contain noise and 

artifacts, complicating accurate segmentation. 

Future research should focus on addressing these 

challenges through: 

1. Data Augmentation and Synthesis: Generating 

synthetic data to augment training datasets and improve 

model robustness. 

2. Multi-Modal Approaches: Combining information 

from multiple imaging modalities (e.g., MRI, PET) to 

enhance liver detection accuracy. 

3. Transfer Learning: Leveraging pre-trained models on 

related tasks to improve performance with limited data. 

4. Interactive Segmentation: Developing user-friendly 

tools that allow clinicians to interactively refine 

segmentations for improved accuracy 

7. Conclusions 

This paper discusses the various approaches used for 

Traditional, ML and DL based liver and tumor 

segmentation. Numerous inferences can be drawn from 

previous research. Initially, techniques that solely depend 

on pixel intensity appear inadequate for segmenting lesions 

other than metastases. Subsequently, segmenting liver 

lesions within a liver envelope seems to enhance accuracy, 
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especially for automated segmentation approaches. Lastly, 

the incorporation of machine learning methods appears to 

significantly improve tumor detection and segmentation 

precision. 

Relying solely on intensity for segmentation is not 

effective for tumors and vasculature. While some primary 

tumors and many metastases exhibit distinct intensity 

ranges compared to healthy liver tissue, these ranges can 

vary depending on imaging systems and patient anatomy. 

Moreover, accurate identification of many primary tumors 

relies on their texture characteristics. This trend is evident 

in the literature, where approaches integrating texture 

features and machine learning techniques demonstrate the 

most precise segmentation across various types of lesions. 

The utilization of machine learning can markedly enhance 

the precision of liver tumor segmentation, as the most 

effective methods employ machine learning techniques. 

Conversely, conducting segmentation within a liver 

envelope yields superior outcomes for lesion segmentation 

and classification within the liver. Previous studies have 

indicated that segmenting liver lesions solely within the 

liver results in higher accuracy, particularly with 

automated methods. 

In comparison to recent automated techniques, semi-

automatic methods do not present significant advantages. 

The most favourable outcomes for liver tumor 

segmentation are typically achieved through automated 

approaches. Additionally, automatic segmentation offers 

two notable benefits over semi-automatic methods. Firstly, 

it does not necessitate user interaction and is generally 

quicker than alternative segmentation methods. 

Furthermore, it ensures reproducibility by eliminating the 

need for constant user input.  

In recent era, DL based fully automated liver and tumor 

segmentation is widely used. Main problem with this 

techniques computationally expensive and required huge 

amout of annoted data set. 

Despite the numerous liver segmentation methodologies 

proposed, there remains room for enhancement, 

particularly in pathological livers characterized by 

irregular shape and intensity patterns posing challenges for 

automated segmentation. Moreover, methods for 

segmenting tumors and vasculature are relatively 

underdeveloped and underexplored due to the insufficient 

availability of suitable datasets 
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