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Abstract: In this paper, we propose a comparative evaluation for smart technologies of two state-of-the-art face detection models, YOLOv3
and InsightFace (SCRFD-10GF), within a classroom environment for real-time monitoring applications. The primary objective of this
study is to assess and compare the models' detection accuracy, robustness, and computational efficiency across various settings, including
different camera positions and lighting conditions. We employ a dataset consisting of videos captured from three distinct classrooms—Lab
1, Lab 3, and Room 1—each presenting unique challenges such as obstructions (e.g., computers) and varying angles and lighting conditions.
The study aims to address the challenge of comparing these models in real-world environments with demanding conditions. The results
reveal that YOLOV3 consistently outperforms InsightFace in terms of confidence scores across all environments and camera positions.
YOLOV3's superior architecture, featuring multi-scale detection and advanced feature extraction capabilities, enables it to maintain high
accuracy and confidence, with an average confidence score reaching 0.83. InsightFace, though slightly less accurate, is advantageous in
resource-constrained settings due to its lightweight architecture. The findings suggest that YOLOV3 is ideal for systems requiring high
accuracy, while InsightFace is better suited for environments with limited computational resources. We conclude that a hybrid approach

leveraging both models could offer a balanced solution tailored to specific requirements of educational environments.
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1. Introduction

In recent years, the rapid advancement of technology has led
to the development of innovative tools that significantly
enhance various aspects of educational environments.
Among these, face detection technology has emerged as a
powerful tool for monitoring classroom activities, offering
a non-intrusive method to observe student behavior and
engagement during lectures. The ability to automatically
detect and track students' faces in real-time not only helps in
maintaining accurate attendance records but also provides
valuable insights into student attentiveness, participation,
and overall engagement in the learning process [1].

The implementation of face detection systems in
classrooms, however, is fraught with challenges [2]. Unlike
controlled environments, classrooms present dynamic and
unpredictable conditions that can affect the accuracy and
reliability of face detection. Variations in student positions,
changes in lighting, occlusions caused by other students or
objects, and differences in camera angles all contribute to
the complexity of the task. These factors can lead to
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significant variations in detection performance, making it
crucial to select or design models that can handle these
challenges effectively.

The importance of accurate face detection in classrooms
cannot be overstated. It plays a critical role in various
educational applications, including automated attendance
systems, real-time behavioral analysis, and personalized
learning experiences. For instance, in large classes, where it
is difficult for educators to monitor every student
individually, face detection systems can help ensure that
students are present and engaged. Moreover, in the context
of remote learning, where direct interaction is limited, these
systems can provide educators with essential feedback on
student participation and attention.

Given the importance of the task, this study focuses on
evaluating the performance of two state-of-the-art face
detection models: YOLOvV3 and InsightFace (SCRFD-
10GF). YOLOv3, known for its speed and accuracy in
object detection tasks, has been widely adopted in various
real-time applications. InsightFace, on the other hand,
represents a family of deep learning models specifically
optimized for face detection and recognition, offering high
accuracy even in challenging conditions.

The dataset used in this study consists of videos of students
captured in a real classroom setting from three distinct
angles: left, right, and center. These videos were recorded in
three different environments: Labl, Lab3, and Room1, each
with its own unique set of lighting and spatial
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characteristics. The original video resolution of 1920x 1080
at 60 frames per second (fps) was downscaled to 1280% 720
at 25 fps to simulate typical conditions for classroom
surveillance, balancing the need for detail with the
computational demands of real-time processing.

The primary objective of this research is to conduct a
comprehensive comparison of YOLOvV3 and InsightFace in
terms of detection accuracy, robustness, and computational
efficiency within the context of classroom monitoring. By
systematically evaluating these models under varying
conditions, this study aims to identify the most suitable
approach for deploying face detection systems in
educational settings. The findings of this research are
expected to contribute to the development of more effective
and reliable monitoring systems, ultimately enhancing the
quality of education by providing educators with better tools
for student engagement analysis.

Furthermore, this study explores the potential implications
of face detection technology in broader educational
contexts, such as its role in adaptive learning systems, with
real-time feedback on student engagement can inform the
delivery of personalized content. The comparison of
YOLOv3 and InsightFace in such a nuanced and demanding
application as classroom monitoring is thus not only a
technical exercise but also an exploration of the future of
educational technology. The findings contribute to the
development of more effective educational systems and
offer valuable insights into the future of educational
technology.

2. Related Works

The advent of deep learning has significantly advanced the
field of face detection. Convolutional Neural Networks
(CNNs) have become the cornerstone of modern face
detection, providing robust performance across a wide range
of conditions. YOLO (You Only Look Once) models,
represent a paradigm shift in object detection by framing it
as a single regression problem, predicting bounding boxes
and class probabilities directly from full images in one
evaluation [3]. YOLOv3, introduced significant
improvements in accuracy through the use of a deeper
network (Darknet-53) and multi-scale detection [4], [5].
YOLOv3 is particularly well-suited for real-time
applications due to its balance between speed and accuracy,
making it a popular choice for face detection in dynamic
environments [6].

In a comparative study, YOLOv3 was found to outperform
traditional methods and earlier versions of YOLO in terms
of both speed and accuracy [7], [8]. Its ability to detect
objects at three different scales enhances its performance,
particularly for smaller objects [9], which is critical in
scenarios like classroom monitoring where faces may
appear at varying sizes depending on the camera angle.

InsightFace is a well-known library for face detection and
recognition [10], [11], with the SCRFD model being one of
its recent advancements. SCRFD is designed for high-
performance face detection, optimized for real-time
applications with minimal computational requirements [12].
The model uses a ResNet-based architecture with custom
layers to achieve high detection accuracy while remaining
lightweight enough for deployment on resource-constrained
devices [13].

SCRFD has demonstrated competitive performance against
other state-of-the-art models, such as RetinaFace and
DSFD, particularly in scenarios involving challenging
conditions like occlusions and extreme poses [12], [14].
SCRFD’s ability to deliver high accuracy while maintaining
low inference times, making it ideal for applications
requiring both speed and precision [13].

Real-time classroom monitoring is a critical application area
for face detection technologies. Accurate and efficient face
detection enables effective monitoring of student
engagement, attendance, and safety. The choice of detection
model must consider both the dynamic nature of classroom
environments and the resource constraints of the
deployment hardware. The use of deep learning-based face
detection models for classroom monitoring, emphasizing
the importance of high detection accuracy in environments
with varying lighting conditions, occlusions, and camera
angles [15].

3. Materials and Methods
3.1. Dataset

The dataset for this study comprises video recordings
captured in three distinct classroom environments: Lab 1,
Lab 3, and Room 1. These environments were specifically
selected to simulate typical classroom settings, each
presenting unique challenges that could impact the
effectiveness of face detection algorithms.

Lab 1 and Lab 3 are both computer laboratories of the same
size, furnished with rows of desks and desktop computers.
These setups introduce significant physical obstructions,
such as monitors and other hardware, which can partially
obscure students' faces from the camera’s view. The lighting
in these labs is primarily artificial, with fluorescent ceiling
lights providing uniform illumination. However, the
placement and intensity of these lights vary slightly between
the two labs, with Lab 3 receiving additional natural light
from windows, which introduces variability in brightness
and shadow patterns throughout the day.

Room 1 is a general-purpose classroom used for lectures and
discussions, featuring standard classroom furniture like
desks and chairs. Unlike the labs, Room 1 has fewer
obstructions, but the lighting is more variable due to a
combination of artificial lights and large windows that allow
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natural light to enter. This setup creates challenges for face
detection, particularly during times when sunlight directly
hits certain areas of the room, creating high-contrast lighting
conditions.

The videos were recorded from three different camera
positions in each environment: center, right corner, and left
corner. In the center position, the camera was placed directly
in front of the classroom or lab, facing the students head-on,
providing a clear view of most students, though depending
on their seating arrangement, some students might still
appear in profile. The right corner position had the camera
angled from the right side of the room, capturing students
from the side or at oblique angles, which added complexity
to face detection due to the varied perspectives. Similarly,
the left corner position offered a different angle, introducing
further diversity in the dataset by creating unique shadow
patterns and lighting effects, potentially impacting detection
accuracy. Together, these varied positions were chosen to
simulate realistic classroom scenarios, testing the robustness
of face detection models under multiple conditions.
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Fig. 1. Schematic representation of camera positions and
their overlapping coverage areas within the activity area.
Cameras are positioned at the center, right corner, and left

corner to capture different perspectives and ensure
comprehensive monitoring of the space.

These recordings were made at various times of the day to
incorporate natural lighting variations that occur due to the
position of the sun and the availability of daylight. For
example, Room 1 was recorded in the morning when
sunlight was entering through the windows, while Lab 1 and
Lab 3 were recorded in the afternoon, primarily under
artificial lighting conditions. The time of recording is crucial
as it simulates the varying conditions a real classroom
surveillance system might encounter during different
periods.

Lab 1 at 15:14

Lab 1 at 14:38

B CBR L r

Lab 3 at 14:57 Lab 3 at 14:51 Lab 3 at 15:06

Lab 1 at 15:23

Room 1 at 09:52

-

Room 1 at 09:45

Room 1 at 09:38

Fig. 2. Classroom and lab environments used for face
detection analysis. The images show the setups in Lab 1,
Lab 3, and Room 1, with recordings taken at different
times and from various camera positions (center, right
corner, and left corner).

By capturing data in these varied environments and from
different angles and times, the dataset is designed to test the
robustness and accuracy of face detection models under
realistic and challenging conditions that mirror those found
in actual educational settings. The detailed specifications of
the video recordings are presented in Table 1.

Table 1. Details of Video Recordings Used in the Study

Room R_ecording Durati CarTu_era
Time on Position
Lab 1 14.38 03.07 Center
Lab 1 15.14 03.04 Right corner
Lab 1 15.23 03.02 Left corner
Lab 3 14.57 03.02 Center
Lab 3 1451 03.01 Right corner
Lab 3 15.06 03.01 Left corner
Room 1 09.45 03.01 Center
Room 1 09.52 03.08 Right corner
Room 1 09.38 03.02 Left corner

3.2.  Preprocessing

To prepare the videos for analysis, a series of preprocessing
steps were applied to ensure compatibility with the face
detection models and to simulate a typical classroom
surveillance scenario. The videos were first downscaled
from their original resolution of 1920x1080 pixels to
1280x720 pixels. This downscaling was done using bicubic
interpolation, a method chosen to preserve image quality
while reducing the file size, thereby balancing the need for
clear facial features with the computational efficiency
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required for real-time processing. Additionally, the frame
rate was adjusted from 60 frames per second (fps) to 25 fps,
reflecting common surveillance system standards and
reducing the computational load, making the data more
suitable for real-time face detection in classroom
environments. The videos were then split into individual
frames, allowing each frame to be analyzed independently
by the face detection models, ensuring that every moment
of the video is considered in the analysis. Finally, the frames
were resized to match the input dimensions required by the
specific face detection models used in the study: 416x416
pixels for YOLOv3 and 640x640 pixels for InsightFace
(SCRFD-10GF). These preprocessing steps were critical in
preparing the dataset for accurate and efficient processing
by the models.

Start

| video Record at 1920x1080, 60fps |

I Downscale to 1280x720 I

I Adjust frame Rate to 25fps |

I Extract Individual frames I

Resize Frames for YOLOv3 | |Resize Frames for InsightFacel

Frames Ready for YOLOv3
processing

Frames Ready for
insightFace Processing

Fig. 3. Preprocessing workflow for video data. The video
recordings are downscaled and adjusted in frame rate
before being split into individual frames. The frames are
then resized to the appropriate dimensions for processing
by YOLOvV3 and InsightFace models.

3.3.  Experimental Setup

The experimental setup was designed to evaluate the
performance of two face detection models, YOLOv3 and
InsightFace, under realistic classroom conditions. The
preprocessed video frames were processed through both
models, with each frame analyzed individually to detect
faces and generate bounding boxes with associated
confidence scores. YOLOv3, configured using the Darknet
framework with pre-trained weights on the WIDER FACE
dataset, resized input frames to 416x416 pixels and applied
a detection threshold of 0.5, alongside non-maximum
suppression to eliminate redundant bounding boxes.
Similarly, the SCRFD-10GF variant of InsightFace,
implemented with pre-trained weights via the InsightFace

library, resized input frames to 640x640 pixels and set a
detection threshold of 0.4 to enhance recall in challenging
conditions. The models were assessed using three key
performance metrics: detection accuracy, processing time,
and robustness. Detection accuracy was determined by the
proportion of correctly detected faces relative to the ground
truth, with the average confidence score per frame serving
as an accuracy measure. Processing time, recorded in
milliseconds for each frame, was crucial for evaluating the
real-time applicability of the models. The robustness of the
models was further evaluated across different camera
angles, lighting conditions, and levels of obstruction, such
as partially obscured faces by objects like computer
monitors. The outputs, including detected face counts,
confidence scores, and processing times, were stored in
CSV files for each video, enabling comprehensive analysis.
Finally, paired t-tests were performed on the detection
accuracy and processing time metrics to assess the statistical
significance of performance differences between YOLOv3
and InsightFace.

3.3.1. YOLOV3 Implementation

The YOLOvV3 model, widely recognized for its efficiency in
real-time object detection, was implemented using
OpenCV's Deep Neural Network (DNN) module. YOLOv3,
which stands for "You Only Look Once version 3," is a fully
convolutional neural network designed to detect objects in
images and videos by predicting bounding boxes and class
probabilities directly from full images in a single evaluation.
YOLOV3 is built on the Darknet-53 architecture, a 53-layer
convolutional network pre-trained on the ImageNet dataset
[16], [17], [18]. This architecture includes residual skip
connections and upsampling, making it more effective at
detecting small objects compared to its predecessors.

s 6 . 0

YOLO v3 network Architecture

Fig. 4. YOLOv3 Network Architecture

For this study, the YOLOv3 model was initialized by
loading pre-trained weights along with the corresponding
configuration, both specifically optimized for face
detection. The model’s layer names were extracted, and the
relevant output layers were identified to focus on the
detection of faces. During video processing, each video was
read frame by frame using OpenCV’s VideoCapture, and
each frame was resized to half its original size to expedite
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the detection process.

The detection process begins by converting each frame into
a blob (a preprocessed image) that is fed into the YOLOv3
network. YOLOV3 applies a 1x1 detection kernel to feature
maps generated by the network to predict bounding boxes,
object confidence scores, and class probabilities. The model
outputs potential bounding boxes and confidence scores for
any detected faces. The confidence score, which ranges
from 0 to 1, indicates the probability that the detected object
is indeed a face. In this implementation, faces with
confidence scores exceeding a predefined threshold of 0.5
were considered valid detections. The confidence score
serves as a measure of the model's certainty and is used to
calculate the average confidence across all detections within
a frame.

YOLOv3 makes predictions at three different scales, which
allows it to detect small, medium, and large objects
effectively. This multi-scale detection is achieved by
applying the detection kernel at three different layers within
the network. The detected bounding boxes and confidence
scores for each frame were stored and later used to calculate
average confidence scores for the entire video. The metrics
recorded included the number of detected faces and the
average confidence score per frame. These results were
saved to a CSV file, with columns indicating the frame
number, total faces detected, and average confidence.

3.3.2. InsightFace Implementation

The InsightFace model, particularly the SCRFD-10GF
variant, was employed for real-time face detection in this
study. SCRFD (Scalable High-performance Face Detection)
is a state-of-the-art face detection algorithm known for its
balance of accuracy and efficiency. The SCRFD-10GF
model is a lightweight, high-accuracy variant designed to
run efficiently on both high-performance and resource-
constrained devices [13]. It is based on a custom backbone
that incorporates basic residual blocks, making it suitable
for real-time applications while maintaining high detection
accuracy.

For this implementation, the InsightFace model was
initialized using the InsightFace library, specifically with
the SCRFD-10GF variant, which uses a custom lightweight
backbone architecture. The model was configured with a
detection size of 640x640 pixels and was optimized to
leverage the best available hardware, for enhanced
performance. Similar to the YOLOv3 implementation, each
video was processed frame by frame using OpenCV’s
VideoCapture.

For each frame, the SCRFD-10GF model detected faces by
generating bounding boxes and corresponding confidence
scores. The detection process involves applying a series of
convolutional layers to extract features from the input
image, followed by generating bounding boxes around

potential faces. The model outputs a confidence score for
each detected face, indicating the likelihood that the
detected object is a face. Faces with confidence scores above
a predefined threshold of 0.4 were considered valid
detections. These confidence scores were used as a measure
of detection confidence for each frame.

The InsightFace model is optimized for high precision,
especially in challenging conditions such as occlusions and
varying lighting. It is particularly adept at detecting faces
across a wide range of scenarios due to its specialized design
for facial feature extraction. The metrics recorded for
InsightFace included the total number of faces detected and
the average confidence score for each frame. These results
were similarly saved to a CSV file, with columns indicating
the frame number, total faces detected, and average
confidence.

3.4. Procedure

The procedure for this study involved processing the
preprocessed video data through the YOLOv3 and
InsightFace face detection models and evaluating their
performance based on predefined metrics. Each model
processed the video frames sequentially, generating
bounding boxes and confidence scores for detected faces.
The confidence scores, representing the likelihood that a
detected object was a face, were stored for all detections
above a predefined threshold (0.5 for YOLOv3 and 0.4 for
InsightFace). These scores were averaged across all
detected faces in each frame to calculate the frame’s average
confidence. The total number of detected faces and the
number of frames processed were also recorded. After the
detection process, the results were stored in CSV files for
each video, capturing the key metrics of interest. The final
analysis involved reading the CSV files to calculate the
average total faces detected, average confidence scores, and
frame counts. These metrics were then visualized using bar
charts, providing a clear comparative evaluation between
the YOLOv3 and InsightFace models for each time
segment. The visualizations facilitated an in-depth analysis
of model performance under varying classroom conditions.
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Fig. 5. Workflow of the experimental setup, including
video collection, preprocessing, model implementation,
and evaluation for YOLOv3 and InsightFace models. The
diagram outlines the sequential steps taken from data
collection to the final analysis of detection confidence.

4, Results

The performance of the YOLOv3 and InsightFace (SCRFD-
10GF) models was evaluated across three different
environments: Lab 1, Lab 3, and Room 1, with video
recordings taken from various camera positions (center,
right corner, and left corner) at different times of the day.
The results below present a comparison of the average
number of faces detected, the average confidence scores,
and the total frame count processed by each model.

e

Lab 1 at 14:38 Lab 1at 15:23

Lab 3 at 14:57 Lab 3 at 14:51

Yot gt o 13 |

- 1
T
Fig. 6. Comparative face detection results for YOLOv3
and InsightFace across different classroom environments
and camera positions. The images display the total number
of faces detected by each model (YOLOV3 in green and
InsightFace in blue) along with their corresponding
confidence scores. The experiments were conducted in Lab
1, Lab 3, and Room 1 at various times, with recordings

taken from center, right corner, and left corner camera
positions.

s rgetace P 4 - e e
m Em
o 3y i

‘Room 1 at 09:45

41 Lab1l

In Lab 1, face detection results from both YOLOv3 and
InsightFace models were evaluated across three different
time slots, captured from center, right corner, and left corner
camera positions. The results, as summarized in Table 2,
show that YOLOv3 consistently demonstrated higher
confidence scores compared to InsightFace, although
InsightFace detected a slightly higher number of faces in
some instances. For example, at 14:38 from the center
camera position, InsightFace detected an average of 18.27
faces with a confidence score of 0.75, while YOLOv3
detected 16.91 faces but with a higher confidence of 0.83.

Table 2. Results of lab 1

Avera
Camera ge Average
Time Position Model Total Confiden
ce
Faces
14:38 Center YOLOvV3 16.91 0.83
InsightFa 18.97 0.75
ce
15:14 Right YOLOV3 1819  0.78
Corner
InsightFa 17.89 0.68
ce
1523 e YOLOV3 17.01  0.76
Corner
InsightFa 159 0.69
ce

Comparison for Labl at 14.38

Total Faces Detected Confidence (YOLOV3) vs Confidence (InsightFace)

sverage Confidence

‘Comparison for Labl at 15.14

Total Faces Detected Confidence (YOLOV3) vs Confidence (InsightFace)
) [

1750

o Total Faces

Average ence

Comparisen for Lab1 at 15.23

Total Faces Detected Confidence (YOLOV3) vs Confidence (InsightFace)

#verage Confidence:

Fig 7. Images showing the experimental setup in Lab 1
across different time slots.
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Additionally, the following graphs (Figure 6) illustrate the
comparison of average total faces detected and confidence
levels between YOLOvV3 and InsightFace models across the
various camera positions in Lab 1.

42. Lab3

For Lab 3, the face detection analysis was conducted
similarly across three different time slots with recordings
from the center, right corner, and left corner camera
positions. As shown in Table 3, YOLOvV3 generally detected
fewer faces than InsightFace but maintained higher
confidence levels across all positions. For instance, at 14:57
from the center camera position, YOLOvV3 detected 4.42
faces with a confidence score of 0.75, whereas InsightFace
detected 5.36 faces with a confidence of 0.68.

Table 3. Results of lab 3

Avera
Camera ge Average
Time Position Model Total Confiden
ce
Faces
14:57 Center YOLOv3 4.42 0.75
InsightFa
ce 5.36 0.68
Right
14:51 Corner YOLOv3 8.43 0.76
InsightFa
ce 8.79 0.66
Left
15:06 Corner YOLOv3 10.33 0.71
InsightFa
ce 8.01 0.61

Comparison for Lab3 at 14.57

Total Faces Detected Confidence (YOLOv3) vs Confidence (InsightFace)
075

Awerage Confidence

Comparison for Lab3 at 14.51

Total Faces Detected <
879

(YOLOV3) vs Confit (insi
i

Average Confidence

Comparison for Lab3 at 15.06

Total Faces Detectad c
033

(YOLOV3) vs C

T
Average Confidence

Fig 8. Images showing the experimental setup in Lab 3
across different time slots.

The comparative analysis is further supported by the graphs
in Figure 7, which depict the differences in face detection
performance between the two models for Lab 3.

43. Rooml

In Room 1, the face detection performance of YOLOv3 and
InsightFace was analyzed across three time slots with
recordings from the center, right corner, and left corner
camera positions. As presented in Table 4, YOLOv3
consistently achieved higher confidence scores across all
positions compared to InsightFace. However, InsightFace
detected fewer faces, particularly in the left and right corner
positions. For example, at 9:52 from the right corner
position, YOLOvV3 detected 17.56 faces with a confidence
of 0.74, while InsightFace detected 13.62 faces with a
confidence of 0.62.

Table 4. Results of lab 3

Avera
Camera ge Average
Time Position Model Total Confiden
ce
Faces
9:45 Center YOLOv3 19.65 0.78
InsightFa
ce 16.94 0.67
Right
9:52 Corner YOLOv3 17.56 0.74
InsightFa
ce 13.62 0.62
Left
9:38 Corner YOLOv3 19.87 0.80
InsightFa
ce 17.97 0.69

Comparison for Room1 at 9.45

Total Faces Detected Confi

(YOLOV3) vs € {insi

Average Confidence
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Comparison for Room1 at 9.52

Total Faces Detected Confi (YOLOV3) vs Confi
1756 072

Average Confidence

Comparison for Room1 at 9.38

Total Faces Detected Confidence (YOLOv3) vs Confidence (InsightFace)
050

s

Average Confidence

Fig 9. Images showing the experimental setup in Room 1
across different time slots.

The graphical representation in Figure 8 further highlights
the detection differences between the two models, providing
a clear visual comparison of their performance in Room 1.

5. Discussion

The results from the face detection experiments conducted
in three different environments—Lab 1, Lab 3, and Room
1—highlight several key observations regarding the
performance of the YOLOv3 and InsightFace (SCRFD-
10GF) models. The discussion focuses on three primary
aspects: detection accuracy, confidence scores, and the
impact of camera positions on model performance.

5.1. Detection Accuracy

The analysis revealed that YOLOv3 consistently achieved
the highest detection accuracy across different
environments, with its best performance recorded in Room
1 at 09:38 from the left corner camera position. In this
scenario, YOLOVv3 detected an average of 19.87 faces with
a confidence of 0.80, corresponding to an accuracy of 80%.
InsightFace, while generally robust, showed its highest
detection accuracy in the same environment and time slot,
detecting an average of 17.97 faces with a confidence of
0.69, resulting in an accuracy of 69%. The superior
performance of YOLOV3 can be attributed to its multi-scale
detection capabilities, which allow it to capture both small
and large faces, making it more adaptable to varying
conditions. In contrast, InsightFace demonstrated
limitations in maintaining detection accuracy, particularly in
challenging environments like Lab 3, where varying
lighting and occlusions presented significant obstacles.
Despite these challenges, InsightFace still performed
competently, especially in less obstructed settings.

5.2. Confidence Scores

The analysis of confidence scores further underscores the
reliability of the detections made by the YOLOv3 model

across various environments. The highest confidence score
for YOLOV3 was recorded in Room 1 at 09:38 from the left
corner camera position, where it achieved an impressive
confidence score of 0.80 (80%). This consistently high
confidence suggests that YOLOV3’s detections were not
only accurate but also dependable, reflecting a strong
likelihood that the detected objects were indeed faces. In
comparison, the InsightFace model recorded its highest
confidence score of 0.75 (75%) in Lab 1 at 14:38 from the
center camera position. Although slightly lower than
YOLOV3, this score still indicates competent performance,
particularly in environments with fewer obstructions. The
superior confidence scores of YOLOV3 can be attributed to
its Darknet-53 architecture, which incorporates residual skip
connections and upsampling techniques, enabling the model
to retain fine-grained features and make confident
detections even in complex scenarios with varying lighting
and obstructions.

5.3. Impact of Camera Positions

The camera positions—center, right corner, and left
corner—had a noticeable impact on the performance of both
models. In general, the center position provided the most
consistent results across all environments, with both
YOLOv3 and InsightFace performing well in terms of
detection accuracy and confidence. This is likely because
the center position captures a frontal view of most students,
making it easier for the models to identify faces.

In contrast, the right and left corner positions introduced
more variability in the results. The oblique angles associated
with these positions made face detection more challenging,
particularly for InsightFace, which showed a more
significant drop in both detection accuracy and confidence
scores. YOLOV3, with its multi-scale detection approach,
was better able to adapt to these challenging angles, though
it still showed some reduction in performance compared to
the center position.

5.4. Overall Model Performance

The comparative analysis of YOLOv3 and InsightFace
highlights the strengths and weaknesses of each model in
the context of classroom face detection. YOLOV3’s ability
to maintain high detection accuracy and confidence across
various environments and camera positions demonstrates its
suitability for real-time monitoring applications in dynamic
classroom settings. Its higher confidence scores suggest that
it is less prone to false positives, making it a reliable choice
for environments where accuracy is critical.

InsightFace, while slightly less accurate and confident in
some scenarios, remains a valuable tool, particularly in
environments with challenging conditions such as
occlusions or varied lighting. Its lighter architecture makes
it more suitable for deployment on resource-constrained
devices, where speed and efficiency may take precedence
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over detection accuracy.

55. Implications  for  Real-Time  Classroom

Monitoring

The findings from this study have significant implications
for the deployment of face detection systems in real-time
classroom monitoring. Given its superior performance,
YOLOv3 could be the preferred choice for scenarios
requiring high accuracy and reliability. However, the choice
of model may ultimately depend on the specific
requirements of the deployment environment, including
hardware capabilities, real-time processing needs, and the
typical conditions of the classroom.

In environments where hardware limitations are a concern,
InsightFace’s more efficient design may be advantageous,
even if it means sacrificing some accuracy and confidence.
For schools and institutions seeking a balance between
performance and resource efficiency, a hybrid approach that
leverages both YOLOv3 and InsightFace could be
considered, with each model deployed based on the specific
conditions of the classroom.

6. Conclusion

This study evaluated the performance of the YOLOv3 and
InsightFace (SCRFD-10GF) models for face detection
across different classroom environments, including Lab 1,
Lab 3, and Room 1. The analysis was based on key metrics
such as the total number of faces detected and the average
confidence scores, with recordings taken from various
camera positions (center, right corner, and left corner) at
different times of the day.

The findings indicate that YOLOv3 consistently
outperformed InsightFace in terms of confidence scores
across all environments and camera positions. YOLOV3’s
superior architecture, featuring multi-scale detection and
advanced feature extraction capabilities, allowed it to
maintain high detection accuracy and confidence, even in
challenging scenarios with oblique camera angles and
varying lighting conditions. This makes YOLOv3 a robust
choice for real-time face detection in classroom settings,
where reliability and accuracy are paramount.

InsightFace, while demonstrating strong detection
capabilities, particularly in environments like Lab 3 with
challenging conditions, generally recorded lower
confidence scores compared to YOLOv3. However, its
lightweight design and efficiency make it a viable option for
deployment on devices with limited computational
resources. This makes InsightFace a valuable tool in
scenarios where speed and resource efficiency are
prioritized over maximum detection accuracy.

The results suggest that while YOLOv3 may be more
suitable for environments requiring high accuracy and
reliability, InsightFace can be effectively used in resource-

constrained  settings. For comprehensive classroom
monitoring, a hybrid approach that leverages the strengths
of both models could be considered, depending on the
specific requirements of the environment and available
hardware.

In conclusion, this study highlights the importance of
selecting an appropriate face detection model based on the
specific needs of the deployment environment. YOLOV3’s
ability to deliver high accuracy and confidence across
diverse conditions makes it a strong candidate for real-time
monitoring in educational settings, while InsightFace offers
a practical alternative for scenarios where computational
efficiency is critical. Future work could explore the
integration of these models with advanced post-processing
techniques to further enhance detection accuracy and reduce
false positives in real-world applications.
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