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Abstract: Traffic signals utilized to forecast are commonly produced by sensors next to the roads that may be indicated as nodes on a 

graph. Normally, these sensors generate common signals indicating traffic flows and abnormal signals represent unknown traffic 

disruptions. Graph convolution networks are broadly deployed for traffic forecasting owing to the capability for capturing the relation amid 

network nodes. Nevertheless, the task is difficult owing to the expected intricacy and improbability of traffic patterns. To address this 

shortcoming, a traffic forecasting model is established with Nonlinear Autoregressive models with exogenous inputs Long Short Term 

Memory Forward Taylor Network (NxLFTNet) enabled Al-Biruni Group search optimization (BGSO_NxLFTNet). The input traffic 

network is given to spatio-temporal embedding (STE) generator for identifying daily and weekly embedding of time corresponding to 

current traffic signal. The outcome of input traffic network and STE generator is subjected to traffic detection, which is executed by 

employing NxLFTNet trained by BGSO. Here, NxLFTNet is combined by NARX and LSTM; also BGSO is incorporated by Group Search 

Optimizer (GSO) and Al-Biruni Earth Radius (BER). The measures taken for BGSO_NxLFTNet such as, Mean absolute percentage error 

(MAPE), Root Mean square error (RMSE), and Mean Absolute Error (MAE) gained 0.001, 0.010 and 0.011. 

Keywords: Traffic forecasting, Spatio-Temporal Embedding (STE) generator, Long Short Term Memory (LSTM), Group Search Optimizer 

(GSO), Al-Biruni Earth Radius (BER). 

1. Introduction 

Traffic plays an important role in people’s daily life. In this 

situation, an accurate real world prediction of traffic 

environment is of foremost important. In this condition, 

precise real time prediction of traffic environment is of 

enormous significance for road users, governments and 

private fields. Broadly employed transportation services, 

like navigation, route planning and flow control is also 

relied on extreme quality traffic state environment. In the 

traffic survey, basic variables of traffic flow, that is density, 

volume, and speed are usually taken as indicators to observe 

the present status of traffic environment [1] and to forecast 

the aftertime. According to the length of detection, traffic 

forecast is broadly categorized into two namely, short-term 

and long-term. Most common statistical paradigms are 

capable of performing well on short interval prediction. 

Nevertheless, by the reason of uncertainty and complication 

of traffic flow, those mechanisms are less efficient for 

comparatively long-term predictions. Former studies on 

mid-and-long term traffic prediction are broadly divided 

such as dynamical modeling as well as data driven 

approaches. Dynamical modeling utilizes arithmetical tools 

as well as physical knowledge to generate traffic issues 

through computational simulation [2]. By improving the 

precision of traffic flow prediction, it can be able to provide 

advantage towards intelligent traffic management on 

congestion deduction as well as traffic efficacy [3] [4]. 

Traffic flow forecasting is somewhat a difficult technique in 

other words it is exaggerated by several components, like 

traffic patterns [5]. With the progress of intelligent 

transportation systems (ITSs), forecasting of traffic has 

attained more interest henceforth precise traffic forecasting 

plays a significant part in numerous extensive ITSs, 

comprising navigation system [6], route guidance system 

[7], and traffic signal control system [8]. 

The challenge has been considered over several decades 

across diverse societies starting from traffic with economics 

to data mining [9]. As ordinary situation traffic models are 

simple to forecast, an open evaluation in traffic prediction is 

to predict the traffic in utmost situations [9]. In latest traffic 

flow forecasting models, investigators have to choose these 

traffic aspects as well as modeling factors emerging from 

the acquired data in accordance with several basic 

presumptions implemented in the old works. In other words, 

the accuracy amidst these presumptions maybe significantly 

impact on prediction correctness. Nevertheless, as long as 

the proportion of data remains reasonably large, the 

unrevealed numerical data as well as the possible 

relationships will be exposed by the sets of data themselves. 

Thereby, in the case of a significant quantity of traffic 

information is taken on, it is capable of avoiding more 

failures created by the presumptions as well as the precision 

of traffic forecast could be enhanced through understanding 

the data as well as the relations covered across the 
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information [5]. Computational forecasting methods, like 

Bayesian modeling [10], fuzzy logic, neural networks (NNs) 

[11], statistical modeling, as well as hybrid modeling [12] , 

has been extensively utilized in traffic flow prediction. Such 

methods, especially NNs, are validated to be beneficial in 

finding the numerical principles covered among the traffic 

information as well as the later traffic flow. Despite that, 

majority of them represent the shallow traffic patterns as 

well as the calculated prediction outcomes ought to be more 

precise. In addition to the improvements in sensing 

technologies, as well as widespread traffic sensing facilities, 

the proportion of gathered traffic flow information could be 

significantly improved [5]. 

Various Machine-Learning (ML)-based methods were 

brought into play in the traffic count forecast issue [13]. The 

notion of Deep Learning (DL) is to make use of deep 

architectures to take out as well as change the intrinsic 

characteristics across the information from the bottom to the 

top level, also each uninterrupted layer utilizes the former 

layer output as the input [14] [6]. Since traffic flow forecast 

is a difficult technique, DL associated techniques could 

symbolize traffic characteristics from the acquired 

information with no previous foreknowledge, which might 

significantly advance the prediction truthfulness [5].  DL 

approaches give self-regulating illustration studying from 

primary information, substantially decreasing the endeavor 

of hand-crafted feature engineering. For traffic prediction, 

premature efforts involves stacked denoising autoencoder, 

Deep belief network (DBN), as well as stacked autoencoder. 

Nonetheless, it failed to seize secular relations. Deep 

recurrent NN (DRNN), along with huge assurance in 

symbolizing dynamic action, have reached huge 

achievement in sequence modeling, particularly for speech 

recognition [12] as well as video segmentation [9]. In recent 

times, investigators designed to combine Graph 

Convolutional Network (GCN) or Convolutional NN 

(CNN) to Long Short-Term Memory (LSTM) or Recurrent 

NN (RNN) at the same time discovers the spatial-temporal 

correlations within the traffic flow information [8]. The 

usage of DL techniques is examined to design traffic flow 

forecasting. On account of the time-sequence quality of the 

information, RNN based techniques are utilized like LSTM 

as well as its variations like Convolutional LSTM to forecast 

traffic volumes at various junctions. It is also considered the 

reliance across the junctions in traffic flow forecasting. 

Convolution process could be utilized in numerous different 

jobs, where surrounding data is provided [13]. 

The benefaction of this traffic forecasting model is to 

establish an efficient technique named BGSO_NxLFTNet. 

Firstly, the input traffic network taken from the database is 

forwarded to STE generator. Secondly, the input traffic 

network as well as the outcome of STE generator is 

forwarded to traffic detection that is implemented by 

proposed NxLFTNet trained by BGSO, where the layers are 

forward Taylor network. Here, NxLFTNet is integrated 

using NARX and LSTM. Moreover, BGSO is amalgamated 

by GSO and BER. 

➢ Proposed BGSO_NxLFTNet for traffic forecasting: A 

Novel scheme for traffic forecasting is developed 

utilizing BGSO_NxLFTNet. In this model, the traffic is 

detection is efficaciously conducted on the basis of 

newly discovered technique NxLFTNet, which is 

merged by NARX and LSTM.  Here, the proposed 

NxLFTNet is tuned by employing BGSO that is 

incorporated by GSO and BER.  

The remaining portion of BGSO_NxLFTNet is: The 

researches of traditional methods along with the difficulties 

experienced in these methods are clearly in section 2. The 

system model is demonstrated in section 3 and its proposed 

determination is expressed in section 4. The performance 

outcomes and its discussions are deliberated in section 5. 

2. Motivation 

The intention of traffic forecast is to detect traffic conditions 

of various future time-steps provided the historic traffic 

data. Nevertheless, conventional techniques deploy a 

flexible and predetermined adjacency matrix, which does 

not precisely replicate real time correlations among signals. 

Henceforth, the scholars are interested in developing a new 

model by conquering this difficult task. 

2.1 Literature Survey 

Weng, et al. [15] introduced Dynamic Graph Convolutional 

Recurrent Network (DDGCRN). This technique reduced the 

dependence of prior knowledge and improved the 

adaptability of spatio-temporal graphs. Nevertheless, 

numerous traffic patterns in traffic signals did not 

decompose to design for enhancing the interpretability and 

model’s performance. Gao, Y., et al. [16] developed LSTM 

module for predicting the traffic. With the help of data flow 

from ETC model, the speed and assess the operating 

condition of highways was forecasted. Nevertheless, the 

traffic flow gathered by some nearby detectors was not 

correlated. Fang, W., et al. [17] designed Attention 

Mechanism LSTM (AM-LSTM) for traffic flow prediction. 

Even though, this technique was superior after the 

stabilization process, the computational time of this module 

steadily higher than since it included attention model.  

Zhang, Y., et al. [14] established Multi-modal Context-

based Graph Convolutional Neural Network (MCGCN). 

Once the incorporation of multimodal context information 

was performed into traffic speed prediction, MCGCN model 

was unable to utilize spatial and temporal context 

information exhibited by some states for attaining superior 

performance in long-term speed detection. 
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Nabi, S.T., et al. [18] presented fusion model, which 

comprises LSTM, Bidirectional LSTM (Bi-LSTM) and 

Gated Recurrent Unit (GRU). This model implemented soft 

factors before the eradication of quality of service (QoS). 

Nonetheless, it did not focus on dynamic resource allocation 

in heterogeneous complex networks structures. Ma, C., et 

al. [19] introduced Enhanced Information Graph Recursive 

Network (EIGRN). The recursive structure of the technique 

allowed for learning the illustrations of traffic patterns from 

noisy data. Yet, the training and inference times was 

computationally expensive, particularly for large scale 

databases. Ma, Y., et al. [20] designed CNN-LSTM model 

for predicting traffic flow. This approach surpassed superior 

results for flow and speed of traffic forecasting. But, the 

Deep Neural Network (DNN) did not accumulate non-linear 

development of traffic flow by clearly discovering local 

traffic patterns as well as dynamics. Shin, Y. and Yoon, Y., 

[21] established Progressive Graph Convolutional Network 

(PGCN). This technique had the ability for generalizing in 

numerous feature databases that proved the requirement of 

replicating online input data for acquiring robustness. 

Nevertheless, it was not capable of integrating external 

features of transportation structures namely, weather, Point-

of-Interests (POI) and road features. 

2.2 Challenges 

The complexities observed in former methods are 

elaborated below. 

➢ An approach designed in [15] constantly outperformed 

better implementation on six databases. Nonetheless, 

this technique failed to decompose the traffic signals 

into normal as well as abnormal signals to design in a 

proper way. 

➢ In [16], it did not enlarge this technique for forecasting 

the speed of traffic for numerous detectors even a large-

scale network and also did not examine the extraction 

technique of prior and further moment conditions of 

traffic flow information for increasing the assessment 

of detection. 

➢ Although the established module in [17] assigned 

diverse weights to diverse inputs and extracting 

significant information, it was unable to deploy 

featured intelligent transportation structures. 

➢ The module introduced in [14] explored how different 

contexts impacted the speed of traffic prediction. 

However, it neglected the correlated information of 

context data among numerous modalities that did not 

fused multimodal context data from different sources. 

➢  Recently, Limited data availability is an important 

challenge in traffic prediction. More conventional 

traffic sensors as well as devices cannot exhibit real-

time data, and new data sources can be facilitated for 

enhancing the precision of forecasting. 

3. System Model 

This model [15] describes the basic concepts of traffic 

networks, traffic signals, spatial and temporal properties.  

3.1 Traffic Network 

This network is illustrated in the form of graph as

( ), ,   = . Here, a set of  nodes that indicates sensors 

placed at subsequent positions in rod network. These 

sensors are accountable to record traffic information at their 

positions. The set of edges indicates  and graph 

determined from pairwise distances among nodes in 

network. It includes dynamic adjacency matrix is 

represented by i  . 

3.2 Traffic Signal 

This signal is computed as  l that acquired the values 

of overall sensors in traffic network  at time step  . Here, 

traffic features gathered by sensors refers . 

3.3 Traffic Forecasting 

By providing traffic signals  .... ,1 1

m

m m 

− + −=    l l l , 

traffic prediction intends for detecting further traffic signals

 . ,.......,1 1

n

n n 

+ − +=    l l l . 

3.4 Spatial and temporal properties 

Assume  number of nodes in transportation network and 

sensor sampling data’s frequency is i . The features are 

stored in autonomous trainable embedding matrix that 

indicates  , i   ,    . Here, embedding 

dimension represents  . 

4. Proposed BGSO_NxLFTNet for traffic forecasting 

Traffic prediction is attaining great interest owing to the 

broad application in ITSs. Providing challenging as well as 

dynamic traffic data, numerous techniques focused on how 

to introduce a spatial-temporal technique for expressing 

non-stationary traffic patterns. Thus, the fundamental 

intention of this potent system is to discover and explore 

traffic forecasting named BGSO_NxLFTNet. Initially, 

input traffic network in the form of graph taken from the 

database [22] is allowed through STE generator, which is 

employed for finding daily embedding and weekly 

embedding of time corresponding to current traffic signal. 

Afterwards, input traffic network and the output of STE 

generator is fed into detection phase. Finally, traffic 

forecasting is done by utilizing NxLFTNet. It is the 

combination of NARX [23] and LSTM [24], where the 

layers are modified by Taylor concept. Moreover, 

NxLFTNet is trained using BHSO, which is the 
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amalgamation of GSO [25] and BER [26]. Figure 1 

articulates schematic diagram of traffic forecasting. 

 

 

Fig. 1. Schematic diagram of traffic forecasting 

4.1 Data Acquisition 

Traffic data collected in representation of spatio-temporal 

embedding. It has more number of sensors and features that 

are obtained by the sensor. In this module, identifier (ID), 

latitude (Lat), longitude (Lng), district, country, highway 

(Fwy), number of lanes (Lane), type and direction are 

acquired. The spatio-temporal embedding indicatesO with 

diemsnion of  L H . Furthermore, O with  L H is 

specified by L HN 
. Figure 2 elucidates the illustration of 

spatial embedding data. 

 

Fig. 2. Illustration of spatial embedding data 

Daily embedding of time related to current traffic data 

represents M
, that signifies  L H   dimension. Here, 

the daily embedding with  L H   dimension specifies



 HLM , wherein traffic data is gathered for  periods. 

Figure 3 demonstrates modeled view of daily embedding.  

 

 

Fig.  3. Modeled illustration of daily embedding  

Weekly embedding of time relevant to current data is 

modeled asM
 with  L H   dimensional data. Moreover, 

the dimension  L H   ofM is signified as L HM 



  . Figure 

4 demonstrates modeled illustration of weekly embedding. 

 

Fig. 4. Modeled illustration of weekly embedding 

4.2 STE Generation 

The purpose of this generator is for learning a frequent and 

distinct illustration of high dimensional data, which 

accumulates intricate relationships among the dependencies 

of spatial and temporal features. It is attained by integrating 

the input data into less dimensional space when conserving 

the topological of actual data and geometrical 

representations. This is also for embedding the data in a way 

which precisely observes the patterns and combinations 

among diverse spatial locations and time points that enables 

the module for efficient detection, classification and data 

clustering. With a compact generation and useful data 

representation, the traffic detection is performed. 

STE determines daily embedding M
as well as weekly 

embedding M
at the time relevant to current traffic S . 

Then, element wise product is conducted between spatial 

embedding N , M
and M

to acquire new spatial 

embedding
newN , which is formulated by, 

newN N M M  =                                    (1) 

Figure 5 illustrates features of individual sensors. 
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Fig. 5. Features of individual sensor 

The sensor
1V is assumed wherein it collects H features in

number of times. Henceforth, newN  of sensor illustrates

( )1 H   dimension. The daily and weekly embedding is 

modeled in figure 6 and figure 7. 

 

Fig. 6. Features of daily embedding 

 

Fig. 7. Features of weekly embedding 

4.3 Traffic flow prediction 

Precise traffic prediction is significant in enhancing the 

reliability and efficacy in ITSs. Regardless of the prior 

investigations, precise traffic forecasting experiences 

beneath complexities that includes designing the dynamics 

of traffic data in temporal and spatial dimensions and the 

issue is more complex for long term forecasting approach. 

NxLFTNet is utilized in forecasting traffc flow, in which 

NxLFTNet has NARX and LSTM. The spatial embedding 
newN   is subjected to both modules. Firstly, newN   is 

concatenated with weight 1 , and then weights are summed 

up. Then, newN   from LSTM is concatenated with 

summarized value for acquiring outcome 1Z . On the other 

hand, newN   from NARX is concatenated by weight 2 , and 

it is concatenated by 1Z for the resultant 2Z . Lastly, 1Z and

2Z are applied to Taylor concept for detecting the traffic that 

is signified by T . The overall outlook of NxLFTNet is 

illustrated in figure 8.  

 

Fig.  8. Schematic depiction of NxLFTNet 

4.3.1 Structure of LSTM 

LSTM [24] comprises two blocks and dense layer which 

also comprises cell state, and it implements on entire chain 

with the ability of including as well as eliminating the data 

to cell state. LSTM has point-wise multiplication function 

as well as sigmoid layer. Here, newN 
and hidden state of 

former time step ( )1gC −
are included in LSTM block. This 

predicts the type of data is neglected from cell. The outcome 

is expressed as, 

( )1 1 1

new new

gZ N J C K j N 

   −= + +             (2) 

where,
1Z specifies LSTM output, J implies input weight, K

refers biased weight, and j specifies bias. Figure 9 displays 

architecture of LSTM. 

 

 

Fig. 9. Structure of the LSTM model 

4.3.2 Structure of NARX 

NARX [23] exhibits a feedback connection which 

accumulates more layers of network for acquiring nonlinear 

time series prediction. In addition to that, it deploys the 

memory for processing former actual or detected time series 

values. The learning process is effectual and network 

convergence is speeder for generating extreme outcomes. 

Thus, the resultant is enumerated as,  

( ) ( )2 2 2 1 1

1

kP
new new new

o o g

o

Z d F E z N N J C K j N 

      −

=

   
= +   + +     
    

 
   (3)

 

where, connection weight indicates oF  amid tho hidden 

neurons and th detected resultant. The entire hidden 

neurons refer kP and activation function for resultant layer 

articulates 2d , bias explicates j , hidden layer at time z

implies ( )oE z . Figure 10 demonstrates architecture of 

NARX. 
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Fig. 10. Structure of NARX 

By using Taylor concept, the final output expresses,  

( ) ( )1 1 2 2

1

2
kP

new new new

g o o

o

T N J C K j N d F E z N 

      −

=

   
= + +  − +     

    
 

 (4) 

Here, the detected traffic is symbolized asT . 

4.3.3 Training Algorithm of BGSO 

BGSO is introduced by the amalgamation of GSO [25] and 

BER [26], which is used to train the network named 

NxLFTNet for showing the effectualness of this new hybrid 

optimization algorithm. GSO [25] is a nature-inspired 

optimization algorithm and it is motivated by searching 

behavior of animal in real life. This optimizer is deployed 

for exploring an extreme solution in excess of candidate 

solution for resolving the optimization issues by analyzing 

minimal or maximal intent function for a certain issue. 

Every group of agents has producers, scroungers, and 

dispersed members. BER [26] is motivated by 

determination of earth radius for examining the search space 

surrounding the solutions with swarm members’ behavior 

for fulfilling their global goals. It enhances the performance 

of exploitation, strikes a balance among exploitation and 

exploration, enlarging the search space. By using this 

effectiveness, GSO and BER are incorporated for showing 

the efficaciousness of the model. The steps followed in this 

model are demonstrated as, 

a) Solution Encoding 

It enumerates the illustration of optimization problem and 

mapped to a set of potential solutions. Moreover, it is 

utilized for simplifying the search space ( ) that makes it 

easier to identify fine solutions that is computed as, 

 1 =                                            (5) 

Here, learning parameter of NxLFTNet is . 

b) Fitness function 

This objective function is applied for finding an optimal 

solution that examines how close a given solution is to the 

optimum solution of desired issue that is determined by, 

 
2

1

1 p

out out

l

F T
p


=

= −                           (6) 

Here, p indicates total number of data, l represents input 

data,
out implies targeted output and detected output 

symbolizes
outT . 

c) Algorithmic steps 

The algorithmic phases of NxLFTNet are derived in the 

following stages. 

Step 1: Initialization 

This optimizer is conducted utilizing a set of populations 

named group, where every agent as member. This is the 

initial step considered for analyzing the random solutions 

with a given search space that is computed in the form of, 

 , ,..... ,......1 2 rG G G G G=                              (7) 

Here, 
rG implies the candidate solution considered for the 

below evaluation, G
signifies total number of populations.  

Step 2: Compute fitness 

It is used to examine the fine solution for attaining a superior 

outcome that is already formulated in Eq. (6). 

Step 3: Producers phase 

In GSO, at the course number that is 
ths iteration, the 

producer aG is implemented as follows: 

It determine at zero and with stochastic testing three 

positions in the validating position: one instance at zero rate 

is formulated as, 

( )max1

s s s

v a aG G w u W = +                                (8) 

A point in right hand faction hypercube is illustrated by, 

( )max max \1 2 2s s s

e a aG G w u W w= + +                  (9) 

A point in left hand faction hypercube is computed by, 

( )max max \1 2 2s s s

u a aG G w u W w= + +            (10) 

Here, commonly distributed stochastic value with average 

value 0 symbolizes 1

1w  , the value of standard deviation 

as 1 and consistently distributed stochastic values in the 

interval of  ,0 1  refers 1

2

zw − . 

Then, the producer processed for attaining the nearby 

extreme solution with better function. When the extreme 
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solutions have objective value than new solution, it 

transmits towards this position. Otherwise, it remains in its 

position and given its caption to a diverse arbitrarily 

generated location.  

max

1

2

s s w  + = +                                 (11) 

Here, maximal adjusting location indicates 1

amx  .  

When the producer failed to attain an extreme search space 

after  count of iterations, the leader back to zero degree is 

used that is computed by, 

1s

s + =                                       (12) 

Here, constant value represents 1 .  

Step 4: Scroungers phase 

The scroungers may frequent the searching process for 

extreme objective value for attaining the objective value 

analyzed by the producer. Here, only the space copying that 

is the prime scrounging behavior in sparrows is employed. 

At
ths  diffusion, the behavior of space copying of

thr  

scrounger is illustrated as stochastic walk near producer is 

computed by, 

( )1

3

s s s s

r r a rG G w G G+ = + −o                         (13) 

Here, parallel stochastic sequence value represents

( )3

xw  in the interval of  ,0 1 and product signifies  that 

computes the multiplication of two vectors. Through this 

process, the
thr scrounger keep discovering for other 

probabilities to attain, this is designed by deploying
thr  

scrounger’s start to an original randomly created position 

utilizing Eq. (12). 

Step 5: Dispersion phase 

Several illustrations of dispersions are obtained that ranges 

from effortless insects to human being. Scattered creatures 

deploy ranging behavior for searching and finding various 

environments. Ranging initiates external pointing to a 

specific device. Here, the
thr group agent is scattered for 

classification process. Normally, ranging beings create 

searching process that includes stochastic walks as well as 

methodical exploration techniques for identifying the 

resources. The arbitrary walks are regarded to be the normal 

efficient searching technique for scholastic allocated values 

employed by rangers. It generates a scholastic front position

r at ths search and considers random distance as, 

maxuur =                                         (14) 

The update solution from GSO is expressed as, 

( )1 1s s s s

r r r rG G uW + += +                             (15) 

From BER, the solution is employed to incorporate with 

GSO’s solution that is enumerated as, 

( ) ( )( )21Q q h Q q R+ = +
r r r

                                (16) 

Here,  

( ) ( )( )3R h U q Q q= −
r rr r

                                   (17) 

( ) ( ) ( ) ( )( )( )2

31Q q h Q q h U q Q q+ = + −
r r r rr

                (18) 

( ) ( ) ( ) ( )2 2

3 31Q q h Q q h hU q h Q q+ = + −
r r r r rr

                 (19) 

( ) ( ) ( ) ( )2 2

3 31Q q Q q h h h hU q+ = − +
r r r r r

                 (20) 

Assume,  

( ) 11 s

rQ q G ++ =
r

                                (21) 

( ) s

rQ q G=
r

                                     (22) 

( ) s

rU q U=
r

                                    (23) 

Substituting Eq. (21), (22), (23) in Eq. (20), 

( )1 2 2

3 3

s s s

r r rG G h h h hU+ = − +
r r

                             (24) 

( )

1 2

3

2

3

s s
s r r
r

G h hU
G

h h

+ −
=

−

r

r                                  (25) 

Applying Eq. (25) in Eq. (15), 

( )
( )

1 2
1 13

2

3

s s
s s sr r
r r r

G h hU
G uW

h h


+
+ +

 
− = +

 
−

  

r

r                 (26) 

( )
( )( )

( )

1 2 2
1

3 3
1

2 2

3 3

s s s
s

r r r
s r
r

uW h h h hUG
G

h h h h

 +
+

+
− −

− =
− −

r r

r r             (27) 

( )
( )

( )( )
( )

2 1 1 2 2

3 3 3

2 2

3 3

1 s s s s

r r r rh h G uW h h h hU

h h h h

+ +− − − −
=

− −

r r r

r r      (28) 

( ) ( )1 1 2 2

3 3

s s s s

r r r rG uW h h h hU+ += − −
r r

                   (29) 

Here, 1s

rG
+  is the update solution, ( )Q q

r
signifies solution 

vector at iteration q , R
r

symbolizes distance vector, 3h
r

indicates random vector and best solution vector refersU
v

. 

Step 6: Termination 

This kind of process will be continuously takes place till it 

acquires the supreme solution. Algorithm 1 articulates 

pseudo code of BGSO. 
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Algorithm 1. Pseudo code of BGSO 

SL.NO Pseudo code of BGSO 

1 Input: 0s = , iterations, number of 

populations  

2 Output: 1s

rG
+  

3 Begin 

4 Initialize agent
rG and head angles

r  

5 Determine fitness by Eq. (6) 

6 While max s− is not attain do 

7       For every agents r in group do 

8              Examine the Producer phase by 

Eq. (8), (9), (10), (11), (12) 

9            Examine the scrounging phase by 

Eq. (13) 

10            Examine the dispersion phase by 

Eq. (29) 

11      End for 

12 End while 

13 Return 

14 Terminate 

5. Results and Discussions 

The valuation of BGSO_NxLFTNet is clearly deliberated in 

the following phases and description of databases and 

implementation setup. 

5.1 Experimental Setup 

The experimental setup of BGSO_NxLFTNet is 

successfully executed in PYTHON tool. 

5.2 Database Description 

The database of BGSO_NxLFTNet is described in this 

phase: 

5.2.1 LargeST Database 

This database [22] has four sub-databases where it is 

elaborated utilizing diverse sensors. Amongst these four 

sub- databases, California (CA) is the largest one with 8,600 

sensors. Furthermore, three subsets of CA are Greater Los 

Angeles (GLA), Greater Bay Area (GBA), and San Diego 

(SD). 

5.3 Evaluation Metrics 

The measures of BGSO_NxLFTNet are elaborated here.  

5.3.1 MAPE 

It [27] defines the detection error as a percentile of actual 

value, which is indicated by, 

1

1

1 
 

 

 

 =

−
 =                                  (30) 

5.3.2 RMSE 

MSE illustrates the mean value of square of difference 

amongst actual and detected values, where its square root 

indicates RMSE [27]. 

( )
2

2

1
  


 = −                                 (31) 

5.3.3 MAE 

Absolute error is enumerated as degree of dissimilarity 

among determined value and actual value and its average 

value is illustrated as [27],  

( )3

1
  


 = −                                (32) 

In this section, the overall samples symbolize  ,  specifies 

original value and  implies detected value. 

5.4 Comparative Methods 

DDGCRN [15], LSTM [16], AM-LSTM [17], MCGCN 

[14] and NxLFTNet are the traditional modules of Proposed 

BGSO_NxLFTNet. 

5.5 Comparative Analysis 

The estimation of BGSO_NxLFTNet is altered by delay 

based on three databases namely, Alameda, Contra Costa, 

and El Dorado.  

5.5.1 Analysis of BGSO_NxLFTNet using Alameda 

 Figure 11 describes BGSO_NxLFTNet’s assessment 

utilizing Alameda varying delay. In figure 11 a), the 

BGSO_NxLFTNet evaluation with relevance of MAPE is 

designed. When delay is 50 mints, the estimation of 

BGSO_NxLFTNet achieved MAPE with 0.047, while prior 

schemes attained 0.701, 0.389, 0.285, 0.086 and 0.077. 

Figure 11 b) displays BGSO_NxLFTNet valuation 

concerning RMSE. If delay is 50 mints, then 

BGSO_NxLFTNet observed RMSE of 0.015, wherein 

conventional approaches acquired 0.445, 0.242, 0.241, 

0.124 and 0.040. Figure 11 c) explicates BGSO_NxLFTNet 

examination regarding MAE. Assuming delay as 50 mints, 

the BGSO_NxLFTNet in terms of MAE obtained 0.009, 

whereas the traditional techniques accomplished 0.421, 

0.275, 0.195, 0.073 and 0.017.  
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(a) (b) 

 

(c) 

Fig. 11. Analysis of BGSO_NxLFTNet using Alameda, a) 

MAPE, b) RMSE, c) MAE 

5.5.2 Analysis of BGSO_NxLFTNet using GBA 

Figure 12 elucidates BGSO_NxLFTNet’s estimation 

employing Contra Costa altering delay. In figure 12 a), the 

BGSO_NxLFTNet assessment in relating to MAPE is 

represented. While delay is taken as 50 mints, the analytic 

values of BGSO_NxLFTNet reached MAPE with 0.001, 

while preceding strategies obtained 0.362, 0.235, 0.118, 

0.007 and 0.003. Figure 12 b) expresses BGSO_NxLFTNet 

estimation according to RMSE. Considering delay as 50 

mints, then BGSO_NxLFTNet achieved RMSE of 0.010, 

whereas other modules observed 0.362, 0.253, 0.168, 0.085 

and 0.047. Figure 12 c) designs BGSO_NxLFTNet 

assessment relevant to MAE. With delay as 50 mints, the 

BGSO_NxLFTNet with MAE achieved 0.011, wherein the 

former models gained 0.269, 0.247, 0.182, 0.146 and 0.040.  

  
(a) (b) 

 
(c) 

Fig. 12. Analysis of BGSO_NxLFTNet using Contra 

Costa, a) MAPE, b) RMSE, c) MAE 

 

5.5.3 Analysis of BGSO_NxLFTNet using EL dorado 

Figure 13 represents BGSO_NxLFTNet’s computation 

using employing EL dorado differing delay. In figure 13 a), 

the BGSO_NxLFTNet determination based on MAPE is 

illustrated. Assume delay 50 mints, the evaluation values of 

BGSO_NxLFTNet accomplished MAPE with 0.010, where 

former techniques achieved 0.448, 0.448, 0.354, 0.128 and 

0.066. Figure 13 b) deliberates BGSO_NxLFTNet 

estimation relating to RMSE. Consider delay as 50 mints, 

and then BGSO_NxLFTNet attained RMSE of 0.021, 

whereas existing modules gained 0.401, 0.262, 0.245, 0.234 

and 0.057. Figure 13 c) designs BGSO_NxLFTNet 

assessment relevant to MAE. With delay as 50 mints, the 

BGSO_NxLFTNet with MAE achieved 0.004, wherein the 

conventional modules acquired 0.313, 0.244, 0.190, 0.095 

and 0.014.  

  
(a) (b) 

 
(c) 

Fig. 13. Analysis of BGSO_NxLFTNet using EL dorado, 

a) MAPE, b) RMSE, c) MAE 

5.6 Prediction Graph 

The prediction graph of this module is illustrated in Figure 

14 in terms of Alameda, Contra Costa, and El Dorado 

varying time (mints). In figure 14 a), the Alameda of 

prediction graph is designed. When the time is considered 

as 250 mints, the original traffic flow observed 453 and 

BGSO_NxLFTNet acquired 403, where the other former 

technologies obtained 253, 273, 303, 353 and 373.  Figure 

14 b) represents Contra Costa of prediction graph. Assume 

time as 250 mints, original flow attained 413 and 

BGSO_NxLFTNet achieved 383, while other techniques 

accomplished 253, 256, 273, 323 and 353. In figure 14c), 

the El Dorado of prediction graph is demonstrated. With 

time as 250 mints, the original traffic flow observed 303, 

BGSO_NxLFTNet gained 293, whereas the traditional 

models attained 253, 255, 263, 323 and 273. 
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(a) (b) 

 

(c) 

Fig. 14. Analysis of BGSO_NxLFTNet, a) MAPE, b) 

RMSE, c) MAE 

5.7 Comparative Discussions 

The values acquired from proposed BGSO_NxLFTNet is 

discussed in table 1. Here, the estimation takes place with 

the preceding techniques. The developed approach 

BGSO_NxLFTNet achieved MAPE with the value of 0.001 

that is sensitive to higher errors, making it helpful for 

modules required for forecasting values. The RMSE of 

BGSO_NxLFTNet gained 0.010 that is required for 

capturing delicate variations in the data. Moreover, MAE of 

discovered technique observed 0.011 which provided a 

direct measure of mean error magnitude. Thus, the overall 

performance of the proposed technique BGSO_NxLFTNet 

shows the consistent, reliability, generalizability by 

evaluating with comparative modules. 

 

 

Table 1. Comparative discussion 

Alterations based on Metrics/Methods DDGCRN LSTM AM-LSTM MC

GCN 

NxLFTNet Proposed 

BGSO_NxLFT

Net 

Alameda  

 

 

Delay 

(mints) 

=50 

MAPE 0.701 0.389 0.285 0.086 0.077 0.047 

RMSE 0.445 0.242 0.241 0.124 0.040 0.015 

MAE 0.421 0.275 0.195 0.073 0.017 0.009 

Contra 

Costa 

MAPE 0.362 0.235 0.118 0.007 0.003 0.001 

RMSE 0.362 0.253 0.168 0.085 0.047 0.010 

MAE 0.269 0.247 0.182 0.146 0.040 0.011 

EL dorado MAPE 0.448 0.448 0.354 0.128 0.066 0.010 

RMSE 0.401 0.262 0.245 0.234 0.057 0.021 

MAE 0.313 0.244 0.190 0.095 0.014 0.004 

6. Conclusion 

Traffic prediction has been active investigation domain for 

the past few years and with the advancement of DL 

methodologies, investigators are demanding to apply DL for 

excellent enhancements.  The reliable and precise traffic 

prediction may help in intelligent route guidance, proactive 

and dynamic traffic control that might assist for exhibiting 

extreme congestion issue in the model. In this research, a 

traffic forecasting module is designed utilizing 

BGSO_NxLFTNet. The input traffic network is forwarded 

to STE generator to recognize the daily as well as weekly 

embeddings of time in context of present traffic signal. The 

output of STE generator and input traffic network is given 

for traffic detection phase that is successfully forecasted 

using NxLFTNet, which is trained by BGSO. The measures 

employed for the analysis of proposed BGSO_NxLFTNet 

are MAPE, RMSE and MAE acquired uttermost results with 

better values of 0.001, 0.010 and 0.011. The future 

exploration will explore a system by taking dynamic 

complexity of road network and weather’s disruption and 

more data sources will consider in detecting traffic. 
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